// // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // stdlib -- // // Author : Peter A. Buhr // Created On : Thu Jan 28 17:12:35 2016 // Last Modified By : Peter A. Buhr // Last Modified On : Thu Jan 21 22:02:13 2021 // Update Count : 574 // #pragma once #include "bits/defs.hfa" // OPTIONAL_THREAD #include "bits/align.hfa" // libAlign #include // *alloc, strto*, ato* #include // Reduce includes by explicitly defining these routines. extern "C" { void * memalign( size_t alignment, size_t size ); // malloc.h void * pvalloc( size_t size ); // malloc.h void * memset( void * dest, int fill, size_t size ); // string.h void * memcpy( void * dest, const void * src, size_t size ); // string.h } // extern "C" //--------------------------------------- #ifndef EXIT_FAILURE #define EXIT_FAILURE 1 // failing exit status #define EXIT_SUCCESS 0 // successful exit status #endif // ! EXIT_FAILURE //--------------------------------------- #include "common.hfa" //--------------------------------------- // Macro because of returns #define $ARRAY_ALLOC( allocation, alignment, dim ) \ if ( _Alignof(T) <= libAlign() ) return (T *)(void *)allocation( dim, (size_t)sizeof(T) ); /* C allocation */ \ else return (T *)alignment( _Alignof(T), dim, sizeof(T) ) static inline forall( T & | sized(T) ) { // CFA safe equivalents, i.e., implicit size specification T * malloc( void ) { if ( _Alignof(T) <= libAlign() ) return (T *)(void *)malloc( (size_t)sizeof(T) ); // C allocation else return (T *)memalign( _Alignof(T), sizeof(T) ); } // malloc T * aalloc( size_t dim ) { $ARRAY_ALLOC( aalloc, amemalign, dim ); } // aalloc T * calloc( size_t dim ) { $ARRAY_ALLOC( calloc, cmemalign, dim ); } // calloc T * resize( T * ptr, size_t size ) { // CFA resize, eliminate return-type cast if ( _Alignof(T) <= libAlign() ) return (T *)(void *)resize( (void *)ptr, size ); // CFA resize else return (T *)(void *)resize( (void *)ptr, _Alignof(T), size ); // CFA resize } // resize T * realloc( T * ptr, size_t size ) { // CFA realloc, eliminate return-type cast if ( _Alignof(T) <= libAlign() ) return (T *)(void *)realloc( (void *)ptr, size ); // C realloc else return (T *)(void *)realloc( (void *)ptr, _Alignof(T), size ); // CFA realloc } // realloc T * memalign( size_t align ) { return (T *)memalign( align, sizeof(T) ); // C memalign } // memalign T * amemalign( size_t align, size_t dim ) { return (T *)amemalign( align, dim, sizeof(T) ); // CFA amemalign } // amemalign T * cmemalign( size_t align, size_t dim ) { return (T *)cmemalign( align, dim, sizeof(T) ); // CFA cmemalign } // cmemalign T * aligned_alloc( size_t align ) { return (T *)aligned_alloc( align, sizeof(T) ); // C aligned_alloc } // aligned_alloc int posix_memalign( T ** ptr, size_t align ) { return posix_memalign( (void **)ptr, align, sizeof(T) ); // C posix_memalign } // posix_memalign T * valloc( void ) { return (T *)valloc( sizeof(T) ); // C valloc } // valloc T * pvalloc( void ) { return (T *)pvalloc( sizeof(T) ); // C pvalloc } // pvalloc } // distribution /* FIX ME : fix alloc interface after Ticker Number 214 is resolved, define and add union to S_fill. Then, modify postfix-fill functions to support T * with nmemb, char, and T object of any size. Finally, change alloc_internal. Or, just follow the instructions below for that. 1. Replace the current forall-block that contains defintions of S_fill and S_realloc with following: forall( T & | sized(T) ) { union U_fill { char c; T * a; T t; }; struct S_fill { char tag; U_fill(T) fill; }; struct S_realloc { inline T *; }; } 2. Replace all current postfix-fill functions with following for updated S_fill: S_fill(T) ?`fill( char a ) { S_fill(T) ret = {'c'}; ret.fill.c = a; return ret; } S_fill(T) ?`fill( T a ) { S_fill(T) ret = {'t'}; memcpy(&ret.fill.t, &a, sizeof(T)); return ret; } S_fill(T) ?`fill( T a[], size_t nmemb ) { S_fill(T) ret = {'a', nmemb}; ret.fill.a = a; return ret; } 3. Replace the $alloc_internal function which is outside ttype forall-block with following function: T * $alloc_internal( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill) { T * ptr = NULL; size_t size = sizeof(T); size_t copy_end = 0; if(Resize) { ptr = (T*) (void *) resize( (int *)Resize, Align, Dim * size ); } else if (Realloc) { if (Fill.tag != '0') copy_end = min(malloc_size( Realloc ), Dim * size); ptr = (T*) (void *) realloc( (int *)Realloc, Align, Dim * size ); } else { ptr = (T*) (void *) memalign( Align, Dim * size ); } if(Fill.tag == 'c') { memset( (char *)ptr + copy_end, (int)Fill.fill.c, Dim * size - copy_end ); } else if(Fill.tag == 't') { for ( int i = copy_end; i <= Dim * size - size ; i += size ) { memcpy( (char *)ptr + i, &Fill.fill.t, size ); } } else if(Fill.tag == 'a') { memcpy( (char *)ptr + copy_end, Fill.fill.a, min(Dim * size - copy_end, size * Fill.nmemb) ); } return ptr; } // $alloc_internal */ typedef struct S_align { inline size_t; } T_align; typedef struct S_resize { inline void *; } T_resize; forall( T & ) { struct S_fill { char tag; char c; size_t size; T * at; char t[50]; }; struct S_realloc { inline T *; }; } static inline T_align ?`align ( size_t a ) { return (T_align){a}; } static inline T_resize ?`resize ( void * a ) { return (T_resize){a}; } static inline forall( T & | sized(T) ) { S_fill(T) ?`fill ( T t ) { S_fill(T) ret = { 't' }; size_t size = sizeof(T); if ( size > sizeof(ret.t) ) { abort( "ERROR: const object of size greater than 50 bytes given for dynamic memory fill\n" ); } // if memcpy( &ret.t, &t, size ); return ret; } S_fill(T) ?`fill ( char c ) { return (S_fill(T)){ 'c', c }; } S_fill(T) ?`fill ( T * a ) { return (S_fill(T)){ 'T', '0', 0, a }; } S_fill(T) ?`fill ( T a[], size_t nmemb ) { return (S_fill(T)){ 'a', '0', nmemb * sizeof(T), a }; } S_realloc(T) ?`realloc ( T * a ) { return (S_realloc(T)){a}; } T * $alloc_internal( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill ) { T * ptr = NULL; size_t size = sizeof(T); size_t copy_end = 0; if ( Resize ) { ptr = (T*) (void *) resize( (void *)Resize, Align, Dim * size ); } else if ( Realloc ) { if ( Fill.tag != '0' ) copy_end = min(malloc_size( Realloc ), Dim * size ); ptr = (T *) (void *) realloc( (void *)Realloc, Align, Dim * size ); } else { ptr = (T *) (void *) memalign( Align, Dim * size ); } if ( Fill.tag == 'c' ) { memset( (char *)ptr + copy_end, (int)Fill.c, Dim * size - copy_end ); } else if ( Fill.tag == 't' ) { for ( int i = copy_end; i < Dim * size; i += size ) { #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" assert( size <= sizeof(Fill.t) ); memcpy( (char *)ptr + i, &Fill.t, size ); #pragma GCC diagnostic pop } } else if ( Fill.tag == 'a' ) { memcpy( (char *)ptr + copy_end, Fill.at, min(Dim * size - copy_end, Fill.size) ); } else if ( Fill.tag == 'T' ) { memcpy( (char *)ptr + copy_end, Fill.at, Dim * size ); } return ptr; } // $alloc_internal forall( TT... | { T * $alloc_internal( void *, T *, size_t, size_t, S_fill(T), TT ); } ) { T * $alloc_internal( void * , T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill, T_resize Resize, TT rest) { return $alloc_internal( Resize, (T*)0p, Align, Dim, Fill, rest); } T * $alloc_internal( void * Resize, T * , size_t Align, size_t Dim, S_fill(T) Fill, S_realloc(T) Realloc, TT rest) { return $alloc_internal( (void*)0p, Realloc, Align, Dim, Fill, rest); } T * $alloc_internal( void * Resize, T * Realloc, size_t , size_t Dim, S_fill(T) Fill, T_align Align, TT rest) { return $alloc_internal( Resize, Realloc, Align, Dim, Fill, rest); } T * $alloc_internal( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) , S_fill(T) Fill, TT rest) { return $alloc_internal( Resize, Realloc, Align, Dim, Fill, rest); } T * alloc( TT all ) { return $alloc_internal( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), (size_t)1, (S_fill(T)){'0'}, all); } T * alloc( size_t dim, TT all ) { return $alloc_internal( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), dim, (S_fill(T)){'0'}, all); } } // distribution TT } // distribution T static inline forall( T & | sized(T) ) { // CFA safe initialization/copy, i.e., implicit size specification, non-array types T * memset( T * dest, char fill ) { return (T *)memset( dest, fill, sizeof(T) ); } // memset T * memcpy( T * dest, const T * src ) { return (T *)memcpy( dest, src, sizeof(T) ); } // memcpy // CFA safe initialization/copy, i.e., implicit size specification, array types T * amemset( T dest[], char fill, size_t dim ) { return (T *)(void *)memset( dest, fill, dim * sizeof(T) ); // C memset } // amemset T * amemcpy( T dest[], const T src[], size_t dim ) { return (T *)(void *)memcpy( dest, src, dim * sizeof(T) ); // C memcpy } // amemcpy } // distribution // CFA deallocation for multiple objects static inline forall( T & ) // FIX ME, problems with 0p in list void free( T * ptr ) { free( (void *)ptr ); // C free } // free static inline forall( T &, TT... | { void free( TT ); } ) void free( T * ptr, TT rest ) { free( ptr ); free( rest ); } // free // CFA allocation/deallocation and constructor/destructor, non-array types static inline forall( T & | sized(T), TT... | { void ?{}( T &, TT ); } ) T * new( TT p ) { return &(*(T *)malloc()){ p }; // run constructor } // new static inline forall( T & | { void ^?{}( T & ); } ) void delete( T * ptr ) { // special case for 0-sized object => always call destructor if ( ptr || sizeof(ptr) == 0 ) { // ignore null but not 0-sized objects ^(*ptr){}; // run destructor } // if free( ptr ); // always call free } // delete static inline forall( T &, TT... | { void ^?{}( T & ); void delete( TT ); } ) void delete( T * ptr, TT rest ) { delete( ptr ); delete( rest ); } // delete // CFA allocation/deallocation and constructor/destructor, array types forall( T & | sized(T), TT... | { void ?{}( T &, TT ); } ) T * anew( size_t dim, TT p ); forall( T & | sized(T) | { void ^?{}( T & ); } ) void adelete( T arr[] ); forall( T & | sized(T) | { void ^?{}( T & ); }, TT... | { void adelete( TT ); } ) void adelete( T arr[], TT rest ); //--------------------------------------- static inline { int strto( const char sptr[], char ** eptr, int base ) { return (int)strtol( sptr, eptr, base ); } unsigned int strto( const char sptr[], char ** eptr, int base ) { return (unsigned int)strtoul( sptr, eptr, base ); } long int strto( const char sptr[], char ** eptr, int base ) { return strtol( sptr, eptr, base ); } unsigned long int strto( const char sptr[], char ** eptr, int base ) { return strtoul( sptr, eptr, base ); } long long int strto( const char sptr[], char ** eptr, int base ) { return strtoll( sptr, eptr, base ); } unsigned long long int strto( const char sptr[], char ** eptr, int base ) { return strtoull( sptr, eptr, base ); } float strto( const char sptr[], char ** eptr ) { return strtof( sptr, eptr ); } double strto( const char sptr[], char ** eptr ) { return strtod( sptr, eptr ); } long double strto( const char sptr[], char ** eptr ) { return strtold( sptr, eptr ); } } // distribution float _Complex strto( const char sptr[], char ** eptr ); double _Complex strto( const char sptr[], char ** eptr ); long double _Complex strto( const char sptr[], char ** eptr ); static inline { int ato( const char sptr[] ) { return (int)strtol( sptr, 0p, 10 ); } unsigned int ato( const char sptr[] ) { return (unsigned int)strtoul( sptr, 0p, 10 ); } long int ato( const char sptr[] ) { return strtol( sptr, 0p, 10 ); } unsigned long int ato( const char sptr[] ) { return strtoul( sptr, 0p, 10 ); } long long int ato( const char sptr[] ) { return strtoll( sptr, 0p, 10 ); } unsigned long long int ato( const char sptr[] ) { return strtoull( sptr, 0p, 10 ); } float ato( const char sptr[] ) { return strtof( sptr, 0p ); } double ato( const char sptr[] ) { return strtod( sptr, 0p ); } long double ato( const char sptr[] ) { return strtold( sptr, 0p ); } float _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); } double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); } long double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); } } // distribution //--------------------------------------- forall( E | { int ?