
Cforall Referene Manual and Rationale

Glen Dith�eld

98/01/17

i

Contents

1 Introdution 1

1.1 De�nitions of Terms . 1

2 Lexial Elements 6

2.1 Keywords . 6

2.2 Identi�ers . 6

2.2.1 Constant Identi�ers . 6

2.2.2 Operator Identi�ers . 7

2.2.3 Sopes of Identi�ers . 8

2.2.4 Linkage of Identi�ers . 8

3 Conversions 10

3.1 Other Operands . 10

3.1.1 Anonymous Members . 10

3.1.2 Speialization . 11

3.2 Safe and Unsafe Conversions . 11

3.3 Conversion Cost . 12

4 Expressions 13

4.1 Primary Expressions . 14

4.2 Post�x Operators . 15

4.2.1 Funtion Calls . 16

4.2.2 Post�x Inrement and Derement Operators . 19

4.2.3 Other Post�x Operators . 19

4.3 Unary Operators . 20

4.4 Cast Operators . 22

4.5 Multipliative Operators . 23

4.6 Additive Operators . 24

4.7 Bitwise Shift Operators . 25

4.8 Relational Operators . 25

4.9 Equality Operators . 26

4.10 Bitwise AND Operator . 27

4.11 Bitwise Exlusive OR Operator . 28

4.12 Bitwise Inlusive OR Operator . 28

4.13 Logial AND Operator . 29

4.14 Logial OR Operator . 29

4.15 Conditional Operator . 30

4.16 Assignment Operators . 30

ii

4.17 Comma Operator . 34

5 Delarations 35

5.1 Type Spei�ers . 35

5.1.1 Struture and Union Spei�ers . 35

5.1.2 Forall Spei�ers . 36

5.2 Type Quali�ers . 39

5.3 Spei�ation De�nitions . 40

5.3.1 Assertions . 41

5.4 Type Delarations . 42

5.4.1 Default Funtions and Objets . 46

5.5 Initialization . 48

6 Statements 49

6.1 Expression and Null Statements . 49

6.2 Jump Statements . 49

6.3 Seletion Statements . 49

6.4 Iteration Statements . 49

7 Preproessing Diretives 51

7.1 Prede�ned Maro Names . 51

A Examples 52

A.1 C Types . 52

A.1.1 Salar, Arithmeti, and Integral Types . 52

A.1.2 Modi�able Types . 52

A.1.3 Pointer and Array Types . 53

A.2 Relationships Between Operations . 55

A.2.1 Relational and Equality Operators . 55

A.2.2 Arithmeti and Integer Operations . 56

iii

Chapter 1

Introdution

This doument is a referene manual and rationale for Cforall, a polymorphi extension of the C programming

language. It makes frequent referene to the ANSI C standard [1℄, and oasionally ompares Cforall to C++

[5℄.

The manual deliberately imitates the ordering of the ANSI C standard (although the setion numbering

varies). Unfortunately, this means that the manual ontains more \forward referenes" than usual, and that

it will be hard to follow if the reader does not have a opy of the ANSI standard near-by. For a gentle

introdution to Cforall, see the ompanion doument \An Overview of Cforall" [4℄.

2 Commentary (like this) is quoted with quads. Commentary usually deals with subtle points,

the rationale behind a rule, and design deisions. 2

The syntax notation used in this doument is the same as is used in the ANSI C standard, with one

exeption: ellipsis in the de�nition of a nonterminal, as in \delaration: . . . ", indiates that these rules

extend a previous de�nition, whih ours in this doument or in the ANSI C standard.

1.1 De�nitions of Terms

Wherever possible, terms in this doument have the same meaning as in the ANSI C standard. In partiular,

\shall" states a requirement on a program or implementation of Cforall, and \shall not" states a prohibition.

For the onveniene of the reader, the following de�nitions are quoted from various setions of the ANSI

C standard.

ompatible type (x3.1.2.6) Two types have ompatible type if their types are the same. Additional rules

for determining whether two types are ompatible are desribed [below℄.

� (x3.5.2.2) Eah enumerated type shall be ompatible with an integer type; the hoie of type is

implementation-de�ned.

� (x3.5.3) For two quali�ed types to be ompatible, both shall have the identially quali�ed version

of a ompatible type; the order of type quali�ers within a list of spei�ers or quali�ers does not

a�et the spei�ed type.

� (x3.5.4.1) For two pointer types to be ompatible, both shall be identially quali�ed and both

shall be pointers to ompatible types.

� (x3.5.4.2) For two array types to be ompatible, both shall have ompatible element types, and if

both size spei�ers are present, they shall have the same value.

1

CHAPTER 1. INTRODUCTION 2

� (x3.5.4.3) For two funtion types to be ompatible, both shall speify ompatible return types.

Moreover, the parameter type lists, if both are present, shall agree in the number of parameters

and in use of the ellipsis terminator; orresponding parameters shall have ompatible types. If

one type has a parameter type list and the other type is spei�ed by a funtion delarator that

is not part of a funtion de�nition and that ontains an empty identi�er list, the parameter list

shall not have an ellipsis terminator and the type of eah parameter shall be ompatible with

the type that results from the appliation of the default argument promotions. If one type has

a parameter type list and the other type is spei�ed by a funtion de�nition that ontains a

(possibly empty) identi�er list, both shall agree in the number of parameters, and the type of

eah prototype parameter shall be ompatible with the type that results from the appliation of

the default argument promotions to the type of the orresponding identi�er. (For eah parameter

delared with funtion or array type, its type for these omparisons is the one that results from

onversion to a pointer type. For eah parameter delared with quali�ed type, its type for these

omparisons is the unquali�ed version of its delared type.)

Moreover, two struture, union, or enumerated types delared in separate translation units are om-

patible if they have the same number of members, the same member names, and ompatible member

types; for two strutures, the members shall be in the same order; for two strutures or unions, the

bit-�elds shall have the same widths; for two enumerations, the members shall have the same values.

omposite type (x3.1.2.6) A omposite type an be onstruted from two types that are ompatible; it is

a type that is ompatible with both of the two types and satis�es the following onditions:

� If one type is an array of known size, the omposite type is an array of that size.

� If only one type is a funtion type with a parameter type list (a funtion prototype), the omposite

type is a funtion type with the parameter type list.

� If both types are funtion types with parameter type lists, the type of eah parameter in the

omposite parameter list is the omposite type of the orresponding parameters.

These rules apply reursively to the types from whih the two types are derived.

For an identi�er with external or internal linkage delared in the same sope as another delaration for

that identi�er, the type of the identi�er beomes the omposite type.

delaration (x3.5) A delaration spei�es the interpretation and attributes of a set of identi�ers.

default argument promotions (x3.3.2.2) If the expression [in a funtion all℄ that denotes the alled

funtion has a type that does not inlude a prototype, the integral promotions are performed on eah

argument and arguments that have type float are promoted to double. These are alled the default

argument promotions [. . . ℄. The ellipsis notation in a funtion prototype delarator auses argument

type onversions to stop after the last delared parameter. The default argument promotions are

performed on trailing arguments.

de�nition (x3.5) A delaration that also auses storage to be reserved for an objet or funtion named by

an identi�er is a de�nition.

derived delarator type (x3.1.2.5) Array, funtion and pointer types are olletively alled derived dela-

rator types.

integral promotions (x3.2.1.1) A har, a short int, or an int bit-�eld, or their signed or unsigned

varieties, or an enumeration type, may be used in an expression whenever an int or unsigned int

may be used. If an int an represent all values of the original type, the value is onverted to an int;

otherwise, it is onverted to an unsigned int. These are alled the integral promotions.

Revision: 1.82

CHAPTER 1. INTRODUCTION 3

funtion prototype (x3.1.2.1) A funtion prototype is a delaration of a funtion that delares the types

of its parameters.

lvalue (x3.2.2.1) An lvalue is an expression (with an objet type or an inomplete type other than void)

that designates an objet. When an objet is said to have a partiular type, the type is spei�ed by

the lvalue used to designate the objet. A modi�able lvalue is an lvalue that does not have array type,

does not have an inomplete type, does not have a onst-quali�ed type, and if it is a struture or union,

does not have any member (inluding, reursively, any member of all ontained strutures or unions)

with a onst-quali�ed type.

name spae (x3.1.2.3) If more than one delaration of a partiular identi�er is visible at any point in a

translation unit, the syntati ontext disambiguates uses that refer to di�erent entities. Thus, there

are separate name spaes for various ategories of identi�ers, as follows:

� label names (disambiguated by the syntax of the label delaration and use);

� the tags of strutures, unions, and enumerations (disambiguated by following any of the keywords

strut, union, or enum);

� the members of strutures or unions; eah struture or union has a separate name spae for its

members (disambiguated by the type of the expression used to aess the member via the . or

-> operator);

� all other identi�ers, alled ordinary identi�ers (delared in ordinary delarators or as enumeration

onstants).

objet (x1.6) An objet is a region of data storage in the exeution environment, the ontents of whih an

represent values. Exept for bit-�elds, objets are omposed of ontiguous sequenes of one or more

bytes, the number, order, and enoding of whih are either expliitly spei�ed or implementation-

de�ned. When referened, an objet may be interpreted as having a partiular type.

quali�ed type (x3.1.2.5) Eah unquali�ed type has three orresponding quali�ed versions of its type: a

onst-quali�ed version, a volatile-quali�ed version, and a version having both quali�ations. A derived

type is not quali�ed by the quali�ers (if any) of the type from whih it is derived.

[Cforall also allows lvalue-quali�ed versions of types, and versions having any ombination of the three

type quali�ers.℄

sope (x3.1.2.1) There are four kinds of sopes: funtion, �le, blok, and funtion prototype. . . .

A label name is the only kind of identi�er that has funtion sope. It an be used (in a goto statement)

anywhere in the funtion in whih it appears, and is delared impliitly by its syntati appearane

(followed by a \:" and a statement). Label names shall be unique within a funtion.

Every other identi�er has sope determined by the plaement of its delaration (in a delarator or type

spei�er). If the delarator or type spei�er that delares the identi�er appears outside of any blok

or list of parameters, the identi�er has �le sope, whih terminates at the end of the translation unit.

If the delarator or type spei�er that delares the identi�er appears inside a blok or within the list

of parameter delarations in a funtion de�nition, the identi�er has blok sope, whih terminates at

the \g" that loses the assoiated blok. If the delarator or type spei�er that delares the identi�er

appears within the list of parameter delarations in a funtion prototype (not part of a funtion

de�nition), the identi�er has funtion prototype sope, whih terminates at the end of the funtion

delarator.

Two identi�ers have the same sope if and only if their sopes terminate at the same point.

Revision: 1.82

CHAPTER 1. INTRODUCTION 4

Struture, union, and enumeration tags have sope that begins just after the appearane of the tag in

a type spei�er that delares the tag. Eah enumeration onstant has sope that begins just after the

appearane of its de�ning enumerator in an enumerator list. Any other identi�er has sope that begins

just after the ompletion of its delarator.

[Cforall adds a �fth kind of sope: de�nition sope.℄

sequene point (x2.1.2.3) At ertain spei�ed points in the exeution sequene alled sequene points, all

side e�ets of previous evaluations shall be omplete and no side e�ets of subsequent evaluations shall

have taken plae.

side e�et (x2.1.2.3) Aessing a volatile objet, modifying an objet, modifying a �le, or alling a funtion

that does any of those operations are all side e�ets, whih are hanges in the state of the exeution

environment.

storage-lass spei�er (x3.5.1) The keywords auto, extern, register, stati, and typedef are storage-

lass spei�ers.

storage duration (x3.1.2.4) An objet has a storage duration that determines its lifetime. There are two

storage durations: stati and automati.

An objet whose identi�er is delared with external or internal linkage, or with the storage-lass

spei�er stati has stati storage duration. For suh an objet, storage is reserved and its stored

value is initialized only one, prior to program startup. The objet exists and retains its last-stored

value throughout the exeution of the entire program.

An objet whose identi�er is delared with no linkage and without the storage-lass spei�er extern

has automati storage duration. Storage is guaranteed to be reserved for a new instane of suh an

objet on eah normal entry into the blok with whih it is assoiated, or on a jump from outside the

blok to a labeled statement in the blok or in an enlosed blok. If an initialization is spei�ed for

the value stored in the objet, it is performed on eah normal entry, but not if the blok is entered by

a jump to a labeled statement.

translation unit (x2.1.1.1) A soure �le together with all the headers and soure �les inluded via the

preproessing diretive #inlude, less any soure lines skipped by any of the onditional inlusion

preproessing diretives, is alled a translation unit .

type (x3.1.2.5) The meaning of a value stored in an objet or returned by a funtion is determined by the

type of the expression used to aess it. (An identi�er delared to be an objet is the simplest suh

expression; the type is spei�ed in the delaration of the identi�er.) Types are partitioned into objet

types (types that desribe objets), funtion types (types that desribe funtions), and inomplete types

(types that desribe objets but lak information needed to determine their sizes).

An array type of unknown size is an inomplete type. It is ompleted, for an identi�er of that type,

by speifying the size in a later delaration (with internal or external linkage). A struture or union

type of unknown ontent is an inomplete type. It is ompleted, for all delarations of that type, by

delaring the same struture or union tag with its de�ning ontent later in the same sope.

type quali�er (x3.5.3) The keywords onst and volatile are type quali�ers.

type spei�er (x3.5.2) A type spei�er is a struture or union spei�er, enumeration spei�er, typedef name,

or any legal ombination of the keywords void, har, short, int, long, float, double, signed, or

unsigned.

[Cforall adds the type, dtype, and ftype keywords and the forall spei�er as new type spei�ers.℄

Revision: 1.82

CHAPTER 1. INTRODUCTION 5

visible (x3.1.2.1) An identi�er is visible (i.e. an be used) only within a region of program text alled its

sope.

Revision: 1.82

Chapter 2

Lexial Elements

2.1 Keywords

Syntax

keyword: . . .

forall

lvalue

spe

dtype

ftype

type

2.2 Identi�ers

Cforall allows operator overloading by assoiating operators with speial funtion identi�ers. Furthermore,

the onstants \0" and \1" have speial status for many of C's data types (and for many programmer-de�ned

data types as well), so Cforall treats them as overloadable identi�ers as well. Programmers an use these

identi�ers to delare funtions and objets that implement operators and onstants for their own types.

2.2.1 Constant Identi�ers

Syntax

identi�er: . . .

0

1

The tokens \0" and \1" are identi�ers. No other tokens de�ned by the rules for integer onstants are

onsidered to be identi�ers.

2 Why \0" and \1"? Those integers have speial status in C. All salar types an be inremented

and deremented, whih is de�ned in terms of adding or subtrating 1. The operations \&&",

\||", and \!" an be applied to any salar arguments, and are de�ned in terms of omparison

against 0. A onstant-expression that evaluates to 0 is e�etively ompatible with every pointer

type.

6

CHAPTER 2. LEXICAL ELEMENTS 7

In C, the integer onstants 0 and 1 suÆe beause the integral promotion rules an onvert

them to any arithmeti type, and the rules for pointer expressions treat onstant expressions

evaluating to 0 as a speial ase. However, user-de�ned arithmeti types often need the equivalent

of a 1 or 0 for their funtions or operators, polymorphi funtions often need 0 and 1 onstants

of a type mathing their polymorphi parameters, and user-de�ned pointer-like types may need

a null value. De�ning speial onstants for a user-de�ned type is more eÆient than de�ning

a onversion to the type from int that heks that its argument is 0 or 1, and simpler than

extending the language with a bit type that an only take on those values and allowing the

programmer to de�ne a onversion from bit.

Why just \0" and \1"? Why not other integers? No other integers have speial status in C.

A faility that let programmers delare spei� onstants|\onst Complex 12", for instane|

would not be muh of an improvement. Some faility for de�ning the reation of values of

programmer-de�ned types from arbitrary integer tokens would be needed. The omplexity of

suh a feature doesn't seem worth the gain. 2

2.2.2 Operator Identi�ers

Table 2.1 lists the programmer-de�nable operator identi�ers and the operations they are assoiated with.

Funtions that are delared with (or pointed at by funtion pointers that are delared with) these identi�ers

an be alled by expressions that use the operator tokens and syntax, or the operator identi�ers and \funtion

all" syntax. The relationships between operators and funtion alls are disussed in desriptions of the

operators.

?[?℄ subsripting

?() funtion all

?++ post�x inrement

?-- post�x derement

++? pre�x inrement

--? pre�x derement

*? dereferene

+? unary plus

-? arithmeti negation

~? bitwise negation

!? logial omplement

?*? multipliation

?/? division

?%? remainder

?+? addition

?-? subtration

?<<? left shift

?>>? right shift

?<? less than

?<=? less than or equal

?>=? greater than or equal

?>? greater than

?==? equality

?!=? inequality

?&? bitwise AND

?^? exlusive OR

?|? inlusive OR

?=? simple assignment

?*=? multipliation assignment

?/=? division assignment

?%=? remainder assignment

?+=? addition assignment

?-=? subtration assignment

?<<=? left-shift assignment

?>>=? right-shift assignment

?&=? bitwise AND assignment

?^=? exlusive OR assignment

?|=? inlusive OR assignment

Table 2.1: Operator Identi�ers

2 Operator identi�ers are made up of the haraters of the operator token, with question

marks added to mark the positions of the arguments of operators. The question marks serve

as mnemoni devies; programmers an not reate new operators by arbitrarily mixing question

marks and other non-alphabeti haraters. Note that pre�x and post�x versions of the inrement

and derement operators are distinguished by the position of the question mark. 2

2 The use of \?" in identi�ers means that some C programs are not Cforall programs. For

instane, the sequene of haraters \(i < 0)?-i:i" is legal in a C program, but a Cforall

ompiler will detet a syntax error beause it will treat \?-" as an identi�er, not as the two

tokens \?" and \-". 2

Revision: 1.82

CHAPTER 2. LEXICAL ELEMENTS 8

2 Certain operators an not be de�ned by the programmer:

� The logial operators \&&" and \||", and the onditional operator \?:". These operators

do not always evaluate their operands, and hene an not be properly de�ned by funtions

unless some mehanism like all-by-name is added to the language. Note that the de�nitions

of \&&" and \||" say that they work by heking that their arguments are unequal to 0, so

de�ning \!=" and \0" for user-de�ned types is enough to allow them to be used in logial

expressions.

� The omma operator. It is a ontrol-ow operator like those above. Changing its meaning

seems pointless and onfusing.

� The \address of" operator. It seems useful to be able to de�ne a unary \&" operator that

returns values of some programmer-de�ned pointer-like type. The problem lies with the

type of the operator. Consider the expression \p = &x", where x is of type T and p has the

programmer-de�ned type T_ptr. The expression might be treated as a all to the unary

funtion \&?". Now what is the type of the funtion's parameter? It an not be T, beause

then x would be passed by value, and there is no way to reate a useful pointer-like result

from a value. Hene the parameter must have type T*. But then the expression must be

rewritten as \p = &?(&x)"|whih doesn't seem like progress!

The rule for address-of expressions would have to be something like \keep applying address-

of funtions until you get one that takes a pointer argument, then use the built-in operator

and stop". It seems simpler to de�ne a onversion funtion from T* to T_ptr.

� The sizeof operator. It is already de�ned for every objet type, and intimately tied into

the language's storage alloation model. Rede�ning it seems pointless.

� The \member of" operators \." and \->". These are not really in�x operators, sine their

right \operand" is not a value or objet.

� Cast operators. Anything that an be done with an expliit ast an be done with a funtion

all. The di�erene in syntax is small.

2

2.2.3 Sopes of Identi�ers

Cforall's sope rules di�er from C's in one major respet: a delaration of an identi�er may overload outer

delarations of lexially idential identi�ers in the same name spae, instead of hiding them. The outer

delaration is hidden if the two delarations have ompatible type, or if one delares an array type and

the other delares a pointer type and the element type and pointed-at type are ompatible, or if one has

funtion type and the other is a pointer to a ompatible funtion type, or if one delaration is a type or

typedef delaration and the other is not. The outer delaration beomes visible when the sope of the inner

delaration terminates.

2 Hene, a Cforall program an delare an int v and a float v in the same sope; a C++

program an not.

Note that enumeration onstants all exist in the name spae of ordinary identi�ers, and all

have type int, so one identi�er an not be used for two enumeration onstants in the same sope.

In other words, orange an not be a onstant from enum olor and enum fruit at the same

time. 2

2.2.4 Linkage of Identi�ers

Cforall's linkage rules di�er from C's in only one respet: instanes of a partiular identi�er with external or

internal linkage do not neessarily denote the same objet or funtion. Instead, in the set of translation units

Revision: 1.82

CHAPTER 2. LEXICAL ELEMENTS 9

and libraries that onstitutes an entire program, any two instanes of a partiular identi�er with external

linkage denote the same objet or funtion if they have ompatible types, or if one delares an array type

and the other delares a pointer type and the element type and pointed-at type are ompatible, or if one has

funtion type and the other is a pointer to a ompatible funtion type. Within one translation unit, eah

instane of an identi�er with internal linkage denotes the same objet or funtion in the same irumstanes.

Identi�ers with no linkage always denote unique entities.

2 A Cforall program an delare an extern int v and an extern float v; A C program

annot. 2

Revision: 1.82

Chapter 3

Conversions

Cforall de�nes situations where values of one type are automatially onverted to another type. These

onversions are alled impliit onversions. The programmer an request expliit onversions using ast

expressions.

3.1 Other Operands

3.1.1 Anonymous Members

If an expression has a struture or union type that has an anonymous member, it an be onverted impliitly

or expliitly to the anonymous member's type. The result of the onversion is the anonymous member of

the onverted expression, and is an lvalue if the onverted expression was.

If an expression's type is a pointer to a struture or union type that has an anonymous member, it an be

onverted impliitly or expliitly to a pointer to the anonymous member's type. The result of the onversion

is a pointer to the anonymous member.

Examples

strut point f

int x, y;

g;

void move_by(strut point* p1, strut point p2) f

p1->x += p2.x;

p1->y += p2.y;

g

strut olor_point f

enum f RED, BLUE, GREEN g olor;

strut point;

g p1, p2;

move_to(&p1, p2);

Thanks to impliit onversion, the two arguments that move_by() reeives are a pointer to p1's seond

member and a opy of p2's seond member.

10

CHAPTER 3. CONVERSIONS 11

3.1.2 Speialization

A funtion or value whose type is polymorphi may be onverted to one whose type is less polymorphi by

binding values to one or more of its inferred parameters. Any value that is legal for the inferred parameter

may be used, inluding other inferred parameters.

If, after the inferred parameter binding, an assertion parameter has no inferred parameters in its type,

then an objet or funtion must be visible at the point of the speialization that has the same identi�er

as the assertion parameter and has a type that is ompatible with or an be speialized to the type of the

assertion parameter. The assertion parameter is bound to that objet or funtion.

The type of the speialization is the type of the original with the bound inferred parameters and the

bound assertion parameters replaed by their bound values.

Examples

The type

forall(type T, type U) void (*)(T, U);

an be speialized to (among other things)

forall(type T) void (*)(T, T); /* U bound to T */

forall(type T) void (*)(T, real); /* U bound to real */

forall(type U) void (*)(real, U); /* T bound to real */

void f(real, real); /* both bound to real */

The type

forall(type T | T ?+?(T,T)) T (*)(T);

an be speialized to (among other things)

int (*)(int); /* T bound to int, and */

/* T ?+?(T,T) bound to int ?+?(int,int) */

3.2 Safe and Unsafe Conversions

In C, a pattern of onversions known as the usual arithmeti onversions is used with most binary arithmeti

operators to onvert the operands to a ommon type and determine the type of the operator's result. In

Cforall, these and other onversions play a role in overload resolution, and olletively are alled the safe

onversions.

The following onversions are diret safe arithmeti onversions.

� A har, a short int, an int bit-�eld, or their signed or unsigned varieties, or an enumeration type,

may undergo an integral promotion.

� An int may be onverted to an unsigned int, and to a long int.

� An unsigned int may be onverted to a long unsigned int. If a long int an represent all values

of an unsigned int, then an unsigned int may also be onverted to a long int.

� A long int may be onverted to a long unsigned int.

� A long unsigned int may be onverted to a float.

� A float may be onverted to a double.

Revision: 1.82

CHAPTER 3. CONVERSIONS 12

� A double may be onverted to a long double.

Furthermore, if type T an be onverted to type U by a safe arithmeti onversion and type U an be onverted

to type V by a safe arithmeti onversion, then the onversion from T to type V is an indiret safe arithmeti

onversion.

A diret safe onversion is a diret safe arithmeti onversion, or one of the following onversions:

� from any objet type or inomplete type to void;

� from a pointer to any non-void type to a pointer to void;

� from a pointer to any type to a pointer to a more quali�ed version of the type;

� from a struture or union type to the type of an anonymous member of the struture or union;

� from a pointer to a struture or union type to a pointer to the type of an anonymous member of the

struture or union;

� within the sope of an initialized type delaration, onversions between a type and its implementation

or between a pointer to a type and a pointer to its implementation.

Conversions that are not safe onversions are unsafe onversions.

2 As in C, there is an impliit onversion from void* to any pointer type. This is learly

dangerous, and C++ does not have this impliit onversion. Cforall keeps it, in the interest of

remaining as pure a superset of C as possible, but disourages it by making it unsafe. 2

3.3 Conversion Cost

The onversion ost of a safe onversion

1

is a measure of how desirable or undesirable it is. It is de�ned as

follows.

� The ost of a onversion from any type to itself is 0.

� The ost of a diret safe onversion is 1.

� The ost of an indiret safe arithmeti onversion is the smallest number of diret onversions needed

to make up the onversion.

Examples

The ost of an impliit onversion from int to long is 1.

The ost of an impliit onversion from long to double is 3, beause it is de�ned in terms of onversions

from long to unsigned long, then to float, and then to double.

If int an represent all the values of unsigned short, then the ost of an impliit onversion from

unsigned short to unsigned is 2: unsigned short to int to unsigned. Otherwise, unsigned short is

onverted diretly to unsigned, and the ost is 1.

If long an represent all the values of unsigned, then the onversion ost of unsigned to long is 1.

Otherwise, the onversion is an unsafe onversion, and its onversion ost is unde�ned.

1

Unsafe onversions do not have de�ned onversion osts.

Revision: 1.82

Chapter 4

Expressions

Cforall allows operators and identi�ers to be overloaded. Hene, eah expression an have a number of

interpretations, eah of whih has a di�erent type. The interpretations that are potentially exeutable

are alled valid interpretations. The set of interpretations depends on the kind of expression and on the

interpretations of the subexpressions that it ontains. The rules for determining the valid interpretations

of an expression are disussed below for eah kind of expression. Eventually the ontext of the outermost

expression hooses one interpretation of that expression to be exeuted.

An ambiguous interpretation is an interpretation whih does not speify the exat objet or funtion

denoted by every identi�er in the expression. An expression an have some interpretations that are ambiguous

and others that are unambiguous. An expression that is hosen to be exeuted shall not be ambiguous.

The best valid interpretations are the valid interpretations that use the fewest unsafe onversions. Of

these, the best are those where the funtions and objets involved are the least polymorphi. Of these, the

best have the lowest total onversion ost, inluding all impliit onversions in the argument expressions.

Of these, the best have the highest total onversion ost for the impliit onversions (if any) applied to the

argument expressions. If there is no single best valid interpretation, or if the best valid interpretation is

ambiguous, then the resulting interpretation is ambiguous.

2 Cforall's rules for seleting the best interpretation are designed to allow overload resolution

to mimi C's operator semantis. In C, the \usual arithmeti onversions" are applied to the

operands of binary operators if neessary to onvert the operands to a ommon type (roughly

speaking, the \smallest" type that an hold both arguments). In Cforall, those onversions are

\safe". The \fewest unsafe onversions" rule ensures that the usual onversions are done, if

possible. The \lowest total expression ost" rule hooses the proper ommon type. The odd-

looking \highest argument onversion ost" rule ensures that, when unary expressions must be

onverted, onversions of funtion results are preferred to onversion of funtion arguments:

(double)-i will be preferred to -(double)i.

The \least polymorphi" rule redues the number of polymorphi funtion alls, sine suh

funtions are presumably more expensive than monomorphi funtions and sine the more spei�

funtion is presumably more appropriate. It also gives preferene to monomorphi values (suh

as the int 0) over polymorphi values (suh as the null pointer 0). However, interpretations

that all polymorphi funtions are preferred to interpretations that perform unsafe onversions,

beause those onversions potentially lose auray or violate strong typing.

There are two notable di�erenes between Cforall's overload resolution rules and the rules

for C++ de�ned in [5℄. First, the result type of a funtion plays a role. In C++, a funtion

all must be ompletely resolved based on the arguments to the all in most irumstanes. In

Cforall, a funtion all may have several interpretations, eah with a di�erent result type, and

13

CHAPTER 4. EXPRESSIONS 14

the interpretations of the ontaining ontext hoose among them. Seond, safe onversions are

used to hoose among interpretations of all sorts of funtions; in C++, the \usual arithmeti

onversions" are a separate set of rules that apply only to the built-in operators. 2

Expressions involving ertain operators are onsidered to be equivalent to funtion alls. A transformation

from \operator" syntax to \funtion all" syntax is de�ned by rewrite rules. Eah operator has a set of

prede�ned funtions that overload its identi�er. Overload resolution determines whih member of the set

is exeuted in a given expression. The funtions have internal linkage and are impliitly delared with �le

sope. The prede�ned funtions and rewrite rules are disussed below for eah of these operators.

2 Prede�ned funtions and onstants have internal linkage beause that simpli�es optimization

in traditional ompile-and-link environments. For instane, \an_int + an_int" is equivalent

to \?+?(an_int, an_int)". If integer addition has not been rede�ned in the urrent sope, a

ompiler an generate ode to perform the addition diretly. If prede�ned funtions had external

linkage, this optimization would be diÆult. 2

2 Sine eah subsetion desribes the interpretations of an expression in terms of the inter-

pretations of its subexpressions, this hapter an be taken as desribing an overload resolution

algorithm that uses one bottom-up pass over an expression tree. Suh an algorithm was �rst

desribed (for Ada) by Baker [2℄. It is extended here to handle polymorphi funtions and arith-

meti onversions. The overload resolution rules and the prede�ned funtions have been hosen

so that, in programs that do not introdue overloaded delarations, expressions will have the

same meaning in C and in Cforall. 2

2 Expression syntax is quoted from the ANSI C standard. The syntax itself de�nes the pree-

dene and assoiativity of operators. The setions are arranged in dereasing order of preedene,

with all operators in a setion having the same preedene. 2

4.1 Primary Expressions

Syntax

primary-expression:

identi�er

onstant

string-literal

(expression)

Prede�ned Identi�ers

onst int 1;

onst int 0;

forall(dtype DT) DT *onst 0;

forall(ftype FT) FT *onst 0;

Semantis

The valid interpretations of an identi�er are given by the visible delarations of the identi�er. A onstant

or string-literal has one valid interpretation, whih has the type and value de�ned by C. A parenthesised

expression has the same interpretations as the ontained expression.

The prede�ned integer identi�ers \1" and \0" have the integer values 1 and 0, respetively. The other

two prede�ned \0" identi�ers are bound to polymorphi pointer values that, when speialized with a data

type or funtion type respetively, produe a null pointer of that type.

Revision: 1.82

CHAPTER 4. EXPRESSIONS 15

Examples

The expression (void*)0 speializes the (polymorphi) null pointer to a null pointer to void. (onst

void*)0 does the same, and also uses a safe onversion from void* to onst void*. In eah ase, the null

pointer onversion is better than the unsafe onversion of the integer 0 to a pointer.

2 Note that the prede�ned identi�ers have addresses.

Cforall does not have C's onept of \null pointer onstants", whih are not typed values but

speial strings of tokens. The C token \0" is an expression of type int with the value \zero", and

it also is a null pointer onstant. Similarly, \(void*)0" is an expression of type (void*) whose

value is a null pointer, and it is also a null pointer onstant. However, in C, \(void*)(void*)0" is

not a null pointer onstant, even though it is null-valued, a pointer, and onstant! The semantis

of C expressions ontain many speial ases to deal with subexpressions that are null pointer

onstants. Cforall handles these ases through overload resolution and speialization. 2

4.2 Post�x Operators

Syntax

post�x-expression:

primary-expression

post�x-expression [expression ℄

post�x-expression (argument-expression-list

opt

)

post�x-expression . identi�er

post�x-expression -> identi�er

post�x-expression ++

post�x-expression --

argument-expression-list:

assignment-expression

argument-expression-list , assignment-expression

Rewrite Rules

a[b℄) ?[?℄(a, b)

a(arguments)) ?()(a, arguments)

a++) ?++(&(a))

a--) ?--(&(a))

2 Note that \++" and \--" are rewritten as funtion alls that are given a pointer to that

operand. (This is true of all operators that modify an operand.) As Hamish Madonald has

pointed out, this fores the modi�ed operand of suh expressions to be an lvalue. This partially

enfores the C semanti rule that suh operands must be modi�able lvalues.

Subsript expressions are rewritten as funtion alls that pass the �rst parameter by value.

This is somewhat unfortunate, sine array-like types tend to be large. The alternative is to use

the rewrite rule \a[b℄)?[?℄(&(a), b)". However, C semantis forbid this approah: the a in

\a[b℄" an be an arbitrary pointer value, whih does not have an address. 2

Revision: 1.82

CHAPTER 4. EXPRESSIONS 16

Prede�ned Identi�ers

int ?++(int*), ?--(int*);

unsigned ?++(unsigned*), ?--(unsigned*);

long ?++(long*), ?--(long*);

long unsigned ?++(long unsigned*), ?--(long unsigned*);

float ?++(float*), ?--(float*);

double ?++(double*), ?--(double*);

long double ?++(long double*), ?--(long double*);

forall(type T) T* ?++(T**), ?--(T**);

forall(type T) onst T* ?++(onst T**), ?--(onst T**);

forall(type T) volatile T* ?++(volatile T**), ?--(volatile T**);

forall(type T) onst volatile T* ?++(onst volatile T**), ?--(onst volatile T**);

forall(type T) lvalue T ?[?℄(T*, ptrdiff_t);

forall(type T) onst lvalue T ?[?℄(onst T*, ptrdiff_t);

forall(type T) volatile lvalue T ?[?℄(volatile T*, ptrdiff_t);

forall(type T) onst volatile lvalue T ?[?℄(onst volatile T*, ptrdiff_t);

For every omplete enumerated type E there exist

E ?++(E*), ?--(E*);

2 In C, a semanti rule requires that pointer operands of inrement and derement be pointers

to objet types. Hene, void* objets annot be inremented. In Cforall, the restrition follows

from the use of a type parameter in the prede�ned funtion de�nitions, as opposed to dtype,

sine only objet types an be inferred arguments orresponding to the type parameter T. 2

4.2.1 Funtion Calls

Semantis

A funtion designator is an interpretation of an expression that has funtion type. The post�x-expression in

a funtion all may have some interpretations that are funtion designators and some that are not.

For those interpretations of the post�x-expression that are not funtion designators, the expression is

rewritten and beomes a all of a funtion named \?()". The valid interpretations of the rewritten expression

are determined in the manner desribed below.

Eah ombination of funtion designators and argument interpretations is onsidered. For those in-

terpretations of the post�x-expression that are monomorphi funtion designators, the ombination has a

valid interpretation if the funtion designator aepts the number of arguments given, and eah argument

interpretation mathes the orresponding expliit parameter:

� if the argument orresponds to a parameter in the funtion designator's prototype, the argument

interpretation must have the same type as the orresponding parameter, or be impliitly onvertible

to the parameter's type

� if the funtion designator's type does not inlude a prototype or if the argument orresponds to \..."

in a prototype, a default argument promotion is applied to it.

The type of the valid interpretation is the return type of the funtion designator.

For those ombinations where the interpretation of the post�x-expression is a polymorphi funtion

designator and the funtion designator aepts the number of arguments given, there shall be at least one

set of impliit arguments for the impliit parameters suh that

Revision: 1.82

CHAPTER 4. EXPRESSIONS 17

� If the delaration of the impliit parameter uses type-lass type, the impliit argument must be an

objet type; if it uses dtype, the impliit argument must be an objet type or an inomplete type; and

if it uses ftype, the impliit argument must be a funtion type.

� if an expliit parameter's type uses any impliit parameters, then the orresponding expliit argument

must have a type that is (or an be safely onverted to) the type produed by substituting the impliit

arguments for the impliit parameters in the expliit parameter type.

� the remaining expliit arguments must math the remaining expliit parameters, as desribed for

monomorphi funtion designators.

� for eah assertion parameter in the funtion designator's type, there must be an objet or funtion

with the same identi�er that is visible at the all site and whose type is ompatible with or an be

speialized to the type of the assertion delaration.

There is a valid interpretation for eah suh set of impliit parameters. The type of eah valid interpretation

is the return type of the funtion designator with impliit parameter values substituted for the impliit

arguments.

A valid interpretation is ambiguous if the funtion designator or any of the argument interpretations is

ambiguous.

Every valid interpretation whose return type is not ompatible with any other valid interpretation's

return type is an interpretation of the funtion all expression.

Every set of valid interpretations that have mutually ompatible result types also produes an interpre-

tation of the funtion all expression. The type of the interpretation is the omposite type of the types of

the valid interpretations, and the value of the interpretation is that of the best valid interpretation.

2 One desirable property of a polymorphi programming language is generalizability : the abil-

ity to replae an abstration with a more general but equivalent abstration without requiring

hanges in any of the uses of the original[3℄. For instane, it should be possible to replae a

funtion \int f(int);" with \forall(type T) T f(T);" without a�eting any alls of f.

Cforall does not fully possess this property, beause unsafe onversions are not done when

arguments are passed to polymorphi parameters. Consider

float g(float, float);

int i;

float f;

double d;

f = g(f, f); /* (1) */

f = g(i, f); /* (2) (safe onversion to float) */

f = g(d, f); /* (3) (unsafe onversion to float) */

If g was replaed by \forall(type T) T g(T,T);", the �rst and seond alls would be unaf-

feted, but the third would hange: f would be onverted to double, and the result would be a

double.

Another example is the funtion \void h(int*);". This funtion an be passed a void*

argument, but the generalization \forall(type T) void h(T*);" an not. In this ase, void

is not a valid value for T beause it is not an objet type. If unsafe onversions were allowed, T

ould be inferred to be any objet type, whih is undesirable. 2

Examples

A funtion alled \?()" might be part of a numerial di�erentiation pakage.

Revision: 1.82

CHAPTER 4. EXPRESSIONS 18

extern type Derivative;

extern double ?()(Derivative, double);

extern Derivative derivative_of(double (*f)(double));

extern double sin(double);

Derivative sin_dx = derivative_of(sin);

double d;

d = sin_dx(12.9);

Here, the only interpretation of sin_dx is as an objet of type Derivative. For that interpretation, the

funtion all is treated as \?()(sin_dx, 12.9)".

int f(long); /* (1) */

int f(int, int); /* (2) */

int f(int*); /* (3) */

int i = f(5); /* alls (1) */

Funtion (1) provides a valid interpretation of \f(5)", using an impliit int to long onversion. The other

funtions do not, sine the seond requires two arguments, and sine there is no impliit onversion from

int to int* that ould be used with the third funtion.

forall(type T) T h(T);

double d = h(1.5);

\1.5" is a double onstant, so T is inferred to be double, and the result of the funtion all is a double.

forall(type T, type U) void g(T,U); /* (4) */

forall(type T) void g(T,T); /* (5) */

forall(type T) void g(T,long); /* (6) */

void g(long, long); /* (7) */

double d;

int i;

int* p;

g(d,d); /* alls (5) */

g(d,i); /* alls (6) */

g(i,i); /* alls (7) */

g(i,p); /* alls (4) */

The �rst all has valid interpretations for all four versions of g. (6) and (7) are disarded beause they

involve unsafe double-to-long onversions. (5) is hosen beause it is less polymorphi than (4).

For the seond all, (7) is again disarded. Of the remaining interpretations for (4), (5), and (6) (with i

onverted to long), (6) is hosen beause it is the least polymorphi.

The third all has valid interpretations for all of the funtions; (7) is hosen sine it is not polymorphi

at all.

The fourth all has no interpretation for (5), beause its arguments must have ompatible type. (4) is

hosen beause it does not involve unsafe onversions.

forall(type T) T min(T,T);

double max(double, double);

Revision: 1.82

CHAPTER 4. EXPRESSIONS 19

spe min_max(T) f

T min(T,T);

T max(T,T);

g

forall(type U | min_max(U)) void shuffle(U,U);

shuffle(9, 10);

The only possibility for U is double, beause that is the type used in the only visible max funtion. 9 and 10

must be onverted to double, and min must be speialized with T bound to double.

extern void q(int); /* (8) */

extern void q(void*); /* (9) */

extern void r();

q(0);

r(0);

The int 0 ould be passed to (8), or the (void*) speialization of the null pointer 0 ould be passed to (9).

The former is hosen beause the int 0 is less polymorphi. For the same reason, int 0 is passed to r(),

even though it has no delared parameter types.

4.2.2 Post�x Inrement and Derement Operators

Semantis

First, eah interpretation of the operand of an inrement or derement expression is onsidered separately.

For eah interpretation that is a bit-�eld, the expression has one valid interpretation, with the type of the

operand, and the expression is ambiguous if the operand is.

For eah interpretation of the operand that is not a bit-�eld, the expression is rewritten, and the interpre-

tations of the expression are the interpretations of the orresponding funtion all. Finally, all interpretations

of the expression produed for the di�erent interpretations of the operand are ombined to produe the in-

terpretations of the expression as a whole; where interpretations have ompatible result types, the best

interpretations are seleted in the manner desribed for funtion all expressions.

2 Inrement and derement expressions show up two de�ienies of Cforall's type system. First,

there is no suh thing as a pointer to a bit-�eld. Therefore, there is no way to de�ne a funtion

that alters a bit �eld argument, and hene no way to de�ne inrement and derement funtions

for bit �elds. As a result, the semantis of inrement and derement expressions must treat

bit-�elds speially. This holds true for all of the operators that may modify bit-�elds.

Seond, type quali�ers are not inluded in type values, so polymorphi funtions that take

pointers to arbitrary types often ome in four avors, one for eah possible quali�ation of the

pointed-at type. 2

4.2.3 Other Post�x Operators

Semantis

The interpretations of subsript expressions are the interpretations of the orresponding funtion all ex-

pressions.

In the member seletion expression \s.m", there shall be at least one interpretation of s whose type is

a struture type or union type ontaining a member named m. If two or more interpretations of s have

members named m with mutually ompatible types, then the expression has an ambiguous interpretation

whose type is the omposite type of the types of the members. If an interpretation of s has a member

Revision: 1.82

CHAPTER 4. EXPRESSIONS 20

m whose type is not ompatible with any other s's m, then the expression has an interpretation with the

member's type. The expression has no other interpretations.

The expression \p->m" has the same interpretations as the expression \(*p).m".

4.3 Unary Operators

Syntax

unary-expression:

post�x-expression

++ unary-expression

-- unary-expression

unary-operator ast-expression

sizeof unary-expression

sizeof (type-name)

unary-operator: one of

& * + - ~ !

Rewrite Rules

*a) *?(a)

+a) +?(a)

-a) -?(a)

~a) ~?(a)

!a) !?(a)

++a) ++?(&(a))

--a) --?(&(a))

Prede�ned Identi�ers

int ++?(int*), --?(int*);

unsigned ++?(unsigned*), --?(unsigned*);

long ++?(long*), --?(long*);

long unsigned ++?(long unsigned*), --?(long unsigned*);

float ++?(float*), --?(float*);

double ++?(double*), --?(double*);

long double ++?(long double*), --?(long double*);

forall(type T) T* ++?(T**), --?(T**);

forall(type T) onst T* ++?(onst T**), --?(onst T**);

forall(type T) volatile T* ++?(volatile T**), --?(volatile T**);

forall(type T) onst volatile T* ++?(onst volatile T**), --?(onst volatile T**);

forall(type T) lvalue T *?(T*);

forall(type T) onst lvalue T *?(onst T*);

forall(type T) volatile lvalue T *?(volatile T*);

forall(type T) onst volatile lvalue T *?(onst volatile T*);

forall(ftype FT) FT *?(FT*);

Revision: 1.82

CHAPTER 4. EXPRESSIONS 21

int +?(int), -?(int), ~?(int);

unsigned +?(unsigned), -?(unsigned), ~?(unsigned);

unsigned long +?(unsigned long), -?(unsigned long), ~?(unsigned long);

long +?(long), -?(long), ~?(long);

float +?(float), -?(float);

double +?(double), -?(double);

long double +?(long double), -?(long double);

int !?(int), !?(unsigned), !?(unsigned long), !?(long),

!?(float), !?(double), !?(long double);

forall(dtype DT) int !?(onst volatile DT*);

forall(ftype FT) int !?(FT*);

For every omplete enumerated type E there exist

E ++?(E*), --?(E*);

Constraints

The operand of sizeof shall not be type, dtype, or ftype.

Semantis

When the sizeof operator is applied to an expression, the expression shall have exatly one unambiguous

interpretation. The sizeof expression has one interpretation, whih is of the implementation-de�ned integral

type size_t (de�ned in <stddef.h>).

When sizeof is applied to an identi�er delared by a type-delaration or a type-parameter , it yields the

size in bytes of the type that implements the operand. When the operand is an opaque type or an inferred

type parameter, the expression is not a onstant expression.

2

type Pair = strut f int first, seond; g;

size_t p_size = sizeof(Pair); /* onstant expression */

extern type Complex;

size_t _size = sizeof(Complex); /* non-onstant expression */

forall(type T) T f(T p1, T p2) f

size_t t_size = sizeof(T); /* non-onstant expression */

/* ... */

g

\sizeof Complex", although not statially known, is �xed. Within f(), \sizeof(T)" is �xed

for eah all of f(), but may vary from all to all. 2

When the \&" operator is applied to an expression, the operand shall have exatly one unambiguous

interpretation. The \&" expression has one interpretation whih is of type T*, where T is the type of the

operand.

The interpretations of pre�x inrement and derement expressions are determined in the same way as

the interpretations of post�x inrement and derement expressions.

The interpretations of other unary expression are the interpretations of the orresponding funtion all.

Revision: 1.82

CHAPTER 4. EXPRESSIONS 22

Examples

long li;

void eat_double(double);

eat_double(-li); /*) eat_double(-?(li)); */

The valid interpretations of \-li" are

interpretation result type expression onversion ost

-?((int)li) int (unsafe)

-?((unsigned)li) unsigned (unsafe)

-?(li) long 0

-?((long unsigned)li) long unsigned 1

-?((float)li) float 2

-?((double)li) double 3

-?((long double)li) long double 4

The valid interpretations of the eat_double all, with the ost of the argument onversion and the ost of

the entire expression, are

interpretation argument ost expression ost

eat_double((double)-?((int)li)) 4 (unsafe)

eat_double((double)-?((unsigned)li)) 3 (unsafe)

eat_double((double)-?(li)) 3 0 + 3 = 3

eat_double((double)-?((long unsigned)li)) 2 1 + 2 = 3

eat_double((double)-?((float)li)) 1 2 + 1 = 3

eat_double(-?((double)li)) 0 3 + 0 = 3

eat_double((double)-?((long double)li)) (unsafe) (unsafe)

Eah has result type void, so the best must be seleted. The interpretations involving unsafe onversions

are disarded. The remainder have equal expression onversion osts, so the \highest argument onversion

ost" rule is invoked, and the hosen interpretation is eat_double((double)-?(li)).

4.4 Cast Operators

Syntax

ast-expression:

unary-expression

(type-name) ast-expression

Constraints

The type-name in a ast-expression shall not be type, dtype, or ftype.

Semantis

In a ast expression \(type-name)e", if type-name is the type of an interpretation of e, then that interpre-

tation is the only interpretation of the ast expression; otherwise, e shall have some interpretation that an

be onverted to type-name, and the interpretation of the ast expression is the ast of the interpretation

that an be onverted at the lowest ost. The ast expression's interpretation is ambiguous if more than one

interpretation an be onverted at the lowest ost or if the seleted interpretation is ambiguous.

Revision: 1.82

CHAPTER 4. EXPRESSIONS 23

2 Casts an be used to eliminate ambiguity in expressions by seleting interpretations of subex-

pressions, and to speialize polymorphi funtions and values. 2

4.5 Multipliative Operators

Syntax

multipliative-expression:

ast-expression

multipliative-expression * ast-expression

multipliative-expression / ast-expression

multipliative-expression % ast-expression

Rewrite Rules

a * b) ?*?(a,b)

a / b) ?/?(a,b)

a % b) ?%?(a,b)

Prede�ned Identi�ers

int ?*?(int, int), ?/?(int, int),

?%?(int, int);

unsigned ?*?(unsigned, unsigned), ?/?(unsigned, unsigned),

?%?(unsigned, unsigned);

unsigned long ?*?(unsigned long, unsigned long), ?/?(unsigned long, unsigned long),

?%?(unsigned long, unsigned long);

long ?*?(long, long), ?/?(long, long),

?%?(long, long);

float ?*?(float, float), ?/?(float, float);

double ?*?(double, double), ?/?(double, double);

long double ?*?(long double, long double), ?/?(long double, long double);

Semantis

The interpretations of multipliative expressions are the interpretations of the orresponding funtion all.

Examples

int i;

long li;

void eat_double(double);

eat_double(li % i);

\li % i" is rewritten as \?%?(li,i)". The valid interpretations of ?%?(li, i), their result types, and

their onversion osts for the operators given above are

Revision: 1.82

CHAPTER 4. EXPRESSIONS 24

interpretation result type expression onversion ost

?%?((int)li, i) int (unsafe)

?%?(li, (long)i) long 1

?%?((unsigned)li, (unsigned)i) unsigned (unsafe)

?%?((long unsigned)li, (long unsigned)i) long unsigned 3

The interpretations involving unsafe onversions are disarded. The osts of onverting the others to double

are 4 and 5, so the best interpretation of eat_double(li, i) is eat_double((double)?%?(li, (long)i)).

4.6 Additive Operators

Syntax

additive-expression:

multipliative-expression

additive-expression + multipliative-expression

additive-expression - multipliative-expression

Rewrite Rules

a + b) ?+?(a,b)

a - b) ?-?(a,b)

Prede�ned Identi�ers

int ?+?(int, int), ?-?(int, int);

long ?+?(long, long), ?-?(long, long);

unsigned ?+?(unsigned, unsigned), ?-?(unsigned, unsigned);

long unsigned ?+?(long unsigned, long unsigned), ?-?(long unsigned, long unsigned);

float ?+?(float, float), ?-?(float, float);

double ?+?(double, double), ?-?(double, double);

long double ?+?(long double, long double), ?-?(long double, long double);

forall(type T) T* ?+?(T*, ptrdiff_t),

?+?(ptrdiff_t, T*),

?-?(T*, ptrdiff_t);

forall(type T) onst T* ?+?(onst T*, ptrdiff_t),

?+?(ptrdiff_t, onst T*),

?-?(onst T*, ptrdiff_t);

forall(type T) volatile T* ?+?(volatile T*, ptrdiff_t),

?+?(ptrdiff_t, volatile T*),

?-?(volatile T*, ptrdiff_t);

forall(type T) onst volatile T* ?+?(onst volatile T*, ptrdiff_t),

?+?(ptrdiff_t, onst volatile T*),

?-?(onst volatile T*, ptrdiff_t);

forall(type T) ptrdiff_t ?-?(onst volatile T*, onst volatile T*);

Revision: 1.82

CHAPTER 4. EXPRESSIONS 25

Semantis

The interpretations of additive expressions are the interpretations of the orresponding funtion alls.

2 ptrdiff_t is an implementation-de�ned identi�er de�ned in <stddef.h> that is synonymous

with a signed integral type that is large enough to hold the di�erene between two pointers. It

seems reasonable to use it for pointer addition as well. (This is tehnially a di�erene between

Cforall and C, whih only spei�es that pointer addition uses an integral argument.) Hene it is

also used for subsripting, whih is de�ned in terms of pointer addition. The ANSI C standard

uses size_t in several ases where a library funtion takes an argument that is used as a subsript,

but size_t is unsuitable here beause it is an unsigned type. 2

4.7 Bitwise Shift Operators

Syntax

shift-expression:

additive-expression

shift-expression << additive-expression

shift-expression >> additive-expression

Rewrite Rules

a << b) ?<<?(a,b)

a >> b) ?>>?(a,b)

Prede�ned Identi�ers

int ?<<?(int, int), ?>>?(int, int);

long ?<<?(long, long), ?>>?(long, long);

unsigned ?<<?(unsigned, unsigned), ?>>?(unsigned, unsigned);

long unsigned ?<<?(long unsigned, long unsigned), ?>>?(long unsigned,long unsigned);

Semantis

The interpretations of a bitwise shift expression are the interpretations of the orresponding funtion alls.

4.8 Relational Operators

Syntax

relational-expression:

shift-expression

relational-expression < shift-expression

relational-expression > shift-expression

relational-expression <= shift-expression

relational-expression >= shift-expression

Revision: 1.82

CHAPTER 4. EXPRESSIONS 26

Rewrite Rules

a < b) ?<?(a,b)

a > b) ?>?(a,b)

a <= b) ?<=?(a,b)

a >= b) ?>=?(a,b)

Prede�ned Identi�ers

int ?<?(int, int), ?<=?(int, int),

?>?(int, int), ?>=?(int, int);

int ?<?(long, long), ?<=?(long, long),

?>?(long, long), ?>=?(long, long);

int ?<?(unsigned, unsigned), ?<=?(unsigned, unsigned),

?>?(unsigned, unsigned), ?>=?(unsigned, unsigned);

int ?<?(long unsigned, long unsigned), ?<=?(long unsigned, long unsigned),

?>?(long unsigned, long unsigned), ?>=?(long unsigned, long unsigned);

int ?<?(float, float), ?<=?(float, float),

?>?(float, float), ?>=?(float, float);

int ?<?(double, double), ?<=?(double, double),

?>?(double, double), ?>=?(double, double);

int ?<?(long double, long double), ?<=?(long double, long double),

?>?(long double, long double), ?>=?(long double, long double);

forall(dtype DT) int ?<?(onst volatile DT*, onst volatile DT*);

forall(dtype DT) int ?>?(onst volatile DT*, onst volatile DT*);

forall(dtype DT) int ?<=?(onst volatile DT*, onst volatile DT*);

forall(dtype DT) int ?>=?(onst volatile DT*, onst volatile DT*);

Semantis

The interpretations of a relational expression are the interpretations of the orresponding funtion all.

2 The type parameter DT is used for both parameters of the pointer omparison funtions, and

the use of dtype restrits the argument types to objet types and inomplete types. This replaes

C's semanti rules that the arguments of a pointer omparison must have the same objet type

or inomplete type. 2

4.9 Equality Operators

Syntax

equality-expression:

relational-expression

equality-expression == relational-expression

equality-expression != relational-expression

Rewrite Rules

a == b) ?==?(a,b)

a != b) ?!=?(a,b)

Revision: 1.82

CHAPTER 4. EXPRESSIONS 27

Prede�ned Identi�ers

int ?==?(int, int), ?!=?(int, int);

int ?==?(long, long), ?!=?(long, long);

int ?==?(unsigned, unsigned), ?!=?(unsigned, unsigned);

int ?==?(long unsigned, long unsigned), ?!=?(long unsigned, long unsigned);

int ?==?(float, float), ?!=?(float, float);

int ?==?(double, double), ?!=?(double, double);

int ?==?(long double, long double), ?!=?(long double, long double);

forall(dtype DT) int ?==?(onst volatile DT*, onst volatile DT*);

forall(dtype DT) int ?!=?(onst volatile DT*, onst volatile DT*);

forall(ftype FT) int ?==?(FT*, FT*);

forall(ftype FT) int ?!=?(FT*, FT*);

forall(dtype DT) int ?==?(onst volatile DT*, onst volatile void*);

forall(dtype DT) int ?==?(onst volatile void*, onst volatile DT*);

forall(dtype DT) int ?!=?(onst volatile DT*, onst volatile void*);

forall(dtype DT) int ?!=?(onst volatile void*, onst volatile DT*);

forall(dtype DT) int ?==?(onst volatile DT*, forall(dtype DT2) onst DT2*);

forall(dtype DT) int ?==?(forall(dtype DT2) onst DT2*, onst volatile DT*);

forall(dtype DT) int ?!=?(onst volatile DT*, forall(dtype DT2) onst DT2*);

forall(dtype DT) int ?!=?(forall(dtype DT2) onst DT2*, onst volatile DT*);

forall(ftype FT) int ?==?(FT*, forall(ftype FT2) FT2*);

forall(ftype FT) int ?==?(forall(ftype FT2) FT2*, FT*);

forall(ftype FT) int ?!=?(FT*, forall(ftype FT2) FT2*);

forall(ftype FT) int ?!=?(forall(ftype FT2) FT2*, FT*);

2 The three groups of polymorphi equality operations provide omparisons between any two

pointers of the same type, between pointers to void and pointers to objet types or inomplete

types, and between the null pointer onstant and pointers to any type. In the last ase, a speial

C rule for null pointer onstant operands has been replaed by a onsequene of the Cforall type

system. 2

Semantis

The interpretations of an equality expression are the interpretations of the orresponding funtion all.

The result of an equality omparison between two pointers to prede�ned funtions or prede�ned values

is implementation-de�ned.

2 The implementation-de�ned status of equality omparisons allows implementations to use

one library routine to implement many prede�ned funtions. These optimization are partiu-

larly important when the prede�ned funtions are polymorphi, as is the ase for most pointer

operations 2

4.10 Bitwise AND Operator

Syntax

Revision: 1.82

CHAPTER 4. EXPRESSIONS 28

AND-expression:

equality-expression

AND-expression & equality-expression

Rewrite Rules

a & b) ?&?(a,b)

Prede�ned Identi�ers

int ?&?(int, int);

long ?&?(long, long);

unsigned ?&?(unsigned, unsigned);

long unsigned ?&?(long unsigned, long unsigned);

Semantis

The interpretations of a bitwise AND expression are the interpretations of the orresponding funtion all.

4.11 Bitwise Exlusive OR Operator

Syntax

exlusive-OR-expression:

AND-expression

exlusive-OR-expression ^ AND-expression

Rewrite Rules

a ^ b) ?^?(a,b)

Prede�ned Identi�ers

int ?^?(int, int);

long ?^?(long, long);

unsigned ?^?(unsigned, unsigned);

long unsigned ?^?(long unsigned, long unsigned);

Semantis

The interpretations of a bitwise exlusive OR expression are the interpretations of the orresponding funtion

all.

4.12 Bitwise Inlusive OR Operator

Syntax

inlusive-OR-expression:

exlusive-OR-expression

inlusive-OR-expression | exlusive-OR-expression

Revision: 1.82

CHAPTER 4. EXPRESSIONS 29

Rewrite Rules

a | b) ?|?(a,b)

Prede�ned Identi�ers

int ?|?(int, int);

long ?|?(long, long);

unsigned ?|?(unsigned, unsigned);

long unsigned ?|?(long unsigned, long unsigned);

Semantis

The interpretations of a bitwise inlusive OR expression are the interpretations of the orresponding funtion

all.

4.13 Logial AND Operator

Syntax

logial-AND-expression:

inlusive-OR-expression

logial-AND-expression && inlusive-OR-expression

Semantis

The operands of the expression \a && b" are treated as \(int)((a)!=0)" and \(int)((b)!=0)", whih

shall both be unambiguous. The expression has only one interpretation, whih is of type int.

2 When the operands of a logial expression are values of built-in types, and \!=" has not been

rede�ned for those types, the ompiler an optimize away the funtion alls.

A ommon C idiom omits omparisons to 0 in the ontrolling expressions of loops and if

statements. For instane, the loop below iterates as long as p points at a Complex value that is

non-zero.

extern type Complex;

extern onst Complex 0;

extern int ?!=?(Complex, Complex);

Complex *p;

while (p && *p) f /* ... */ g

The logial expression alls the Complex inequality operator, passing it *p and the Complex 0,

and getting a 1 or 0 as a result. In ontrast, C++ would apply a programmer-de�ned Complex-

to-int onversion to *p in the equivalent situation. The onversion to int would produe a

general integer value, whih is unfortunate, and possibly dangerous if the onversion was not

written with this situation in mind. 2

4.14 Logial OR Operator

Syntax

Revision: 1.82

CHAPTER 4. EXPRESSIONS 30

logial-OR-expression:

logial-AND-expression

logial-OR-expression || logial-AND-expression

Semantis

The operands of the expression \a || b" are treated as \(int)((a)!=0)" and \(int)((b)!=0)", whih

shall both be unambiguous. The expression has only one interpretation, whih is of type int.

4.15 Conditional Operator

Syntax

onditional-expression:

logial-OR-expression

logial-OR-expression ? expression : onditional-expression

Semantis

The onditional expression \a?b:" is �rst treated as if it were the all \ond((a)!=0, b,)", with ond

delared as

long double ond(int, long double, long double);

double ond(int, double, double);

float ond(int, float, float);

unsigned long ond(int, unsigned long, unsigned long);

long ond(int, long, long);

unsigned ond(int, unsigned, unsigned);

int ond(int, int, int);

forall(type T) T ond(int, T, T);

An interpretation of the onditional expression is ambiguous if the orresponding interpretation of the fun-

tion all would be ambiguous.

If suh a all would not have at least one interpretation, then the expression has one interpretation, with

type void, and is interpreted as

(void)((int)((a)!=0) ?(void)(b) :(void)())

The interpretation is ambiguous if any of the rewritten argument expressions are ambiguous.

2 The objet of the above is to bring the seond and third operands to a ommon type. The

monomorphi ond funtions are de�ned for eah of the arithmeti types so that onversion osts

will be taken into aount in seleting that type. The polymorphi version allows onditional

expressions to have pointer, union, or struture types. 2

4.16 Assignment Operators

Syntax

assignment-expression:

onditional-expression

unary-expression assignment-operator assignment-expression

assignment-operator: one of

= *= /= %= += -= <<= >>= &= ^= |=

Revision: 1.82

CHAPTER 4. EXPRESSIONS 31

Rewrite Rules

Let \ " be any of the assignment operators. Then

a b) ? ?(&(a), b)

Prede�ned Identi�ers

har ?=?(har*, har),

?=?(volatile har*, har);

unsigned har ?=?(unsigned har*, unsigned har),

?=?(volatile unsigned har*, unsigned har);

signed har ?=?(signed har*, signed har),

?=?(volatile signed har*, signed har);

short ?=?(int*, int),

?=?(volatile int*, int);

unsigned short ?=?(unsigned int*, unsigned int),

?=?(volatile unsigned int*, unsigned int);

int ?=?(int*, int),

?=?(volatile int*, int);

unsigned int ?=?(unsigned int*, unsigned int),

?=?(volatile unsigned int*, unsigned int);

long ?=?(long*, long),

?=?(volatile long*, long);

unsigned long ?=?(unsigned long*, unsigned long),

?=?(volatile unsigned long*, unsigned long);

float ?=?(float*, float),

?=?(volatile float*, float);

double ?=?(double*, double),

?=?(volatile double*, double);

long double ?=?(long double*, long double),

?=?(volatile long double*, long double);

/* Pointer assignment where the type pointed at by the left operand has all

of the qualifiers or more of the type pointed at by the right operand. */

forall(ftype FT) FT* ?=?(FT**, FT*),

?=?(FT* volatile*, FT*);

forall(dtype DT) DT* ?=?(DT**, DT*),

?=?(DT* volatile*, DT*);

forall(dtype DT) onst DT* ?=?(onst DT**, DT*),

?=?(onst DT* volatile*, DT*);

forall(dtype DT) volatile DT* ?=?(volatile DT**, DT*),

?=?(volatile DT* volatile*, DT*);

forall(dtype DT) onst volatile DT*

?=?(onst volatile DT**, DT*),

?=?(onst volatile DT* volatile*, DT*),

?=?(onst volatile DT**, volatile DT*),

?=?(onst volatile DT* volatile*, volatile DT*),

?=?(onst volatile DT**, onst DT*),

?=?(onst volatile DT* volatile*, onst DT*);

Revision: 1.82

CHAPTER 4. EXPRESSIONS 32

/* Assignment between pointers to void and pointers to objet types or

inomplete types. */

forall(dtype DT) DT*

?=?(DT**, void*), ?=?(DT* volatile*, void*);

forall(dtype DT) onst DT*

?=?(onst DT**, void*), ?=?(onst DT* volatile*, void*),

?=?(onst DT**, onst void*), ?=?(onst DT* volatile*, onst void*);

forall(dtype DT) volatile DT*

?=?(volatile DT**, void*), ?=?(volatile DT* volatile*, void*),

?=?(volatile DT**, volatile void*), ?=?(volatile DT* volatile*, volatile void*);

forall(dtype DT) onst volatile DT*

?=?(onst volatile DT**, void*),

?=?(onst volatile DT* volatile*, void*),

?=?(onst volatile DT**, onst void*),

?=?(onst volatile DT* volatile*, onst void*),

?=?(onst volatile DT**, volatile void*),

?=?(onst volatile DT* volatile*, volatile void*),

?=?(onst volatile DT**, onst volatile void*),

?=?(onst volatile DT* volatile*, onst volatile void*);

forall(dtype DT) void*

?=?(void**, DT*), ?=?(void* volatile*, DT*);

forall(dtype DT) onst void*

?=?(onst void**, DT*), ?=?(onst void* volatile*, DT*),

?=?(onst void**, onst DT*), ?=?(onst void* volatile*, onst DT*);

forall(dtype DT) volatile void*

?=?(volatile void**, DT*), ?=?(volatile void* volatile*, DT*),

?=?(volatile void**, volatile DT*), ?=?(volatile void* volatile*, volatile DT*);

forall(dtype DT) onst volatile void*

?=?(onst volatile void**, DT*),

?=?(onst volatile void* volatile*, DT*),

?=?(onst volatile void**, onst DT*),

?=?(onst volatile void* volatile*, onst DT*),

?=?(onst volatile void**, volatile DT*),

?=?(onst volatile void* volatile*, volatile DT*),

?=?(onst volatile void**, onst volatile DT*),

?=?(onst volatile void* volatile*, onst volatile DT*);

/* Assignment from null pointers to other pointer types. */

forall(dtype DT) DT*

?=?(DT**, forall(dtype DT2) onst DT2*),

?=?(DT* volatile*, forall(dtype DT2) onst DT2*);

forall(dtype DT) onst DT*

?=?(onst DT**, forall(dtype DT2) onst DT2*),

?=?(onst DT* volatile*, forall(dtype DT2) onst DT2*);

forall(dtype DT) volatile DT*

?=?(volatile DT**, forall(dtype DT2) onst DT2*),

?=?(volatile DT* volatile*, forall(dtype DT2) onst DT2*);

forall(dtype DT) onst volatile DT*

?=?(onst volatile DT**, forall(dtype DT2) onst DT2*),

Revision: 1.82

CHAPTER 4. EXPRESSIONS 33

?=?(onst volatile DT* volatile*, forall(dtype DT2) onst DT2*);

forall(ftype FT) FT*

?=?(FT**, forall(ftype FT2) FT2*),

?=?(FT* volatile*, forall(ftype FT2) FT2*);

forall(type T) T*

?+=?(T**, ptrdiff_t), ?+=?(T* volatile*, ptrdiff_t),

?-=?(T**, ptrdiff_t), ?-=?(T* volatile*, ptrdiff_t);

forall(type T) onst T*

?+=?(onst T**, ptrdiff_t), ?+=?(onst T* volatile*, ptrdiff_t),

?-=?(onst T**, ptrdiff_t), ?-=?(onst T* volatile*, ptrdiff_t);

forall(type T) volatile T*

?+=?(volatile T**, ptrdiff_t), ?+=?(volatile T* volatile*, ptrdiff_t),

?-=?(volatile T**, ptrdiff_t), ?-=?(volatile T* volatile*, ptrdiff_t);

forall(type T) onst volatile T*

?+=?(onst volatile T**, ptrdiff_t), ?+=?(onst volatile T* volatile*, ptrdiff_t),

?-=?(onst volatile T**, ptrdiff_t), ?-=?(onst volatile T* volatile*, ptrdiff_t);

For every omplete struture or union type S there exist

S ?=?(S*, S), ?=?(S volatile*, S);

For every omplete enumerated type E there exist

E ?=?(E*, int), ?=?(E volatile*, int);

2 The right-hand argument is int beause the integral promotions onvert enumeration on-

stants and variables to int whenever they are used as expressions. 2

Let \Æ=" be any of the ompound assignment operators, and E be a omplete enumerated type. Then

there exist funtions

E ?Æ=?(E*, int),

?Æ=?(volatile E*, int);

har ?Æ=?(har*, har),

?Æ=?(volatile har*, har);

signed har ?Æ=?(signed har*, signed har),

?Æ=?(volatile signed har*, signed har);

unsigned har ?Æ=?(unsigned har*, unsigned har),

?Æ=?(volatile unsigned har*, unsigned har);

short ?Æ=?(int*, int),

?Æ=?(volatile int*, int);

unsigned short ?Æ=?(unsigned*, unsigned),

?Æ=?(volatile unsigned*, unsigned);

int ?Æ=?(int*, int),

?Æ=?(volatile int*, int);

unsigned ?Æ=?(unsigned*, unsigned),

?Æ=?(volatile unsigned*, unsigned);

long ?Æ=?(long*, long),

?Æ=?(volatile long*, long);

unsigned long ?Æ=?(unsigned long*, unsigned long),

?Æ=?(volatile unsigned long*, unsigned long);

Revision: 1.82

CHAPTER 4. EXPRESSIONS 34

There also exist

float ?*=?(float*, float), ?*=?(volatile float*, float),

?/=?(float*, float), ?/=?(volatile float*, float),

?+=?(float*, float), ?+=?(volatile float*, float),

?-=?(float*, float), ?-=?(volatile float*, float);

double ?*=?(double*, double), ?*=?(volatile double*, double),

?/=?(double*, double), ?/=?(volatile double*, double),

?+=?(double*, double), ?+=?(volatile double*, double),

?-=?(double*, double), ?-=?(volatile double*, double);

long double ?*=?(long double*,long double), ?*=?(volatile long double*,long double),

?/=?(long double*,long double), ?/=?(volatile long double*,long double),

?+=?(long double*,long double), ?+=?(volatile long double*,long double),

?-=?(long double*,long double), ?-=?(volatile long double*,long double);

Semantis

The struture assignment funtions provide member-wise assignment; eah non-array member and eah

element of eah array member of the right argument is assigned to the orresponding member or element of

the left argument using the assignment funtion de�ned for its type. All other assignment funtions have

the same e�et as the orresponding C assignment expression.

2 Note that, by default, union assignment uses C semantis|that is, bitwise opy|even if some

of the union members have programmer-de�ned assignment funtions. 2

Eah interpretation of the left operand of an assignment expression is onsidered separately. For eah

interpretation that is a bit-�eld, the expression has one valid interpretation, with the type of the left operand.

The right operand is ast to that type, and the assignment expression is ambiguous if either operand is. For

eah interpretation of the left operand that is not a bit-�eld, the expression is rewritten, and the interpre-

tations of the assignment expression are the interpretations of the orresponding funtion all. Finally, all

interpretations of the expression produed for the di�erent interpretations of the left operand are ombined

to produe the interpretations of the expression as a whole; where interpretations have ompatible result

types, the best interpretations are seleted in the manner desribed for funtion all expressions.

4.17 Comma Operator

Syntax

expression:

assignment-expression

expression , assignment-expression

Semantis

In the omma expression \a,b", the �rst operand is interpreted as \(void)(a)", whih shall be unambiguous.

The interpretations of the expression are the interpretations of the seond operand.

Revision: 1.82

Chapter 5

Delarations

Syntax

delaration: . . .

type-delaration

spe-de�nition

Constraints

There shall be at most one delaration of an identi�er with no linkage and ompatible type in the same sope

and in the same name spae, exept for tags (as spei�ed in setion 3.5.2.3 of the ANSI C standard).

An identi�er delared by a type delaration shall not be redelared as a parameter in a funtion de�nition

whose delarator inludes an identi�er list.

2 This restrition ehos ANSI C's ban on the redelaration of typedef names as parameters

(setion 3.7). This avoids an ambiguity between old-style funtion delarations and new-style

funtion prototypes:

void f(Complex, /* . . . 3000 haraters . . . */);

void g(Complex, /* . . . 3000 haraters . . . */)

int Complex; f/* ... */g

Without the rule, Complex would be a type in the �rst ase, and a parameter name in the seond.

2

5.1 Type Spei�ers

Syntax

type-spei�er: . . .

forall-spei�er

A forall spei�er introdues impliit type parameterization into a funtion delaration.

5.1.1 Struture and Union Spei�ers

Syntax

strut-delaration: . . .

spei�er-quali�er-list

35

CHAPTER 5. DECLARATIONS 36

Semantis

A strut-delaration with no strut-delarator-list delares an anonymous member .

If an anonymous member has a struture or union type, its members are aessible as if they were

members of the ontaining struture or union.

Examples

strut point f

int x, y;

g;

strut olor_point f

enum f RED, BLUE, GREEN g olor;

strut point;

g;

strut olor_point p;

p.x = 0;

p.olor = RED;

strut literal f

enum f NUMBER, STRING g tag;

union f

double n;

har *s;

g;

g;

strut literal *next;

int length;

extern int strlen(onst har*);

/* ... */

if (next->tag == STRING) length = strlen(next->s);

5.1.2 Forall Spei�ers

Syntax

forall-spei�er:

forall (type-parameter-list)

Constraints

If the delaration-spei�ers of a delaration that ontains a forall-spei�er delares a struture or union tag,

the types of the members of the struture or union shall not use any of the type identi�ers delared by the

type-parameter-list .

2 This sort of delaration is illegal beause the sope of the type identi�ers ends at the end of

the delaration, but the sope of the struture tag does not.

forall(type T) strut Pair f T a,b; g; /* illegal */

If an instane of strut Pair was delared later in the urrent sope, what would the members'

type be? 2

Revision: 1.82

CHAPTER 5. DECLARATIONS 37

Semantis

The type-parameter-lists and assertions of the forall-spei�ers delare a olletion of type identi�ers, funtion

and objet identi�ers with no linkage.

If, in the delaration \T D1", T ontains forall-spei�ers and D1 has the form

D(parameter-type-list)

then a type identi�er delared by one of the forall-spei�ers is an inferred parameter of the funtion delarator

if and only if it is not an inferred parameter of a funtion delarator in D, and it is used in the type of a

parameter in the following type-parameter-list or it and an inferred parameter are used as arguments of

a spei�ation in one of the forall-spei�ers. The identi�ers delared by assertions that use an inferred

parameter of a funtion delarator are assertion parameters of that funtion delarator.

2 Sine every inferred parameter is used by some parameter, inferene an be done bottom-up.

I ould also argue that this onstraint leads to more easily understood programs. 2

If a funtion delarator is part of a funtion de�nition, its inferred parameters and assertion parameters

have blok sope; otherwise, identi�ers delared by assertions have a delaration sope, whih terminates at

the end of the delaration.

A funtion type that has at least one inferred parameter is a polymorphi funtion type. Funtion types

with no inferred parameters are monomorphi funtion types. One funtion type is less polymorphi than

another if it has fewer inferred parameters, or if it has the same number of inferred parameters and fewer of

its expliit parameters have types that depend on an inferred parameter.

The names of inferred parameters and the order of identi�ers in forall spei�ers are not relevant to

polymorphi funtion type ompatibility. Let f and g be two polymorphi funtion types with the same

number of inferred parameters, and let f

i

and g

i

be the inferred parameters of f and g in their order of

ourane in the funtion types' parameter-type-lists. Let f

0

be f with every ourrene of f

i

replaed by g

i

,

for all i. Then f and g are ompatible types if f

0

's and g's return types and parameter lists are ompatible,

and if for every assertion parameter of f

0

there is an assertion parameter in g with the same identi�er and

ompatible type, and vie versa.

Examples

Consider these analogous monomorphi and polymorphi delarations.

int fi(int);

forall(type T) T fT(T);

fi() takes an int and returns an int. fT() takes a T and returns a T, for any type T.

int (*pfi)(int) = fi;

forall(type T) T (*pfT)(T) = fT;

pfi and pfT are pointers to funtions. pfT is not polymorphi, but the funtion it points at is.

int (*fvpfi(void))(int) f

return pfi;

g

forall(type T) T (*fvpfT(void))(T) f

return pfT;

g

fvpfi() and fvpfT() are funtions taking no arguments and returning pointers to funtions. fvpfT() is

monomorphi, but the funtion that its return value points at is polymorphi.

Revision: 1.82

CHAPTER 5. DECLARATIONS 38

forall(type T) int (*fTpfi(T))(int);

forall(type T) T (*fTpfT(T))(T);

forall(type T, type U) U (*fTpfU(T))(U);

fTpfi() is a polymorphi funtion that returns a pointer to a monomorphi funtion taking an integer

and returning an integer. It ould return pfi. fTpfT() is subtle: it is a polymorphi funtion returning a

monomorphi funtion taking and returning T, where T is an inferred parameter of fTpfT(). For instane, in

the expression \fTpfT(17)", T is inferred to be int, and the returned value would have type int (*)(int).

\fTpfT(17)(13)" and \fTpfT("yes")("no")" are legal, but \fTpfT(17)("no")" is illegal. fTpfU() is

polymorphi (in type T), and returns a pointer to a funtion that is polymorphi (in type U). \f5(17)("no")"

is a legal expression of type har*.

forall(type T, type U, type V) U* f(T*, U, V* onst);

forall(type U, type V, type W) U* g(V*, U, W* onst);

The funtions f() and g() have ompatible types. Let f and g be their types; then f

1

= T; f

2

= U; f

3

=

V; g

1

= V; g

2

= U;, and g

3

= W. Replaing every f

i

by g

i

in f gives

forall(type V, type U, type W) U* f(V*, U, W* onst);

whih has a return type and parameter list that is ompatible with g.

2 The word \type" in a forall spei�er is redundant at the moment, but I want to leave room

for inferred parameters of ordinary types in ase parameterized types get added one day.

Even without parameterized types, I might try to allow

forall(int n) int sum(int vetor[n℄);

but C urrently rewrites array parameters as pointer parameters, so the e�ets of suh a hange

require more thought. 2

2 A polymorphi delaration must do two things: it must introdue type parameters, and it

must apply assertions to those types. Adding this to existing C delaration syntax and semantis

was deliate, and not entirely suessful.

C depends on delaration-before-use, so a forall spei�er must introdue type names before

they an be used in the delaration spei�ers. This ould be done by making the forall spei�er

part of the delaration spei�ers, or by making it a new introdutory lause of delarations.

Assertions are also part of polymorphi funtion types, beause it must be lear whih fun-

tions have aess to the assertion parameters delared by the assertions. All attempts to put

assertions inside an introdutory lause produed omplex semantis and onfusing ode. Build-

ing them into the delaration spei�ers ould be done by plaing them in the funtion's parameter

list, or in a forall spei�er that is a delaration spei�er. Assertions are also used with type pa-

rameters of spei�ations, and by type delarations. For onsisteny's sake it seems best to attah

assertions to the type delarations in forall spei�ers, whih means that forall spei�ers must be

delaration spei�ers.

The hosen syntax led to the following question: what is the meaning of

forall(type T) T f(void);

There are two possibilities.

� f is polymorphi in T. This interpretation would allow the following.

forall(type T) T* allo(void);

int *p = allo();

Revision: 1.82

CHAPTER 5. DECLARATIONS 39

Here allo() would reeive int as an inferred argument, and return an int*.

� f is monomorphi, and returns a polymorphi value. This faility is more limited than it

seems at �rst. Consider f() above; the value returned must have type T for every objet

type T. Where is f() to get suh a value? In pratie, the only useful polymorphi return

types are pointers to polymorphi funtion types and forall(type T) onst T*|and in

that ase, the only returnable value is 0.

Cforall took the seond tak, so that inferred arguments would be apparent from the funtion's

expliit arguments. Consequently, funtions like allo must be written as

forall(type T) T* allo(T initial_value);

2

5.2 Type Quali�ers

Cforall de�nes a new type quali�er lvalue.

Syntax

type-quali�er: . . .

lvalue

Semantis

lvalue may be used to qualify the return type of a funtion type. Let T be an unquali�ed version of a type;

then the result of alling a funtion with return type lvalue T is a modi�able lvalue of type T. onst and

volatile quali�ers may also be added to indiate that the funtion result is a onstant or volatile lvalue.

2 The onst and volatile quali�ers an only be sensibly used to qualify the return type of a

funtion if the lvalue quali�er is also used. 2

An lvalue-quali�ed type may be used in a ast expression if the operand is an lvalue; the result of the

expression is an lvalue.

2 lvalue provides some of the funtionality of C++'s \T&" (referene to objet of type T) type.

Referene types have four uses in C++.

� They are neessary for user-de�ned operators that return lvalues, suh as \subsript" and

\dereferene".

� A referene an be used to de�ne an alias for a ompliated lvalue expression, as a way of

getting some of the funtionality of the Pasal with statement. The following C++ ode

gives an example.

f har& ode = long_name.some_field[i℄.data->ode;

ode = toupper(ode);

g

This is not very useful.

� A referene parameter an be used to allow a funtion to modify an argument without

foring the aller to pass the address of the argument. This is most useful for user-de�ned

assignment operators. In C++, plain assignment is done by a funtion alled \operator=",

and the two expressions

Revision: 1.82

CHAPTER 5. DECLARATIONS 40

a = b;

operator=(a,b);

are equivalent. If a and b are of type T, then the �rst parameter of operator= must have

type \T&". It annot have type T, beause then assignment ouldn't alter the variable, and

it an't have type \T*", beause the assignment would have to be written \&a = b;".

In the ase of user-de�ned operators, this ould just as well be handled by using pointer types

and by hanging the rewrite rules so that \a = b;" is equivalent to \operator=(&(a),b)".

Referene parameters of \normal" funtions are Bad Things, beause they remove a useful

property of C funtion alls: an argument an only be modi�ed by a funtion if it is preeded

by \&".

� Referenes to onst-quali�ed types an be used instead of value parameters. Given the C++

funtion all \fiddle(a_thing)", where the type of a_thing is Thing, the type of fiddle

ould be either of

void fiddle(Thing);

void fiddle(onst Thing&);

If the seond form is used, then onstrutors and destrutors are not invoked to reate a

temporary variable at the all site (and it is bad style for the aller to make any assumptions

about suh things), and within fiddle the parameter is subjet to the usual problems aused

by aliases. The referene form might be hosen for eÆieny's sake if Things are too large or

their onstrutors or destrutors are too expensive. An implementation may swith between

them without ausing trouble for well-behaved lients. This leaves the implementor to de�ne

\too large" and \too expensive".

I propose to push this job onto the ompiler by allowing it to implement

void fiddle(onst volatile Thing);

with all-by-referene. Sine it knows all about the size of Things and the parameter passing

mehanism, it should be able to ome up with a better de�nition of \too large", and may

be able to make a good guess at \too expensive".

In summary, sine referenes are only really neessary for returning lvalues, I'll only provide

lvalue funtions. 2

5.3 Spei�ation De�nitions

Syntax

spe-de�nition:

spe identi�er (type-parameter-list) { spe-delaration-list

opt

}

spe-delaration-list:

spe-delaration ;

spe-delaration-list spe-delaration ;

spe-delaration:

spei�er-quali�er-list delarator-list

delarator-list:

delarator

delarator-list , delarator

2 The delarations allowed in a spei�ation are muh the same as those allowed in a struture,

exept that bit �elds are not allowed, and inomplete types and funtion types are allowed. 2

Revision: 1.82

CHAPTER 5. DECLARATIONS 41

Semantis

A spei�ation de�nition de�nes a name for a spei�ation: a parameterized olletion of objet and funtion

delarations.

The delarations in a spei�ation onsist of the delarations in the spe-delaration-list and delarations

produed by any assertions in the spe-parameter-list . If the olletion ontains two delarations that delare

the same identi�er and have ompatible types, they are ombined into one delaration with the omposite

type onstruted from the two types.

5.3.1 Assertions

Syntax

assertion-list:

assertion

assertion-list assertion

assertion:

| identi�er (type-name-list)

| spe-delaration

type-name-list:

type-name

type-name-list , type-name

Constraints

The identi�er in an assertion that is not a spe-delaration shall be the name of a spei�ation. The

type-name-list shall ontain one type-name argument for eah type-parameter in that spei�ation's spe-

parameter-list . If the type-parameter uses type-lass type, the argument shall be the type name of an objet

type; if it uses dtype, the argument shall be the type name of an objet type or an inomplete type; and if

it uses ftype, the argument shall be the type name of a funtion type.

Semantis

An assertion is a delaration of a olletion of objets and funtions, alled assertion parameters.

The assertion parameters produed by an assertion that applies the name of a spei�ation to type argu-

ments are found by taking the delarations spei�ed in the spei�ation and treating eah of the spei�ation's

parameters as a synonym for the orresponding type-name argument.

The olletion of assertion parameters produed by the assertion-list are found by ombining the delara-

tions produed by eah assertion. If the olletion ontains two delarations that delare the same identi�er

and have ompatible types, they are ombined into one delaration with the omposite type onstruted

from the two types.

Examples

forall(type T | T ?*?(T,T))

T square(T val) f

return val + val;

g

spe summable(type T) f

T ?+=?(T*, T);

onst T 0;

Revision: 1.82

CHAPTER 5. DECLARATIONS 42

g;

spe list_of(type List, type Element) f

Element ar(List);

List dr(List);

List ons(Element, List);

List nil;

int is_nil(List);

g;

spe sum_list(type List,

type Element | summable(Element) | list_of(List, Element)) fg;

sum_list ontains seven delarations, whih desribe a list whose elements an be added up. The assertion

\|sum_list(i_list, int)" produes the assertion parameters

int ?+=?(int*, int);

onst int 0;

int ar(i_list);

i_list dr(i_list);

i_list ons(int, i_list);

i_list nil;

int is_nil;

5.4 Type Delarations

Syntax

type-parameter-list:

type-parameter

type-parameter-list , type-parameter

type-parameter:

type-lass identi�er assertion-list

opt

type-lass:

type

dtype

ftype

type-delaration:

storage-lass-spei�er

opt

type type-delarator-list ;

type-delarator-list:

type-delarator

type-delarator-list , type-delarator

type-delarator:

identi�er assertion-list

opt

= type-name

identi�er assertion-list

opt

Constraints

If a type delaration has blok sope, and the delared identi�er has external or internal linkage, the dela-

ration shall have no initializer for the identi�er.

Revision: 1.82

CHAPTER 5. DECLARATIONS 43

Semantis

A type-parameter or a type-delarator delares an identi�er to be a type name for a type distint from all

other types.

An identi�er delared by a type-parameter has no linkage. Identi�ers delared with type-lass type are

objet types; those delared with type-lass dtype are inomplete types; and those delared with type-lass

ftype are funtion types. The identi�er has blok sope that terminates at the end of the spe-delaration-list

or polymorphi funtion that ontains the type-parameter .

A type-delarator with an initializer is a type de�nition. The delared identi�er is an inomplete type

within the initializer, and an objet type after the end of the initializer. The type in the initializer is alled

the implementation type. Within the sope of the delaration, impliit onversions an be performed between

the de�ned type and the implementation type, and between pointers to the de�ned type and pointers to the

implementation type.

A type delaration without an initializer and without a storage-lass spei�er or with storage-lass spei-

�er stati de�nes an inomplete type. If a translation unit or blok ontains one or more suh delarations

for an identi�er, it must ontain exatly one de�nition of the identi�er (but not in an enlosed blok, whih

would de�ne a new type known only within that blok).

2 Inomplete type delarations allow ompat mutually-reursive types.

type t1; /* Inomplete type delaration. */

type t2 = strut f t1* p; /* ... */ g;

type t1 = strut f t2* p; /* ... */ g;

Without them, mutual reursion ould be handled by delaring mutually reursive strutures,

then initializing the types to those strutures.

strut s1;

type t2 = strut s2 f strut s1* p; /* ... */ g;

type t1 = strut s1 f strut s2* p; /* ... */ g;

This introdues extra names, and may fore the programmer to ast between the types and their

implementations. 2

A type delaration without an initializer and with storage-lass spei�er extern is an opaque type dela-

ration. Opaque types are objet types. An opaque type is not a onstant-expression; neither is a struture

or union that has a member whose type is not a onstant-expression. Every other objet type is a onstant-

expression. Objets with stati storage duration shall be delared with a type that is a onstant-expression.

2 Type delarations an delare identi�ers with external linkage, whereas typedef delarations

delare identi�ers that only exist within a translation unit. These opaque types an be used in

delarations, but the implementation of the type is not visible.

Stati objets an not have opaque types beause spae for them would have to be alloated

at program start-up. This is a de�ieny, but I don't want to deal with \module initialization"

ode just now. 2

An inomplete type whih is not a quali�ed version of a type is a value of type-lass dtype. An objet

type whih is not a quali�ed version of a type is a value of type-lasses type and dtype. A funtion type is

a value of type-lass ftype.

2 Syntatially, a type value is a type-name, whih is a delaration for an objet whih omits

the identi�er being delared.

Objet types are preisely the types that an be instantiated. Type quali�ers are not inluded

in type values beause the ompiler needs the information they provide at ompile time to detet

illegal statements or to produe eÆient mahine instrutions. For instane, the ode that a

Revision: 1.82

CHAPTER 5. DECLARATIONS 44

ompiler must generate to manipulate an objet that has volatile-quali�ed type may be di�erent

from the ode to manipulate an ordinary objet.

Type quali�ers are a weak point of C's type system. Consider the standard library funtion

strhr() whih, given a string and a harater, returns a pointer to the �rst ourrene of the

harater in the string.

har *strhr(onst har *s, int) f

har real_ = ; /* done beause was delared as int. */

for (; *s != real_; s++)

if (*s == '\0') return NULL;

return (har*)s;

g

The parameter s must be onst har*, beause strhr() might be used to searh a onstant

string, but the return type must be har*, beause the result might be used to modify a non-

onstant string. Hene the body must perform a ast, and (even worse) strhr() provides a

type-safe way to attempt to modify onstant strings. What is needed is some way to say that s's

type might ontain quali�ers, and the result type has exatly the same quali�ers. Polymorphi

funtions do not provide a �x for this de�ieny, beause type quali�ers are not part of type

values. Instead, overloading an be used to de�ne strhr() for eah ombination of quali�ers.

2

2 Sine inomplete types are not type values, they an not be used as the initializer in a type

delaration, or as the type of a struture or union member. This prevents the delaration of

types that ontain eah other.

type t1;

type t2 = t1; /* illegal: inomplete type `t1'. */

type t1 = t2;

The initializer in a �le-sope delaration must be a onstant expression. This means type

delarations an not build on opaque types, whih is a de�ieny.

extern type Huge; /* extended-preision integer type. */

type Rational = strut f

Huge numerator, denominator; /* illegal */

g;

strut Pair f

Huge first, seond; /* legal */

g;

Without this restrition, Cforall might require \module initialization" ode (sine Rational has

external linkage, it must be reated before any other translation unit instantiates it), and would

fore an ordering on the initialization of the translation unit that de�nes Huge and the translation

that delares Rational.

A bene�t of the restrition is that it prevents the delaration in separate translation units of

types that ontain eah other, whih would be hard to prevent otherwise.

File a.:

extern type t1;

type t2 = strut f t1 f1; /* ... */ g /* illegal */

File b.:

extern type t2;

type t1 = strut f t2 f2; /* ... */ g /* illegal */

Revision: 1.82

CHAPTER 5. DECLARATIONS 45

2

2 Sine a type-delaration is a delaration and not a strut-delaration, type delarations an not

be struture members. The form of type-delaration forbids arrays of, pointers to, and funtions

returning type. Hene the syntax of type-spei�er does not have to be extended to allow type-

valued expressions. It also side-steps the problem of type-valued expressions produing di�erent

values in di�erent delarations.

Sine a type delaration is not a parameter-delaration, funtions an not have expliit type

parameters. This may be too restritive, but it attempts to make ompilation simpler. Reall

that when traditional C sanners read in an identi�er, they look it up in the symbol table

to determine whether or not it is a typedef name, and return a \type" or \identi�er" token

depending on what they �nd. A type parameter would add a type name to the urrent sope.

The sope manipulations involved in parsing the delaration of a funtion that takes funtion

pointer parameters and returns a funtion pointer may just be too ompliated.

Expliit type parameters don't seem to be very useful, anyway, beause their sope would

not inlude the return type of the funtion. Consider the following attempt to de�ne a type-safe

memory alloation funtion.

#inlude <stdlib.h>

T* new(type T) f return (T*) mallo(sizeof(T)); g;

...

int* ip = new(int);

This looks sensible, but Cforall's delaration-before-use rules mean that \T" in the funtion body

refers to the parameter, but the \T" in the return type refers to the meaning of T in the sope

that ontains new; it ould be unde�ned, or a type name, or a funtion or variable name. Nothing

good an result from suh a situation. 2

Examples

Sine type delarations reate new types, instanes of types are always passed by value.

type A1 = int[2℄;

void f1(A1 a) f a[0℄ = 0; g;

typedef int A2[2℄;

void f2(A2 a) f a[0℄ = 0; g;

A1 v1;

A2 v2;

f1(v1);

f2(v2);

V1 is passed by value, so f1()'s assignment to a[0℄ does not modify v1. V2 is onverted to a pointer, so

f2() modi�es v2[0℄.

A translation unit ontaining the delarations

extern type Complex; /* opaque type delaration. */

extern float abs(Complex);

an ontain delarations of omplex numbers, whih an be passed to abs. Some other translation unit must

implement Complex and abs. That unit might ontain the delarations

type Complex = strut f float re, im; g;

Complex plx_i = f0.0, 1.0g;

float abs(Complex) f

Revision: 1.82

CHAPTER 5. DECLARATIONS 46

return sqrt(.re*.re + .im*.im);

g

Note that is impliitly onverted to a strut so that its omponents an be retrieved.

type Time_of_day = int; /* seonds sine midnight. */

Time_of_day ?+?(Time_of_day t1, int seonds) f

return ((int)t1 + seonds)%86400;

g

t1 must be ast to its implementation type to prevent in�nite reursion.

2 Within the sope of a type de�nition, an instane of the type an be viewed as having that type

or as having the implementation type. In the Time_of_day example, the di�erene is important.

Di�erent languages have treated the distintion between the abstration and the implementation

in di�erent ways.

� Inside a Clu luster [6℄, the delaration of an instane states whih view applies. Two

primitives alled up and down an be used to onvert between the views.

� The Simula lass [7℄ is essentially a reord type. Sine the only operations on a reord

are member seletion and assignment, whih an not be overloaded, there is never any

ambiguity as to whether the abstration or the implementation view is being used. In C++

[5℄, operations on lass instanes inlude assignment and \&", whih an be overloaded. A

\sope resolution" operator an be used inside the lass to speify whether the abstrat or

implementation version of the operation should be used.

� An Ada derived type de�nition [8℄ reates a new type from an old type, and also impliitly

delares derived subprograms that orrespond to the existing subprograms that use the old

type as a parameter type or result type. The derived subprograms are lones of the existing

subprograms with the old type replaed by the derived type. Literals and aggregates of

the old type are also loned. In other words, the abstrat view provides exatly the same

operations as the implementation view. This allows the abstrat view to be used in all ases.

The derived subprograms an be replaed by programmer-spei�ed subprograms. This is

an exeption to the normal sope rules, whih forbid dupliate de�nitions of a subprogram

in a sope. In this ase, expliit onversions between the derived type and the old type an

be used.

Cforall's rules are like Clu's, exept that impliit onversions and onversion osts allow it to do

away with most uses of up and down. 2

5.4.1 Default Funtions and Objets

A delaration of a type identi�er T with type-lass type impliitly delares a default assignment funtion T

?=?(T*, T), with the same sope and linkage as the identi�er T.

2 Assignment is entral to C's imperative programming style, and every existing C objet

type has assignment de�ned for it (exept for array types, whih are treated as pointer types

for purposes of assignment). Without this rule, nearly every inferred type parameter would

need an aompanying assignment assertion parameter. If a type parameter should not have

an assignment operation, dtype should be used. If a type should not have assignment de�ned,

the user an de�ne an assignment funtion that auses a run-time error, or provide an external

delaration but no de�nition and thus ause a link-time error. 2

Revision: 1.82

CHAPTER 5. DECLARATIONS 47

A de�nition of a type identi�er T with implementation type I and type-lass type impliitly de�nes a

default assignment funtion. A de�nition of a type identi�er T with implementation type I and an assertion

list impliitly de�nes default funtions and default objets as delared by the assertion delarations. The

default objets and funtions have the same sope and linkage as the identi�er T. Their values are determined

as follows:

� If at the de�nition of T there is visible a delaration of an objet with the same name as the default

objet, and if the type of that objet with all ourrene of I replaed by T is ompatible with the

type of the default objet, then the default objet is initialized with that objet. Otherwise the sope

of the delaration of T must ontain a de�nition of the default objet.

� If at the de�nition of T there is visible a delaration of a funtion with the same name as the default

funtion, and if the type of that funtion with all ourrene of I replaed by T is ompatible with the

type of the default funtion, then the default funtion alls that funtion after onverting its arguments

and returns the onverted result.

Otherwise, if I ontains exatly one anonymous member suh that at the de�nition of T there is visible

a delaration of a funtion with the same name as the default funtion, and the type of that funtion

with all ourrenes of the anonymous member's type in its parameter list replaed by T is ompatible

with the type of the default funtion, then the default funtion alls that funtion after onverting its

arguments and returns the result.

Otherwise the sope of the delaration of T must ontain a de�nition of the default funtion.

2 Note that a pointer to a default funtion will not ompare as equal to a pointer to the inherited

funtion. 2

A funtion or objet with the same type and name as a default funtion or objet that is delared within

the sope of the de�nition of T replaes the default funtion or objet.

Examples

spe s(type T) f

T a, b;

g

strut impl f int left, right; g a = f 0, 0 g;

type Pair | s(Pair) = strut impl;

Pair b = f 1, 1 g;

The de�nition of Pair impliitly de�nes two objets a and b. Pair a inherits its value from the strut

impl a. The de�nition of Pair b is ompulsory beause there is no strut impl b to onstrut a value

from.

spe ss(type T) f

T lone(T);

void munge(T*);

g

type Whatsit | ss(Whatsit);

type Doodad | ss(Doodad) = strut doodad f

Whatsit; /* anonymous member */

int extra;

g;

Doodad lone(Doodad) f /* ... */ g

Revision: 1.82

CHAPTER 5. DECLARATIONS 48

The de�nition of Doodad impliitly de�nes three funtions:

Doodad ?=?(Doodad*, Doodad);

Doodad lone(Doodad);

void munge(Doodad*);

The assignment funtion inherits strut doodad's assignment funtion beause the types math when

strut doodad is replaed by Doodad throughout. munge() inherits Whatsit's munge() beause the types

math when Whatsit is replaed by Doodad in the parameter list. lone() does not inherit Whatsit's

lone(): replaement in the parameter list yields \Whatsit lone(Doodad)", whih is not ompatible with

Doodad's lone()'s type. Hene the de�nition of \Doodad lone(Doodad)" is neessary.

Default funtions and objets are subjet to the normal sope rules.

type T = ...;

T a_T = ...; /* Default assignment used. */

T ?=?(T*, T);

T a_T = ...; /* Programmer-de�ned assignment alled. */

2 A ompiler warning would be helpful in this situation. 2

2 The lass onstrut of objet-oriented programming languages performs three independent

funtions. It enapsulates a data struture; it de�nes a subtype relationship, whereby instanes

of one lass may be used in ontexts that require instanes of another; and it allows one lass to

inherit the implementation of another.

In Cforall, enapsulation is provided by opaque types and the sope rules, and subtyping

is provided by spei�ations and assertions. Inheritane is provided by default funtions and

objets. 2

5.5 Initialization

An expression that is used as an initializer is treated as being ast to the type of the objet being initialized.

An expression used in an initializer-list is treated as being ast to the type of the aggregate member that it

initializes. In either ase the ast must have a single unambiguous interpretation.

Revision: 1.82

Chapter 6

Statements

Many statements ontain expressions, whih may have more than one interpretation. The following setions

desribe how the Cforall translator selets an interpretation. In all ases the result of the seletion shall be

a single unambiguous interpretation.

6.1 Expression and Null Statements

The expression in an expression statement is treated as being ast to void.

6.2 Jump Statements

An expression in a return statement is treated as being ast to the result type of the funtion.

6.3 Seletion Statements

The ontrolling expression e in the swith statement

swith (e) ...

may have more than one interpretation, but it shall have only one interpretation with an integral type. An

integral promotion is performed on the expression if neessary. The onstant expressions in ase statements

with the swith are onverted to the promoted type.

6.4 Iteration Statements

The ontrolling expression e in the loops

if (e) ...

while (e) ...

do ... while (e);

is treated as \(int)((e)!=0)".

The statement

for (a; b;) ...

49

CHAPTER 6. STATEMENTS 50

is treated as

for ((void)(a); (int)((b)!=0); (void)()) ...

Revision: 1.82

Chapter 7

Preproessing Diretives

7.1 Prede�ned Maro Names

The implementation shall de�ne the maro names __LINE__, __FILE__, __DATE__, and __TIME__, as in the

ANSI C standard. It shall not de�ne the maro name __STDC__.

In addition, the implementation shall de�ne the maro name __CFORALL__ to be the deimal onstant 1.

51

Appendix A

Examples

A.1 C Types

This setion gives example spei�ations for some groups of types that are important in the C language, in

terms of the prede�ned operations that an be applied to those types.

A.1.1 Salar, Arithmeti, and Integral Types

The pointer, integral, and oating-point types are all salar types. All of these types an be logially negated

and ompared. The assertion \salar(Complex)" should be read as \type Complex is salar".

spe salar(type T) f

int !?(T);

int ?<?(T, T), ?<=?(T, T), ?==?(T, T), ?>=?(T, T), ?>?(T, T), ?!=?(T, T);

g;

The integral and oating-point types are arithmeti types, whih support the basi arithmeti operators.

The use of an assertion in the spe-parameter-list delares that, in order to be arithmeti, a type must also

be salar (and hene that salar operations are available). This is equivalent to inheritane of spei�ations.

spe arithmeti(type T | salar(T)) f

T +?(T), -?(T);

T ?*?(T, T), ?/?(T, T), ?+?(T, T), ?-?(T, T);

g;

The various avors of har and int and the enumerated types make up the integral types.

spe integral(type T | arithmeti(T)) f

T ~?(T);

T ?&?(T, T), ?|?(T, T), ?^?(T, T);

T ?%?(T, T);

T ?<<?(T, T), ?>>?(T, T);

g;

A.1.2 Modi�able Types

The only operation that an be applied to all modi�able lvalues is simple assignment.

52

APPENDIX A. EXAMPLES 53

spe m_lvalue(type T) f

T ?=?(T*, T);

g;

Modi�able salar lvalues are salars and are modi�able lvalues, and assertions in the spe-parameter-list

reet those relationships. This is equivalent to multiple inheritane of spei�ations. Salars an also be

inremented and deremented.

spe m_l_salar(type T | salar(T) | m_lvalue(T)) f

T ?++(T*), ?--(T*);

T ++?(T*), --?(T*);

g;

Modi�able arithmeti lvalues are both modi�able salar lvalues and arithmeti. Note that this results in

the \inheritane" of salar along both paths.

spe m_l_arithmeti(type T | m_l_salar(T) | arithmeti(T)) f

T ?/=?(T*, T), ?*=?(T*, T);

T ?+=?(T*, T), ?-=?(T*, T);

g;

spe m_l_integral(type T | m_l_arithmeti(T) | integral(T)) f

T ?&=?(T*, T), ?|=?(T*, T), ?^=?(T*, T);

T ?%=?(T*, T), ?<<=?(T*, T), ?>>=?(T*, T);

g;

A.1.3 Pointer and Array Types

Array types an barely be said to exist in ANSI C, sine in most ases an array name is treated as a

onstant pointer to the �rst element of the array, and the subsript expression \a[i℄" is equivalent to the

dereferening expression \(*(a+(i)))". Tehnially, pointer arithmeti and pointer omparisons other than

\==" and \!=" are only de�ned for pointers to array elements, but the type system does not enfore those

restritions. Consequently, there is no need for a separate \array type" spei�ation.

Pointer types are salar types. Like other salar types, they have \+" and \-" operators, but the types do

not math the types of the operations in arithmeti, so these operators annot be onsolidated in salar.

spe pointer(type P | salar(P)) f

P ?+?(P, long int), ?+?(long int, P), ?-?(P, long int);

ptrdiff_t ?-?(P, P);

g;

spe m_l_pointer(type P | pointer(P) | m_l_salar(P)) f

P ?+=?(P*, long int), ?-=?(P*, long int);

P ?=?(P*, void*);

void* ?=?(void**, P);

g;

Spei�ations that de�ne the dereferene operator (or subsript operator) require two parameters, one

for the pointer type and one for the pointed-at (or element) type. Di�erent spei�ations are needed for eah

set of type quali�ers, beause quali�ers are not inluded in types. The assertion \|ptr_to(Safe_pointer,

int)" should be read as \Safe_pointer ats like a pointer to int".

Revision: 1.82

APPENDIX A. EXAMPLES 54

spe ptr_to(type P | pointer(P), type T) f

lvalue T *?(P); lvalue T ?[?℄(P, long int);

g;

spe ptr_to_onst(type P | pointer(P), type T) f

onst lvalue T *?(P); onst lvalue T ?[?℄(P, long int);

g;

spe ptr_to_volatile(type P | pointer(P), type T) g

volatile lvalue T *?(P); volatile lvalue T ?[?℄(P, long int);

g;

spe ptr_to_onst_volatile(type P | pointer(P), type T) g

onst volatile lvalue T *?(P);

onst volatile lvalue T ?[?℄(P, long int);

g;

Assignment to pointers is more ompliated than is the ase with other types, beause the target's type

an have extra type quali�ers in the pointed-at type: a \T*" an be assigned to a \onst T*", a \volatile

T*", and a \onst volatile T*". Again, the pointed-at type is passed in, so that assertions an onnet

these spei�ations to the \ptr_to" spei�ations.

spe m_l_ptr_to(type P | m_l_pointer(P),

type T | ptr_to(P,T) f

P ?=?(P*, T*);

T* ?=?(T**, P);

g;

spe m_l_ptr_to_onst(type P | m_l_pointer(P),

type T | ptr_to_onst(P,T)) f

P ?=?(P*, onst T*);

onst T* ?=?(onst T**, P);

g;

spe m_l_ptr_to_volatile(type P | m_l_pointer(P),

type T | ptr_to_volatile(P,T)) f

P ?=?(P*, volatile T*);

volatile T* ?=?(volatile T**, P);

g;

spe m_l_ptr_to_onst_volatile(

type P | ptr_to_onst_volatile(P),

type T | m_l_ptr_to_volatile(P,T) | m_l_ptr_to_onst(P)) f

P ?=?(P*, onst volatile T*);

onst volatile T* ?=?(onst volatile T**, P);

g;

Note the regular manner in whih type quali�ers appear in those spei�ations. An alternative spei�-

ation an make use of the fat that quali�ation of the pointed-at type is part of a pointer type to apture

that regularity.

Revision: 1.82

APPENDIX A. EXAMPLES 55

spe m_l_ptr_like(type MyP | m_l_pointer(MyP),

type CP | m_l_pointer(CP)) f

MyP ?=?(MyP*, CP);

CP ?=?(CP*, MyP);

g;

The assertion \| m_l_ptr_like(Safe_ptr, onst int*)" should be read as \Safe_ptr is a pointer type

like onst int*". This spei�ation has two defets, ompared to the original four: there is no au-

tomati assertion that dereferening a MyP produes an lvalue of the type that CP points at, and the

\|m_l_pointer(CP)" assertion provides only a weak assurane that the argument passed to CP really is

a pointer type.

A.2 Relationships Between Operations

Di�erent operators often have related meanings; for instane, in C, \+", \+=", and the two versions of \++"

perform variations of addition. Languages like C++ and Ada allow programmers to de�ne operators for

new types, but do not require that these relationships be preserved, or even that all of the operators be

implemented. Completeness and onsisteny is left to the good taste and disretion of the programmer. It

is possible to enourage these attributes by providing generi operator funtions, or member funtions of

abstrat lasses, that are de�ned in terms of other, related operators.

In Cforall, polymorphi funtions provide the equivalent of these generi operators, and spei�ations

expliitly de�ne the minimal implementation that a programmer should provide. This setion shows a few

examples.

A.2.1 Relational and Equality Operators

The di�erent omparison operators have obvious relationships, but there is no obvious subset of the oper-

ations to use in the implementation of the others. However, it is usually onvenient to implement a single

omparison funtion that returns a negative integer, 0, or a positive integer if its �rst argument is respetively

less than, equal to, or greater than its seond argument; the library funtion strmp is an example.

C and Cforall have an extra, non-obvious omparison operator: \!", logial negation, returns 1 if its

operand ompares equal to 0, and 0 otherwise.

spe omparable(type T) f

onst T 0;

int ompare(T, T);

g

forall(type T | omparable(T)) int ?<?(T l, T r) f

return ompare(l,r) < 0;

g

/* . . . similarly for <=, ==, >=, >,

and !=. */

forall(type T | omparable(T)) int !?(T operand) f

return !ompare(operand, 0);

g

Revision: 1.82

APPENDIX A. EXAMPLES 56

A.2.2 Arithmeti and Integer Operations

A omplete arithmeti type would provide the arithmeti operators and the orresponding assignment op-

erators. Of these, the assignment operators are more likely to be implemented diretly, beause it is usually

more eÆient to alter the ontents of an existing objet than to reate and return a new one. Similarly, a

omplete integral type would provide integral operations based on integral assignment operations.

spe arith_base(type T) f

onst T 1;

T ?+=?(T*,T), ?-=?(T*,T), ?*=?(T*,T), ?/=?(T*,T);

g

forall(type T | arith_base(T)) T ?+?(T l, T r) f

return l += r;

g

forall(type T | arith_base(T)) T ?++(T* operand) f

T temporary = *operand;

*operand += 1;

return temporary;

g

forall(type T | arith_base(T)) T ++?(T* operand) f

return *operand += 1;

g

/* . . . similarly for -, --, *,and /. */

spe int_base(type T) f

T ?&=?(T*, T), ?|=?(T*, T), ?^=?(T*, T);

T ?%=?(T*, T), ?<<=?(T*, T), ?>>=?(T*, T);

g

forall(type T | int_base(T)) T ?&?(T l, T r) f

return l &= r;

g

/* . . . similarly for |, ^, %, <<,and >>. */

Note that, although an arithmeti type would ertainly provide omparison funtions, and an integral

type would provide arithmeti operations, there does not have to be any relationship among int_base,

arith_base and omparable. Note also that these delarations provide guidane and assistane, but they

do not de�ne an absolutely minimal set of requirements. A truly minimal implementation of an arithmeti

type might only provide 0, 1, and ?-=?, whih would be used by polymorphi ?+=?, ?*=?, and ?/=? funtions.

Revision: 1.82

Bibliography

[1℄ Amerian National Standards Institute, 1430 Broadway, New York, New York 10018. Amerian National

Standard for Information Systems { Programming Language { C, Deember 1989. X3.159-1989.

[2℄ T. P. Baker. A one-pass algorithm for overload resolution in Ada. ACM Transations on Programming

Languages and Systems, 4(4):601{614, Otober 1982.

[3℄ G. V. Cormak and A. K. Wright. Type-dependent parameter inferene. SIGPLAN Noties, 25(6):127{

136, June 1990. Proeedings of the ACM Sigplan'90 Conferene on Programming Language Design and

Implementation June 20-22, 1990, White Plains, New York, U.S.A.

[4℄ Glen Dith�eld. An overview of forall. in preparation, 1996.

[5℄ Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Referene Manual. Addison Wesley, �rst

edition, 1990.

[6℄ Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Sha�ert, Robert Sheier, and Alan

Snyder. CLU Referene Manual, volume 114 of Leture Notes in Computer Siene. Springer-Verlag,

1981.

[7℄ Standardiseringskommissionen i Sverige. Databehandling { Programspr�ak { SIMULA, 1987. Svensk

Standard SS 63 61 14.

[8℄ United States Department of Defense. The Programming Language Ada: Referene Manual, ANSI/MIL-

STD-1815A-1983 edition, February 1983. Published by Springer-Verlag.

57

Index

Itali page numbers give the loation of the main

entry for the referened term. Plain page numbers

denote uses of the indexed term. Entries for gram-

mar non-terminals are italiized. A typewriter

font is used for grammar terminals and program

identi�ers.

!?, 7, 20

*?, 7, 20

++?, 7, 20

+?, 7, 20

--?, 7, 20

-?, 7, 20

?!=?, 7, 26

?%=?, 7, 31

?%?, 7, 23

?&=?, 7, 31

?&?, 7, 28

?(), 7, 15

?*=?, 7, 31

?*?, 7, 23, 41

?++, 7, 15

?+=?, 7, 31, 41

?+?, 7, 24, 46

?--, 7, 15

?-=?, 7, 31

?-?, 7, 24

?/=?, 7, 31

?/?, 7, 23

?:, 30

?<<=?, 7, 31

?<<?, 7, 25

?<=?, 7, 26

?<?, 7, 26

?==?, 7, 26

?=?, 7, 31, 46

?>=?, 7, 26

?>>=?, 7, 31

?>>?, 7, 25

?>?, 7, 26

?[?℄, 7, 15

?^=?, 7, 31

?^?, 7, 28

?|=?, 7, 31

?|?, 7, 29

~?, 7, 20

0, 6, 13{15, 19, 29, 41

1, 6, 14

abs, 45

abs(Complex), 45

additive-expression, 24, 24, 25

allo, 38, 39

ambiguous interpretation, 13, 13, 17, 19, 21, 22,

30, 34

AND-expression, 28, 28

anonymous member, 10, 12, 36, 47

argument-expression-list , 15, 15

arithmeti, 52, 52, 53

arithmeti types, 52

assertion, 41

assertion, 41, 41

assertion parameters, 11, 17, 37, 41

assertion-list , 41, 41, 42

assignment-expression, 15, 30, 30, 34

assignment-operator , 30, 30

automati storage duration, 4

best valid interpretations, 13, 15, 17

blok, 3, 4, 43

blok sope, 3, 37, 43

ast expression, 8, 22, 39

ast-expression, 20, 22, 22, 23

olor_point, 36

omma expression, 8

ompatible type, 1, 8, 9, 11, 17, 37

Complex, 21, 29, 45, 45

omposite type, 2, 17, 41

onditional-expression, 30, 30

onst, 4, 39

58

INDEX 59

onst-quali�ed, 3, 3, 40

onstant , 14

onstant identi�ers, 6

onstant-expression, 6, 43

onversion ost, 12, 13, 23

plx_i, 45

delaration, 2

delaration, 35, 37, 45

delaration sope, 37

delaration-spei�ers, 36

delarator , 40

delarator-list , 40, 40

default argument promotions, 2, 2, 16

default assignment, 46

default funtions, 47

default objets, 47

de�ienies

generalizability, 17

nesting opaque types, 44

pointers to bit-�elds, 19

pointers to quali�ed types, 19, 44

stati opaque objets, 43

union assignment, 34

void* onversion, 12

de�nition, 2

de�nition sope, 4

derived delarator types, 2

diret safe onversion, 12

Doodad, 47

dtype, 43

eat_double, 22, 23

equality-expression, 26, 26, 28

exlusive-OR-expression, 28, 28

expliit onversions, 10

expression, 14, 15, 30, 34, 34

extern, 4, 43

external linkage, 9

�le sope, 3, 14

forall spei�er, 35

forall-spei�er , 35, 36, 36, 37

ftype, 43

funtion designator, 16

funtion prototype, 3

funtion prototype sope, 3

funtion sope, 3

funtion types, 4, 41, 43

generalizability, 17

identi�er , 6, 14, 15, 40{42

identi�ers

for onstants, 6

for operators, 7

implementation type, 43, 47

impliit arguments, 16

impliit onversions, 10, 10, 43

inlusive-OR-expression, 28, 28, 29

inomplete types, 3, 4, 40, 41, 43, 44

inferred parameter, 11, 21, 37

initializer, 43

initializer , 48

initializer-list , 48

integral, 52, 53

integral promotions, 2, 2, 11, 33

integral types, 52

internal linkage, 9, 14

interpretations, 13, 21, 48, 49

keyword , 6

less polymorphi, 11, 13, 19, 37

linkage, 8, 46, 47

list_of, 42

literal, 36

logial-AND-expression, 29, 29, 30

logial-OR-expression, 30, 30

lvalue, 3, 10, 39

lvalue, 39

lvalue-quali�ed, 3

m_l_arithmeti, 53, 53

m_l_integral, 53

m_l_pointer, 53, 54, 55

m_l_ptr_like, 55

m_l_ptr_to, 54

m_l_ptr_to_onst, 54, 54

m_l_ptr_to_onst_volatile, 54

m_l_ptr_to_volatile, 54, 54

m_l_salar, 53, 53

m_lvalue, 53, 53

min_max, 19

modi�able lvalue, 3, 39, 52

monomorphi funtion, 16, 37

move_by, 10

multipliative-expression, 23, 23, 24

name spaes, 3, 8

Revision: 1.82

INDEX 60

no linkage, 9, 35, 37, 43

null pointer, 13, 19, 27

objet, 3

objet types, 3, 4, 41, 43

opaque type delaration, 43

operator identi�ers, 7, 14

overloading, 6, 8

parameter-delaration, 45

parameter-type-list , 37

point, 36

pointer, 53, 54

polymorphi funtion, 16, 37

post�x-expression, 15, 15, 16, 20

primary-expression, 14, 15

ptr_to, 54, 54

ptr_to_onst, 54, 54

ptr_to_onst_volatile, 54, 54

ptr_to_volatile, 54, 54

ptrdiff_t, 16

quali�ed type, 1, 3, 12, 43

quali�ed versions, 2, 3

relational-expression, 25, 25, 26

rewrite rules, 14

safe onversions, 11, 12, 17

salar, 52, 52, 53

salar types, 52

sopes, 3, 8, 46, 47

sequene points, 4

shift-expression, 25, 25

side e�ets, 4

sizeof, 21

spe-delaration, 40, 40, 41

spe-delaration-list , 40, 40, 41, 43

spe-de�nition, 35, 40

spe-parameter-list , 41, 52, 53

speialization, 14, 19

spei�ation, 37, 41

spei�ation de�nition, 41

spei�er-quali�er-list , 35, 40

square, 41

stati, 4, 43

stati storage duration, 4

storage duration, 4

storage-lass spei�ers, 4, 43

storage-lass-spei�er , 42

strhr, 44

string-literal , 14

strut-delaration, 35, 36, 45

strut-delarator-list , 36

sum_list, 42

summable, 41

Time_of_day, 46

translation unit, 4, 43

type, 4

type, 8, 17, 41, 43

type delaration, 12, 46

type de�nition, 43, 47

type names, 43

type quali�ers, 3, 4, 53

type spei�er, 4

type-lass, 17, 43

type-lass, 42, 42

type-delaration, 21, 35, 42, 45

type-delarator , 42, 42, 43

type-delarator-list , 42, 42

type-name, 20, 22, 41{43

type-name-list , 41, 41

type-parameter , 21, 41, 42, 42, 43

type-parameter-list , 36, 37, 40, 42, 42

type-quali�er , 39

type-spei�er , 35, 45

typedef, 8

unary-expression, 20, 20, 22, 30

unary-operator , 20, 20

unsafe onversions, 12, 12, 13, 17

usual arithmeti onversions, 11

valid interpretations, 13, 14, 16

visible, 3, 5, 8, 14

volatile, 4, 39

volatile-quali�ed, 3

Whatsit, 47

Revision: 1.82

