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Abstract

The programming language Cforall extends the C language with, among other things, over-

loading, parametric polymorphism, and functions that can return multiple values from a single

call. This thesis presents an outline of the first implementation of the core Cforall language.

An effective implementation of Cforall requires complete support for new language constructs

while preserving the behaviour and efficiency of existing C programs. Analyzing the meaning of

Cforall programs requires significantly more sophisticated techniques than are necessary for C

programs; existing techniques for the analysis of overloading and polymorphism are adapted and

extended to apply to Cforall. Three strategies for generating code for polymorphic programs are

compared, using plain C as an intermediate representation. Finally, a realistic Cforall program is

presented and characteristics of the generated C code are examined.
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Chapter 1

Introduction

This thesis describes an implementation of the programming language Cforall, an extension of

the C language [19] that features overloading and parametric polymorphism. This implemen-

tation includes algorithms to analyze Cforall programs and to convert these programs into an

executable form.

Cforall was first described by Glen Ditchfield [11], who also wrote the definitive specification

of the language [12]. However, this document has not yet been updated to reflect some clarifica-

tions and changes that have been made to the language as a result of the work done in this thesis.

Furthermore, the Cforall language has been extended in other ways since Ditchfield’s thesis; in

particular, it now incorporates many of the features of the KWC project [6, 35].

1.1 The Philosophy of Cforall

The C language was originally designed by Dennis Ritchie in the period from 1969–1973 as

an implementation language for the UNIX operating system [29]. In the ensuing years it has

become as notable for its deficiencies as for its merits — its lack of high-level abstraction mech-

anisms, reliance on error-prone pointer manipulations, and cryptic syntax being some of the

most common complaints. Notwithstanding these faults, it has become one of the pre-eminent

implementation languages for computer systems and applications, and much of its competition

consists of the languages C++ and Java, which are themselves attempts to improve upon, rather

than replace, the syntax and semantics of C.

1



2 CHAPTER 1. INTRODUCTION

While its many faults may make improving the C language seem like an easy task, the popu-

larity and versatility of C makes any attempt fraught with controversy. The C language has been

used for a wide variety of tasks, from the largest applications to the smallest embedded systems,

from computationally-intense mathematical programming to time-critical control systems. C has

proven itself versatile enough to support these varied application domains largely because of its

simplicity, efficiency, and portability. Any proposed improvements will be judged by these same

standards.

Preserving the characteristics that have made C a success imposes important constraints on

both the design and the implementation of extensions. This thesis describes the implementation

of a number of extensions; these implementations have been guided by the following principles:

� Standard C code must have the same behaviour when translated by a Cforall compiler as

when translated by a C compiler. This condition is crucial.

� Standard C code must not be penalized, either in execution speed or executable code size,

when translated by a Cforall compiler as compared to its translation by a C compiler.

� Cforall code must be portable to at least as many computer systems as C code.

� Subject to any limitations imposed by the first three principles, the translation of code using

Cforall extensions must be done in the most efficient way possible, in terms of execution

speed and executable code size.

This thesis addresses portability concerns by describing a translation of Cforall constructs to

C – the translated code can then be compiled and optimized on any system with a C compiler.

Unfortunately, it is not possible to translate all Cforall constructs into ISO Standard C while still

preserving the performance and behaviour of existing code, but the extensions to Standard C nec-

essary to support Cforall are themselves portable and widely-implemented. A translation system

also makes it easier to judge the performance of the system according to the first and second

principles: the translation of a standard C program should be essentially the same program. The

limited access to the underlying computer available through a high-level language may, however,

prevent some optimizations that would be possible with a full compiler.



1.2. CHARACTERISTICS OF THE CFORALL LANGUAGE 3

1.2 Characteristics of the Cforall Language

Cforall extends the C language in many ways. This thesis deals only with a few of the major

extensions, and the interactions among them.

1.2.1 Overloading

The basic principle of overloading is that many different entities (functions or data objects) can

be defined with the same name in the same program without one definition hiding the others.

Overload resolution is the process by which the use of an overloaded name is matched with one

particular definition of that name, based on the context in which the name is used. In the sim-

plest overloading systems, multiple functions can be defined with the same name but a different

number of parameters, or with different parameter types. When the compiler encounters a call

to a function with an overloaded name, it uses the number and types of the parameters to deter-

mine the appropriate function to invoke. Overloading of this form is found in the Java and C++

languages. Since the number and types of the parameters must uniquely determine the proper

overload, this approach allows for a simple overload resolution algorithm.

In Cforall, functions that overload the same name may be defined with identical parameter

lists but a different number of return values, or returning values of different types. To select the

proper function for a call, the compiler must take into account the context in which the result

of an expression is used, as well as the types of its parameters. Overloads can still be resolved

efficiently, but it requires a more sophisticated algorithm for expression analysis, such as the

ones devised by Cormack [8] or Baker [3]. Once an algorithm is in place to resolve return-value

overloading, it is straightforward to extend the system even further. Variables as well as functions

can have overloaded names; that is, multiple variables with the same name but different types can

be accessible within the same scope, with the appropriate variable selected based on the context

in which the name is used. Finally, the constants 0 and 1 can be overloaded (because of their

special meaning to the C language and in many application domains).

Operator Overloading

Cforall also allows user-defined overloading of built-in operators, such as arithmetic and re-

lational operators. These are specified by defining functions using special names. When the
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compiler attempts to determine the particular operation to use to implement an expression, it im-

plicitly re-writes expressions involving operators into a corresponding function-call form, e.g.:

� ?-? is the name of the function that implements the binary subtraction operator. That is, an

expression of the form a - b, where a and b are expressions, is re-written as ?-?(a,b).

� -? is the name of the function that implements the unary negation operator. An expression

of the form -a is re-written as -?(a).

� ?() is the name of the function that implements the function call operator. An expression

of the form a(b,c,d) is re-written as ?()(a,b,c,d).

Certain operators cannot be re-written in function-call form, since they require semantics that

are different from that of a function call. These exceptions are:

� The cast operator, (int)a

� The sizeof operator, sizeof a and sizeof(int)

� The address operator, &a

� The short-circuit logical operators, a && b and c || d

� The conditional operator, a ? b : c

� The sequence (comma) operator, a, b, c

� The member selection operators, a.b and a->b

1.2.2 Polymorphism

One of Cforall’s major enhancements to C is the ability to write functions using parametric

polymorphism. Parametric polymorphism allows the code of a function to be independent of

the types of the function parameters, enabling a single function to be used for many different

argument types. As an example, consider two C functions:
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int int_identity( int x ) {

return x;

}

double double_identity( double x ) {

return x;

}

where the code in each case is the same, but the types of the parameter and return value are dif-

ferent. The same code could apply to any type, but it becomes the programmer’s responsibility

to repeat the code explicitly for each type (and maintain them separately in the future). In con-

trast, this potentially infinite set of C functions can be represented by one polymorphic Cforall

function:

forall( type T )

T identity( T x ) {

return x;

}

Here, the function’s dependence on its argument type has been removed by giving the function

another parameter, the type parameter T. The set of possible values for T is the set of all types

known to the compiler. For a specific use of the identity function, the value of this type parameter

can be used by the compiler to determine if the argument to the function is well typed, and to

determine the type of the value returned. In practice it is not necessary to specify the values of

type parameters explicitly; they are inferred from the argument types. For example, given the

function call identity(1), the compiler can infer that the type int is the appropriate type

to use in place of T, whereas in the call identity("hello") the appropriate type would be

char*.

Kinds of Types

There are actually three kinds of type parameters in Cforall, corresponding to the three kinds of

types in C: object types, incomplete types, and function types. The object types are the set of all

non-function types in the language — including arithmetic types, pointers, arrays, unions, struc-

tures, and enumerations — where the size of the type is known. An incomplete type is a type that
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designates an object but lacks the information necessary to deduce the object’s size. In particular,

the type void, an array type with unspecified length, or a structure or union type with unspec-

ified members are all incomplete. A type that is incomplete may not be instantiated, nor can its

instances be manipulated or assigned, but pointers to objects of its type can exist.1 C places the

same restrictions on function types, but function and data pointers are mutually incompatible.

For this reason, there are three different kinds of type parameters. Type parameters designated

by the keyword type are restricted to complete object types, so polymorphic functions can ac-

cept and return parameters of these types, instantiate new objects, and assign from one object

to another. The keyword dtype designates type parameters that can represent any object or

incomplete type, so a polymorphic function can only accept and return pointers to these types

and instantiation and assignment are forbidden. The keyword ftype designates function type

parameters, which are incompatible with other types and must be passed and returned through

pointers.

Assertions

The utility of type parameters is limited by their universality. It is difficult to write useful poly-

morphic functions, since the code for such a function cannot assume the existence of any proper-

ties or functions related to values of a parameterized type (except that objects of types designated

by the keyword type can be instantiated and assigned). It is possible to pass relevant operations

along with function parameters, but this style of programming becomes cumbersome in large

systems. As an example, here is a function that can be used to compute the square of its input:

forall( type T )

T square( T x, T (*multiply_T)( T, T ) ) {

return multiply_T( x, x );

}

The major disadvantage with this style of programming is that a user of square must supply not

only the number to be squared but also a multiplication operation; in general, the programmer

may have to supply a large number of operations at every call to a polymorphic function, and

the set of operations to be passed depends on implementation details of the function. To avoid

1Presumably these pointers point to objects instantiated in another part of the program, where the type is com-

plete.
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these problems, Cforall allows the specification of a set of properties or operations that must be

available for a type parameter. As a result, the polymorphic function is reduced in its generality,

but it can then make use of this additional information about the type to perform useful work.

For example, in

forall( type T | { T ?*?( T, T ); } )

T square( T x ) {

return x * x;

}

the body of the square function does not know the precise type of its parameter, but it can

assume that there exists a multiplication operation that can be applied to a pair of values of this

type, and it can use that operation to compute its result. As with type parameters, the compiler

can automatically select the appropriate definition of the overloaded name for a particular com-

bination of type parameters and pass that function as an implicit argument. Thus, a compiler

interpreting the call square(3) would infer that the type parameter T is int, and that the integer

multiplication operation must also be provided. In the call square(1.0), the compiler selects

the type double for T and multiplication on doubles as the operation. This selection is made

based on the operations in scope at the point where the function call occurs.

This system of polymorphism has two properties that make it useful for large scale software

development. From the perspective of a user of square, the interface betrays no hint of poly-

morphism — the function is called in exactly the same way as a monomorphic square function

would be called. This enables the writer of square to substitute a more general function with-

out breaking existing code. Secondly, the generic square can be used with an infinite family of

types, including types that were unknown at the time square was written. Since Cforall sup-

ports general overloading, it is possible to implement a multiplication operation for the new type

and have the compiler use this new operation as the assertion argument to square when applied

to values of the new type. In this way, Cforall embodies the principles of generalizabilityand

incrementality, as described by Cormack and Wright [9], enabling both the implementation and

the uses of an abstraction to evolve independently.
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Contexts

Cforall adds one more mechanism to this form of polymorphism: the notion of a context, a way

of encapsulating a set of assertion parameters in order to describe the abstract properties of types

at a higher level, e.g.:

context group( type T ) {

T ?+?( T, T ); // binary operation

T -?( T ); // inverse operation

T 0; // identity element

};

A context can be used to constrain a type parameter in a forall clause. Semantically, stating

that a type parameter conforms to the context group is the same as stating that the operations

specified by that context are assertion parameters in the manner described above. Contexts can

constrain multiple type parameters simultaneously, and they can extend other contexts, e.g.:

context ring( type T | group( T ) ) {

T ?*?( T, T ); // another operation

};

Here, a type constrained by context ring must support the * operation specified by the context

definition, as well as the operations of context group.

Specialization

Specialization refers to the conversion of a polymorphic function or object into one that is less

polymorphic, or not polymorphic at all. To promote generalizability, Cforall allows for special-

ization to happen implicitly — that is, any polymorphic entity can be used where a less poly-

morphic entity is required, provided that there exists a set of actual types and inferred parameters

that can satisfy the assertions of the specialization candidate and give it a type compatible with

the required type, e.g.:

void f( int (*p)( int, int ) );

forall( type U, type V | { U ?+?( U, V ); } ) U g( U, V ) );

f( g );
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Here, the polymorphic function g is used in a place where a monomorphic function is needed,

since a substitution of int for U and V gives the two functions compatible types. However, this

is a legitimate specialization only if a + operation can be found in the current scope. Integer

addition is a predefined operation, so it is guaranteed to exist. It is the responsibility of the

Cforall compiler to infer this set of type and assertion arguments, which it can do at the same

time that it infers other arguments.

1.2.3 Multiple Return Values

In Cforall, functions can return more than one result in the same way that functions in C can

return either no results or one result. And, just as the result of a C function can become the ar-

gument of another function call (function composition), the multiple results of a Cforall function

can provide multiple arguments for another function call, e.g.:

[ int, double ] f( void ); // returns 2 values

void g( int, double );

void h() {

g( f() ); // both arguments provided by call to f

}

Although the topic of expression analysis and code generation for functions returning mul-

tiple values has been discussed previously [35], the combination of multiple return values with

overloaded names leads to significant new complexity in the analysis of expressions that has not

been previously discussed.

1.3 Related Work

1.3.1 Overloading

The basic technique of overloaded names has a long history in programming languages, dating

back to PL/I and Algol-68 and implemented in many languages including C++, Java, and Ada.

In the first four of these languages, multiple functions can be defined with the same name but

different number and types of parameters. The language Ada [17] broke new ground in allowing
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functions with the same name to be defined with identical parameter types but different return

types. Ada also allows the names of enumeration constants to be overloaded, but not variables

or literal constants (such as Cforall’s 0 and 1).

The language Haskell supports overloading as well, but in a highly constrained form. There

is a discussion of the relationship between Cforall and Haskell in the polymorphism section.

1.3.2 Multiple Return Values

While many languages have some facility to return multiple values from a single function in-

vocation, such as tuples in ML, the semantics of function composition in Cforall is unique. In

ML, a tuple result can only be passed to a function that expects a tuple of the same dimension

as an argument. In Cforall, multiple results are combined together so that a function can receive

more than one of its arguments from a single argument expression. While this kind of implicit

flattening of recursive lists is not unknown (for instance, the lists of the rc shell language [13]),

its effects on a statically-typed language have not otherwise been explored.

1.3.3 Polymorphism

Parametric polymorphism has been implemented in many languages, including both research-

oriented languages and those used more generally. This section does not attempt to be a com-

prehensive summary of all of these languages, but rather it focuses on those languages whose

approaches to polymorphism most strongly influenced or most closely resemble the Cforall ap-

proach. Other languages that have attempted to combine parametric polymorphism with the

C language include C++ [18] and Cyclone [22]. As well, parametric polymorphism has been

proposed in a number of different forms as an extension to the Java language.

The type system of Cforall is based on � �

� [11], an extension of System F [28] that supports

contexts and inferred parameters in addition to second-order lambda calculus. The problem of

expression analysis for untyped terms in System F is known to be undecidable [38]. Cforall

sidesteps this problem by requiring all terms to be explicitly typed; the only type inference re-

quired is for type parameters.
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ML

ML [26] was the first language to support parametric polymorphism. Like Cforall, it supports

universal type parameters, but not the use of assertions and contexts to constrain type arguments.

Instead, it supports polymorphic data types, which can be used to constrain the structureof

arguments, rather than the operations available. It is possible, for instance, to define a list type

that is parameterized on the type of list element, and then to write a function that operates on

lists with any element type. That function can manipulate the list (for instance, by adding or

removing elements), but not the elements contained in it (since it can assume nothing about the

element type). An example of this uses ML’s pre-defined polymorphic list type:

fun concatenate [] list2 = list2

| concatenate (elem::rest) list2 = elem::(concatenate rest list2);

This function has type fn : ’a list -> ’a list -> ’a list, a function taking two lists

having any type of element (so long as both lists have the same element type), and returning a

list of this element type. The output list is the concatenation of the two input lists, computed

recursively.

The concept of parameterized data types, and their use to constrain polymorphic arguments,

is orthogonal to the use of assertions in Cforall, and could be a reasonable and useful extension

to the language.

ML also places some restrictions on the use of polymorphic functions that are not present in

Cforall. In particular, polymorphic functions cannot be passed as arguments to other functions.

The following Cforall function has no equivalent in ML:

void f( forall( type T ) void (*op)( T ), int a, char *b ) {

op( a );

op( b );

}

Here, a polymorphic function (op) is passed to the function f; this operation is applied to two

values of unrelated type. This restriction is a result of ML’s use of type inference; it has been

proven that allowing polymorphic parameters makes ML-style type inference an undecidable

problem [23].
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Ada

Ada, like Cforall, allows the definition of polymorphic functions with assertion parameters. Un-

like Cforall, Ada does not allow these polymorphic functions to be used as if they were monomor-

phic functions: the programmer must instantiate them, specifying type arguments explicitly.

Cormack and Wright have shown that the need to explicitly instantiate polymorphic functions

imposes a significant burden on the programmer [9], and Shen and Cormack later proposed an

extension to Ada that allows implicit instantiation [33].

Haskell

The Haskell language attempts to combine ML-style polymorphism, polymorphic data types,

and type inference with the notion of type classes, collections of overloadable methods that

correspond in intent to contexts in Cforall. The example contexts of Section 1 can be written in

Haskell as follows:

class Group t where

(+++) :: t -> t -> t

neg :: t -> t

zero :: t

class (Group t) => Ring t where

(***) :: t -> t -> t

Unlike Cforall, Haskell requires an explicit association between types and their classes that

specifies the implementation of operations. To be able to use the built-in Int type with these

classes, instance declarations must be provided:

instance Group Int where

(+++) = (+)

neg = negate

zero = 0

instance Ring Int where

(***) = (*)

These associations determine the functions that are assertion arguments for particular com-

binations of class and type, in contrast to Cforall where the assertion arguments are selected at
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function call sites based upon the set of operations in scope at that point. Haskell also severely

restricts the use of overloading: an overloaded name can only be associated with a single class,

and methods with overloaded names can only be defined as part of instance declarations. These

restrictions prevent the use of the traditional symbols +, - and * to represent the group and ring

operations, since these operators are already overloaded as part of the predefined Num class that

defines operations for arithmetic types.2 Section 2.4 describes the restrictions on overloading in

Haskell in more detail.

ForceOne and Sea

The style of polymorphism in Cforall gets its most direct inspiration from the research language

ForceOne [39]. ForceOne pioneered polymorphic functions with inferred parameters that, as in

Cforall but not Ada, can be used without requiring the user to explicitly instantiate them. It lacks

the idea of a context as a higher-level abstraction of inferred parameters, but in other respects

embodies the same style of polymorphism as Cforall.

The programming language Sea [40] combined ForceOne-style polymorphism with the C

language, adding a number of other features as well including ML-style polymorphic data and

garbage collection. The most striking difference between Sea and Cforall from an implemen-

tation perspective is in their respective approaches to code generation, which is discussed in

Chapter 3.

2Indeed, ++ and ** are also used by the standard library for list concatenation and exponentiation, respectively.



Chapter 2

Expression Analysis

Expression analysis refers to determining, for each expression in a program, whether that expres-

sion is valid and what the expression means — that is, what operations are required in order to

implement the computation specified by the expression.

2.1 Expression Analysis in Cforall

At the same time that a Cforall compiler must permit the use of the language’s advanced features,

it must still assign the same meaning to C expressions as a C compiler would, both for expres-

sions involving intrinsic operations and for calls to user-defined functions. This requirement

means that a Cforall compiler must implement all of the ad-hoc rules that govern the treatment

of the arguments of intrinsic functions, as well as the more general rules that apply to the argu-

ments of function calls.

One goal of Cforall is to unify the treatment of intrinsic and user-defined operations. In

Cforall, it is possible to define new functions that are invoked using arithmetic operators (for

instance, to define a new operator + that applies to objects of a new type). As well, the set of

rules that resolve overloading implement the same set of implicit conversions that are applied

to the arguments of intrinsic arithmetic operations in C. These capabilities make it possible to

provide type signatures for many of C’s intrinsic operations in Cforall and to allow the expression

analysis process to ignore the distinction between user-defined operations and these intrinsic

operations.

14
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2.1.1 Overloading

Unlike in C, multiple functions or objects with the same name can be accessible at the same

point in the program and the compiler must choose from among them based upon the context

in which the name is used: the types of subexpressions (if any), and the type expected by any

expression using the result. Overloading can result in a large number of possibilities, since the

subexpressions and the containing expression could involve overloaded names as well.

An overload resolution algorithm takes as input an untyped expression tree and produces

as output a set of typed expression trees, each one representing a way of matching names in

the expression with the declarations of objects or functions having those names. The size of

this output set reflects how successful the algorithm is at matching names with declarations in

such a way as to make the entire expression well-typed. If the output set is empty, there is

no combination of matches that is well-typed; this corresponds to a failure of type-checking in

a compiler for a language without overloading. A single result in the output set represents a

successful resolution. More than one result means that the expression is ambiguous: there are

multiple ways of matching names and declarations in a well-typed way, and no way to choose

among the alternatives, e.g.:

void f( int );

void f( char* );

int g();

char* g();

f( g() );

In this example, there are two well-typed interpretations of the expression: the first f could be

applied to the result of the first g, or the second f could be applied to the result of the second g.

In Cforall, this program is ambiguous since there is no reason to prefer one interpretation over

another.

Ranking Conversions

Given the large number of implicit conversions that can be applied to arguments in C and Cforall,

there is a great potential for ambiguity. Even for expressions with more than one valid interpreta-

tion, however, some interpretations may be preferred to other ones. In particular, interpretations



16 CHAPTER 2. EXPRESSION ANALYSIS

that require fewer implicit conversions are generally preferred to those requiring more conver-

sions. For this reason, the following example is allowed despite a possible ambiguity:

void f( int );

void f( double );

int g();

f( g() );

There are two well-typed interpretations of this expression: the result of the call to g is a valid

input to either version of f. For the variant of f accepting a double, however, the result of g must

undergo a conversion, so the interpretation of the expression involving the first f is preferred

since it does not require conversion.

The allowed conversions have been listed by Ditchfield [12], together with a formula that

defines which conversions are preferred over others. Conversions that decrease the range or

precision of a type (“unsafe” or “narrowing” conversions) are the least desirable. Replacing

a type parameter with a type argument is preferred to an unsafe conversion; the fewer type

parameters that need replacement the better. Conversions that increase the range or precision of

the type (“safe” or “widening” conversions) are the most preferred; these are ranked according

to the amount of widening involved. This formula has been devised to be as general as possible

while still implementing the classic C behaviour for conversions and promotions.

void f( char ); // 1

forall( type T ) void f( T ); // 2

void f( double ); // 3

void f( int ); // 4

int g();

f( g() ); // apply f to int value

In this example, applying the first f to an int requires an unsafe conversion, since the range of

char is less than the range of int. Applying the second f requires the replacement of the type

parameter T with the type int, so this alternative is preferred to the first. Applying the third f

requires only a widening conversion, since the range of double is greater than that of int, so

this alternative is preferred over either of the first two. The alternative involving the fourth f is

the best, however, since it requires no conversion at all.
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The total cost of a set of independent conversions (such as the conversions of a set of argu-

ment types to the corresponding parameter types) can be expressed as a triple, containing the

number of unsafe conversions in the set, the total number of type parameters replaced, and the

total cost of the safe conversions. When comparing two sets of conversions, the one involving

the least number of unsafe conversions is preferred; if the sets involve the same number of unsafe

conversions, the set involving replacement of the fewest type parameters is preferred; should the

sets involve the same number of unsafe conversions and type parameters, the set having the least

safe conversion cost is preferred.

2.1.2 Multiple Return Values

The fact that functions may return more than one value adds significant complexity to expression

analysis since there is no fixed correspondence between formal and actual parameters, e.g.:

void f( int, int, int, int );

int g(); // return one int

[int, int] g(); // return two ints

[int, int, int] g(); // return three ints

f( g(), g() );

In this case, there are three different interpretations of the expression; in each case, the two calls

to g account for different numbers of arguments, and hence correspond to different parameters

of f.

The effect of this breakdown in the traditional correspondence of parameters and arguments

is pervasive, since this correspondence is crucial throughout expression analysis: both overload

resolution and type parameter inference operate by comparing the types of corresponding pa-

rameters and arguments. The classic algorithms to solve these problems assume implicitly that

arguments can be considered independently. In Cforall, the consideration of a particular argu-

ment depends on how the overloading of other arguments are resolved.

2.1.3 Polymorphism

In order to validate and implement the use of polymorphism in a function call expression, the

compiler must infer a type argument for each type parameter and determine an appropriate set of
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arguments to satisfy all assertions. Since the inference depends on the type of the function being

called as well as the types of the arguments to the function, it must be repeated for each way in

which the overloading of sub-expressions can be resolved.

Type parameters are inferred by unifying the types of parameters with the types of their

corresponding arguments, in the manner of Robinson [30]. The unification algorithm takes two

types as input and produces a substitution, a set of pairs of type parameters and type arguments

that can be applied to a type to replace type parameters with their corresponding arguments.

More specifically, the output of the unification algorithm is a substitution that replaces type

parameters in such a way as to make the two types the same; the algorithm returns failure if no

such substitution exists. For example, the types

forall( type T ) T (*)( T, int )

and

forall( type U ) double (*)( double, U )

can be unified by the substitution � (T, double), (U, int) �.

The unification algorithm presented here is similar to the algorithm found in Aho et al. [1],

although it uses a different representation for equivalences among type parameters. Instead of

annotating the type graphs directly, this algorithm maintains a separate set of equivalence classes

of type parameters.1 Each equivalence class may in addition have a representative type, which is

the most specific type that is known to be a valid substitution for the type parameters in the class.

This description refers to an equivalence class of type parameters with a possible representative

type as a binding. Since many pairs of types may need to be unified by the same substitution,

this algorithm takes as an additional input a set of bindings that is augmented to produce a set of

bindings as a result. At the end of a series of unifications, this set of bindings can be converted

into a substitution using a simple algorithm that is described later.

Checking Specializations

In order to check the types of expressions involving implicit specializations, it is necessary to

precisely define the necessary conditions under which specialization can occur. For two types �

1Care must be taken to ensure that distinct type parameters in an expression that happen to have the same name

are treated distinctly. The translator renames each type parameter uniquely in order to avoid confusion.
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and � , define � to be a subtypeof � (denoted � � � ) if any of the following conditions are true:

� � and � are the same type

� � is of the form

forall�type ��� � � � �type ��� �
�

for � � �, � is of the form

forall�type ��� � � � �type ��� �
�

for 	 � � (that is, � � could be a type with no forall clause at the outer level), and there

is some substitution for the type parameters �� � � � �� that, when applied to � �, makes the

resulting type a subtype of � �

� � and � are both pointer types to � � and � �, respectively, where �� and � � are both function

types and �� � � � 2

� � is a function type with � parameters and 	 return types and � is a function type with


 parameters and � return types, � � 
, 	 � �, the type of each return value of � is a

subtype of the corresponding return value of � , and the type of each parameter of � is a

subtype of the corresponding parameter of �.

An implicit specialization of a type � to a type � is only possible if � � � (of course, if

� � � the types are compatible and there is no need of specialization). Expression analysis

must determine, for each pair of argument and parameter types, whether the argument type is a

subtype of the parameter type. The basic unification algorithm of Aho et al. [1] can be extended

to find the substitution referred to in the second rule above.

Some examples demonstrate how the subtyping relationship correctly defines the set of well-

typed specializations.

2This rule constrains the subtype relation in a way that is arguably artificial — it would be natural to extend it

to all pointer types, and to array types as well. In this way, a function expecting an array of function pointers could

be passed an array of pointers to more general functions. Unfortunately, it is not possible to implement this with

sufficient efficiency to satisfy the basic design goals of the translator, for reasons discussed in Section 3.2.2.
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void f( forall( type T ) T (*p)( T, T ) );

forall( type U, type V ) U g( U, V ) );

f( g );

In this case, the parameter p specifies that a function is required that is polymorphic in one

type parameter. The type of the argument function g is polymorphic in two parameters, but the

substitution � (U, T), (V, T) � unifies its type with the type pointed to by the parameter p, so the

type of g after its decay to a pointer is a subtype of the type of p and valid specialization can

be created. Considering an implementation of the function f provides an intuition that this is

well-typed:

void f( forall( type T ) T (*p)( T, T ) )

{

p( "Hello", "Goodbye" );

}

In this example, p is applied to two arguments, both of type char*. The definition of p constrains

its two arguments to have the same type, even though the actual function being called (g) can

accept arguments of different types.

void f( forall( type T ) T (*p)( T, T ) );

int h( int, int );

f( h );

Here, there is no substitution that could be applied to the type of h to make its type match the

type pointed to by p, so allowing this example would break strong typing. To see why, consider

again the implementation of f — it passes objects of type char* to its argument, but the actual

function being called (h) accepts only integers. Since the implementation of the function f is

entitled to depend on as many degrees of polymorphism in the function p as is specified by its

type, the type of the corresponding argument must be at least as polymorphic.

void i( void (*r)( forall( type T ) T (*p)( T, T ) ) );

void j( forall( type U, type V ) U (*q)( U, V ) );

i( j );
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According to the final rule in the definition of the subtyping relationship, to determine if the type

of j is a subtype of the type pointed to by r it is necessary to determine if the type of p is a

subtype of the type of q. Since there can be no substitution that replaces T with U in one case and

with V in another, the subtype relation does not hold and so this example is not validly-typed.

To understand why this example would break strong typing, it is again helpful to consider the

implementation of the called function, in this case i:

void j( void (*r)( forall( type T ) T (*p)( T, T ) ) ) {

// some function that is polymorphic in a single variable

forall( type T ) T (*s)( T, T );

r( s );

}

Here, the implementation passes a function that is polymorphic in a single variable to r, but the

parameter r is bound to the function argument j, which expects an argument that is polymorphic

in two type parameters. It is possible that j will apply the function it receives to arguments of

two different types (corresponding to the type parameters U and V), but the function s that it

receives requires that its arguments have the same type, so the strong typing of the language has

been violated. In contrast, the following example is valid:

void i( void (*r)( forall( type T ) T (*p)( T, T ) ) );

void k( int (*q)( int, int ) );

i( k );

Here, the substitution � (T, int) � allows the type of p to match the type of q, so the former

is a subtype of the latter and hence the type of k is a subtype of the type of r and the function

application is well-typed.

Open and Closed Parameters

To handle the subtype relationship properly, I have extended the basic unification algorithm to

keep track of whether type parameters are eligible for substitution or not; the former are open

type parameters while the latter are closed. A closed type parameter unifies only with other

occurrences of the same type parameter. As a result, the equivalence classes of type parameters
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only contain open type parameters (although the representative type for an equivalence class may

be a closed type parameter).

The algorithm categorizes type parameters into these two classes depending on how many

function types enclose a parameter’s forall clause, e.g.:

void f( forall( type T ) T (*p)( T, T ) );

forall( type U, type V ) U g( U, V ) );

f( g );

In this example, T is enclosed within a single function type and so is closed; U and V are outside of

any function type and so they are open. This ensures that no substitution replaces the parameter

T, but permits both U and V to be bound (both to T, in this case).

Inexact Unification

The unification algorithms referenced previously are exactin the sense that the substitution pro-

duced must make the two input types the same; if no such substitution exists, the unification fails.

In Cforall there are cases where a more permissive unification is desirable, e.g.:

forall( type T ) T f( T, T );

int x;

double y;

f( x, y );

The type parameter T must unify both int and double; this cannot be done exactly, since there

is no substitution that can make the types int and double the same. However, by choosing

the type double as a replacement for T, both argument types can be safely converted to the

types of the corresponding parameters. This property may hold for other types as well (the type

long double, for instance), but double is the “narrowest” type with this property — that is,

double can be safely converted to any other such type, whereas no other such type can be safely

converted to double. Define the narrowest type reachable by safe conversion from two types

� and � to be the common typeof � and � . Often the common type is either � or � , as in the
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case of int and double, but it is possible that the common type would be a third type.3 It

is conceivable that there could be more than one type satisfying the common type property for

some pair of types, but given the set of types and conversions in Cforall it is possible to verify

that the common type of two types is unique when it exists.

Inexact unification is not appropriate in every situation:

forall( type T ) T f( T*, T );

int *x;

double y;

f( x, y );

Here, T is first bound to int, and inexact unification allows this to be widened to double.

Widening the base type of a pointer does not produce a convertible type, however — there is no

way to implicitly convert int* to double*. This restriction holds for the base types of arrays as

well, and for the parameter and return types of function types. For this reason, no types within

these type constructors are allowed to be widened by inexact unification, and any representative

types chosen from types within type constructors (such as the representative type int for T in

the example) must be flagged to prevent them from being widened by later inexact unifications.

Given a basic unification algorithm (presented in the next section), two types � and � , an

input substitution � and two booleans �� and �� , I define an algorithm for inexact unification

��	
� 	�������� ���� ��� �� � as follows. If � and � can be unified by the basic unification

algorithm, the result of the inexact unification is the substitution resulting from that unification.

If basic unification fails but � and � have a common type, then the result depends on �� and

�� , which indicate whether it is permissible to accept a common type that is wider than � or � ,

respectively. If �� is false, the unification can only succeed if the common type is �; similarly,

if �� is false, the unification can only succeed if the common type is � . If the choice of common

type is acceptable given �� and �� , the result of the inexact unification is the input substitution.

If basic unification fails and there is no common type, the inexact unification fails.

3On a typical 32-bit architecture, safe conversions are not defined between the types long int and unsigned

int, but they can both be safely converted to the type long unsigned int.
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Basic Unification

If � and � are arbitrary types and � is a (possibly empty) set of bindings, then ��	
���� ���� is

calculated as follows:

� If � and � are both pointer types to elements of types � � and � �, respectively, then the result

is ��	
����� � ����.

� If � is an array of � elements of type ��, and � is an array of 	 elements of type � �, then if

� �� 	 the unification fails; otherwise, the result is ��	
��� �� � ����.

� If � is a function type with � parameters and 	 return types and � is a function type with


 parameters and � return types, then if � �� 
 or 	 �� � the unification fails; otherwise,

the result is the result of the successive unification of corresponding return values and

parameters, with � used as the input set of bindings for the first sub-unification, the result

set of bindings of each sub-unification used as the input set of bindings for the next sub-

unification, and the result set of bindings of the last sub-unification used as the result of

the unification as a whole. If any sub-unification fails, the unification as a whole fails.

� If � and � are both arithmetic, structure, union, or enumerated types, then if they are

different types the unification fails; otherwise the result is �.

� If � is a type defined using typedef to be a name for some other type � �, then the result

is ��	
����� ����; a similar rule applies for � .

� If � and � are closed type parameters, then if they are different types the unification fails;

otherwise the result is �.

� If � and � are open type parameters in the same equivalence class, the result is �.

� If � is an open type parameter and � is not an open type parameter, then:

– If � is bound to a representative type , then if � occurs in , the unification fails;

otherwise the result is ��	
� 	������� ���� ��� ���, where �� is false if and only

if widening of  has been flagged as prohibited and �� is true if and only if this

unification is not a recursive unification within a type constructor.
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– If � is not bound to a representative type then � becomes its representative type.

The widening of the resulting representative type for � is flagged as prohibited if a previous

representative type for � was so flagged, or if this unification is a recursive unification

within a type constructor.

A similar rule applies when � is an open type parameter but � is not.

� If � and � are both open type parameters (and are not in the same equivalence class) then

the result depends on the state of �. A new set of bindings �� is formed that contains the

same bindings as � except that bindings involving � and � are removed and a new binding

is added whose set of type parameters consists of the union of the equivalence classes of �

and � in �.

– If � is bound to the representative type  in � and � is bound to the representative

type � in �, then if � occurs in  or � occurs in � the unification fails; otherwise

the resulting substitution is the result of ��	
� 	������� ��� �� ��� ���, where �� is

false if and only if the widening of  is flagged as prohibited, and �� is false if and

only if the widening of � is flagged as prohibited. If the inexact unification succeeds,

the new binding takes the common type of  and � as its representative type. The

widening of the resulting representative type is flagged as prohibited if either  or �

is so flagged, or if this unification is a recursive unification within a type constructor.

– If � is bound to a representative type  and � is not, then if � occurs in  the unifica-

tion fails; otherwise the new set of type parameters is bound to . The widening of

the representative type of the new set is flagged as prohibited if  is so flagged or if

this unification is a recursive unification within a type constructor. The result is � �. A

similar rule applies when � is bound to a representative type and � is not.

– If neither is bound to a representative type, the new set of type parameters is not

bound to a representative type. The result is ��.

� If the two types are not covered by any of the above-mentioned cases, then the unification

fails.
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This algorithm is almost an exact unification algorithm in the style of Robinson, except that

it calls upon inexact unification to unify the representative types of type parameter equivalence

classes.

A type parameter � occursin the type  if �, or any equivalent type parameter, plays any

role in defining  — for instance, if  is a pointer to � or a function taking a parameter of type

parameter � , where � occurs in the representative type of � . The intent of this “occurs check” is

to prevent infinitely recursive types from forming, which might otherwise happen in a case such

as:

forall( type T ) void f( void (*)( T, T* ) );

forall( type U ) void g( U*, U );

f( g );

Here, the type T is inferred to be a pointer to type U, which in turn is inferred to be a pointer to

type T. This second inference results in both types being infinitely recursive, except that it fails

the occurs check — U cannot be unified with T*, since U occurs in the representative type of T.

Since recursive types cannot form, each instance of the occurs check terminates.

The basic procedure to convert a set of bindings into a substitution is to create a pair for each

type parameter that replaces it with its representative type. At the end of the algorithm, however,

a type parameter may have a representative type that involves other type parameters, each with

its own representative type. These references to type parameters must be recursively expanded

in order to produce an appropriate substitution. Once again, since the occurs check prevents

infinitely recursive types from forming, this recursive expansion terminates. If any binding has

no representative type, the expression is invalid. This could happen in a case such as:

forall( type T ) void f( void (*)( T ) );

forall( type U ) void g( U );

f( g );

Here, T and U are open type parameters that are only unified with each other.

Assertions

Assertion arguments are found by searching the accessible scopes for definitions corresponding

to assertion names, and choosing the ones whose types correspond most closely to the asser-
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tion types. This involves both overload resolution and type parameter inference, so it can be

implemented as a special case of the more general expression resolution algorithm.

Since the use of a context to constrain type parameters is the same as specifying each of the

context members separately as assertions (with an appropriate substitution of type parameters),

the compiler can replace context constraints with ordinary assertions and treat those assertions

uniformly along with any others. For instance, given the context definition

context group( type T ) {

T ?+?( T, T ); // binary operation

T -?( T ); // inverse operation

T 0; // identity element

};

the forall declaration

forall( type U | group( U ) )

is replaced with

forall( type U | { U ?+?( U, U ); U -?( U ); U 0; } )

Note that occurrences of the formal type parameter T in the context group have been replaced

by instances of the actual type parameter U in the rewritten declaration.

The set of assertions required by an expression is formed as the combined set of all assertions

from forall clauses that introduce open type parameters, for all types in the expression that are

unified as a part of type parameter inference. The set of declarations of functions and objects

that can be used to satisfy those assertions is the set of declarations that are lexically in scope

at the point in the program where the expression occurs, plus the combined set of all assertions

from forall clauses that introduce closed type parameters, for all types in the expression that

are unified as a part of type parameter inference. An example motivates this distinction:

void f( forall( type T | { T -?( T ); } ) T (*p)( T, T ) );

forall( type U, type V | { U -?( U ); V -?( V ); } ) U g( U, V ) );

f( g );
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Here the formal parameter p requires a function that can be applied to any type for which a

negation operation is available. The actual argument g is more general than f in the sense that its

two arguments may have different types, but each of those types must have a negation operation

available. Since U and V are open type parameters that become bound to the closed type parameter

T, this is equivalent to requiring that T have a negation operation defined. It is safe to pass g in

the place of p because the formal parameter type of p guarantees that the assertions of g are

satisfied when it is called.

The set of assertions considered is taken only from the forall clauses of types that actually

participate in unification. This restriction avoids problems in situations such as:

void f( forall( type T ) T id( T ) );

forall( type U | { U g( U ); } ) U f( U ) );

id( f );

Here there is no need to satisfy the assertion g of the function f; the function id cannot call or

specialize the function, so the assertion will never be needed.

2.2 Resolution Algorithm

The algorithm proposed here takes as its base the algorithm for overload resolution proposed

by Baker [3] for the Ada language. This algorithm by itself is insufficient, however; it must

be extended to take into account the use of polymorphic functions, functions returning multiple

values, and the implicit coercions available in the Cforall language.

Baker’s algorithm traverses expression trees from the bottom up. For each sub-expression,

it creates a set of expression trees that represent different interpretations of the sub-expression,

one for each type for which an unambiguous and well-typed combination of interpretations of its

sub-expressions can be found.

As described in section 1.2.1, most kinds of expressions are treated as function-call expres-

sions to facilitate the overloading of operators. Those operators that cannot be expressed as

function calls are treated by the algorithm as special cases; treatment of these expressions is

described in Section 2.2.5.

The analysis of a function call expression has four stages:
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� determine the possible interpretations for the sub-expression that designates the function

to be called, and the possible interpretations for the sub-expressions that compute the ar-

guments of the call

� for each combination of sub-expression interpretations, unify the parameter and argument

types

� determine the assertions that constrain the type parameters within the subexpressions

� choose from among valid interpretations of the function call expression by considering the

kinds of implicit conversions involved in each

The ultimate goal is to determine a single interpretation for the expression as a whole. The

compiler can then generate code for the expression that invokes the particular functions chosen,

with appropriate arguments corresponding to the assertions. There may be no type-consistent

interpretation of the expression. This situation can occur because of an attempt to call a function

when there is no available definition of a function by that name with compatible arguments;

or because there is a type parameter in the expression that remains unbound; or because some

subexpression has an assertion that cannot be satisfied. Any of these cases is an error, since the

compiler cannot generate any code. There may be more than one type-consistent interpretation

of the expression. This situation can occur because some function call sub-expression has more

than one possible function that is compatible with its parameters; or because some assertion has

more than one way of being satisfied. Any of these cases is an error as well: the expression is

ambiguous, since it has more than one possible meaning.

An interpretation, for the purposes of this algorithm, is a data structure consisting of a typed

expression tree, a set of bindings for type parameters in that expression tree, and a triple that

represents the total cost of conversions involved in that interpretation, as defined in Section 2.1.1.

2.2.1 Selection of Candidates

A function-call expression is composed of two parts: an expression that designates the function to

be invoked and a list of expressions whose values are the arguments to be passed to the function.

Since the algorithm traverses the expression tree from the bottom up, it first determines the set

of possible interpretations for each of these sub-expressions.
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forall( type T | { T ?*?( T, T ); } ) T square( T );

forall( type U | { U square( U ); } ) U f( U );

forall( type V ) V f( V* );

double f( double );

f( 7 );
Figure 2.1: Fragment of a Cforall program with an overloaded name

Candidate Bindings Assertions Needed

forall( type U ...) U f( U )

forall( type V ) V f( V* )

double f( double )

Figure 2.2: Result of candidate selection for the example in Figure 2.1

Once the set of interpretations of each sub-expression is determined, a set of candidate inter-

pretations for the function call expression as a whole is formed by taking every combination of

sub-expression interpretations. This potentially large set is winnowed down by later phases of

the algorithm.

The most natural interpretations of the expression designating the function to be invoked

are those that have function type4, but an interpretation with another type could represent an

invocation of a function that overloads the function-call operator. For this reason, a call of the

form a(b, c, d), for those interpretations of a that do not have a function type, is treated as if

it were a call of the form ?()(a, b, c, d) and candidate interpretations are generated as for

other function call expressions. This step is not performed recursively — that is, candidates are

only generated for interpretations of the expression ?() that have function type.

Figure 2.1 shows part of a Cforall program involving the use of the overloaded name f in a

function call. The expression 7 has only one interpretation, which has type int and involves no

conversions. The candidate selection phase for the expression f(7) chooses all of the possible

definitions of f, as shown in Figure 2.2; at this stage, no attempt has been made to determine

type parameter bindings or to satisfy any assertions.

4Technically pointer-to-function, because of the implicit conversion of function values into pointers.
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Candidate Bindings Assertions Needed

forall( type U ...) U f( U ) � (U, int) � int square( int )

double f( double )

Figure 2.3: Result of type parameter inference for the example in Figure 2.1

Candidate Bindings Assertions Needed

forall( type T ...) T square( T ) � (T, int) � int ?*?( int )

Figure 2.4: Result of assertion satisfaction for the first candidate of Figure 2.3

2.2.2 Type Parameter Inference

To compute a set of bindings for each candidate, the types of corresponding parameters and

arguments are unified together to create a complete set of bindings for the candidate expression.

If the unification fails for any parameter, the candidate is discarded as it cannot be well-typed.

Figure 2.3 shows the set of candidates that results from type parameter inference on the

candidate set from Figure 2.2. For the first candidate in Figure 2.2, the type int is inferred for

the parameter U (since the interpretation of the sub-expression 7 has type int), and an assertion

is found that must be satisfied. The second candidate of Figure 2.2 is eliminated, since there is

no way to unify the types int and V* (int is not a pointer type). The third candidate is carried

forward since it is possible to unify the types int and double (using the inexact unification

rule).

2.2.3 Satisfaction of Assertions

For each candidate interpretation, the assertions to be satisfied (those introduced alongside open

type parameters) are extracted during the unification process, as well as any additional declara-

tions that can be used to satisfy them (assertions introduced alongside closed type parameters).

Each assertion is satisfied by searching through the set of available declarations (declarations in

scope, plus any additional ones extracted from the expression) for declarations having the name

specified by the assertion — these are now candidates to satisfy the assertion. For each of these

candidates, a unification is attempted between the type of the declaration and the type of the

assertion, which may result in the binding of more type parameters, and the introduction of more
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assertions, which are satisfied in the same way. This phase generates a new set of candidate

interpretations of the expression: for every incoming candidate, a candidate is created for each

combination of declarations that satisfies the set of assertions of the original candidate.

Figure 2.4 shows the result of attempting to satisfy the assertion of the first candidate in

Figure 2.3. In this case, there is only one definition of square; unification results in inferring

the type int for the parameter T and also in the discovery of the assertion ?*?, which induces

another round of assertion satisfaction. Since there is only one definition of ?*? for type int,

the assertion satisfaction process produces one candidate for each of the candidates in Figure 2.3.

2.2.4 Pruning the Candidate Set

From the set of candidates whose parameter and argument types have been unified and whose

assertions have been satisfied, those whose sub-expression interpretations have the smallest total

cost of conversion are selected (total conversion costs are compared according to the rules of Sec-

tion 2.1.1). The total cost of conversion for each of these candidates is then calculated based on

the implicit conversions and polymorphism involved in adapting the types of the sub-expression

interpretations to the formal parameter types.

This set of interpretations is then culled one more time, since it is possible to detect some

obvious ambiguities in the candidate set even without taking the expression’s context into ac-

count. In a classic Baker algorithm, if two candidates result in values of identical type there is

no way that any expression context can discriminate between them — if a sub-expression is am-

biguous, any containing expression is ambiguous. In Cforall, a candidate is preferred over others

returning values of the same types if the candidate has a lower total cost of conversion than the

others. In this case, the candidate involving the fewest conversions is kept and others returning

the same type are discarded. If two candidates have the same type and the minimal amount of

conversions for that type, however, the candidates are ambiguous and all candidates with that

type are discarded.

After this stage, the set of candidates represents the only reasonable interpretations of the

expression.

For each of the candidates of Figure 2.3, there are no conversions involved in their sub-

expression interpretations, so all of the candidates pass through the first pruning. Each of the

candidates returns different types (int versus double), so they pass through the second pruning
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as well. Thus the expression f(7) has two valid interpretations. Since this expression appears

in an expression statement, the interpretation with the lowest total cost of conversion is selected

(according to the rules of Sections 2.2.5 and 2.2.6). Since the first interpretation involves the

replacement of a type parameter while the second involves a safe conversion, the second inter-

pretation is chosen.

2.2.5 Other Expression Types

Variable references have as many interpretations as there are declarations of functions or ob-

jects with the referenced name; each interpretation has the same type as the corresponding

declaration.

Member selection expressions(of the form x.y) have an interpretation for each interpretation

of x that has a structure or union type with a member named y; each interpretation has the

same type as the corresponding member.

struct { int a } x; // 1

struct { double a } x; // 2

x.a; // two interpretations, types int and double

Indirect member selection expressions(of the form x->y) have an interpretation for each in-

terpretation of x that has a pointer-to-structure or pointer-to-union type whose underlying

structure or union type has a member named y; each interpretation has the same type as

the corresponding member.

Constants have one interpretation, whose type is determined by the C rules for the types of

constants. The only exceptions to this rule are the special constants 0 and 1, which are

treated as variable references.

Cast expressions(of the form (type)x) seek, from among the interpretations of x with the

lowest total cost, the one that most closely corresponds to the specified type. This involves

the same ranking of conversions described in Section 2.1.1, although with an expanded set

of allowable conversions (since cast conversions are explicit, rather than implicit). Reso-

lution of the cast operator results in zero or one interpretations, depending on whether a

unique closest match to the specified type can be found from among the interpretations.
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int f(); // 1

double f(); // 2

(double)f(); // select 2, since it requires fewer conversions

sizeof expressionscan have either an expression or a type as its argument. If the argument is

an expression, that expression must have a single interpretation. The type of this interpre-

tation, or the specified type, is checked to make sure that it is not an incomplete or function

type. The sizeof expression has one interpretation, which has type size_t.

int f(); // 1

double f(); // 2

sizeof f(); // invalid: no way to choose

Address expressions(of the form &x) have as many interpretations as x has interpretations that

are lvalues; each interpretation has a type that is a pointer to the type of the corresponding

interpretation of x. Lvalues arise as a result of variable references or member selections, or

as a result of invoking a function that returns an lvalue-qualified type (the built in operators

*? and ?[?] are examples).

Short-circuit logical expressions (&& and ||) are implicitly rewritten to compare their argu-

ments unequal to 0, and the result cast to the type int. If the resolution of these rewritten

sub-expressions fails, the resolution as a whole fails. Otherwise, the expression has a sin-

gle interpretation of type int.

a && b; � ( (int)( a != 0 ) ) && ( (int)( b != 0 ) );

Conditional expressions(of the form x?y:z) are implicitly rewritten to compare x unequal

to 0 and cast the result to int, as with the arguments of the logical operators. For each

combination of interpretations of y and z, the types of the two interpretations are unified

inexactly together, with widening allowed for either type; if unification is successful, an

interpretation is generated whose type is the common type of y and z, e.g.:

int f();

double g();

x == y ? f() : g(); // result has type double, result of f() converted



2.2. RESOLUTION ALGORITHM 35

Sequence (comma) expressions(of the form x,y) select an interpretation of x as if x had been

cast to the type void (thus preferring expressions that return no value). If x can be re-

solved, the comma expression has an interpretation for each interpretation of y.

void f(); // 1: no results

int f(); // 2: one result

char *g();

f(),g(); // select 1; result type is char*

2.2.6 Invoking Resolution

Expressions occur in many different contexts within the language. Expressions that occur as

sub-expressions of other expressions are resolved as part of the resolution of the expression as a

whole. Expressions that occur in other contexts are resolved using the same algorithm, but the

criteria used to select a single interpretation to be used in code generation varies:

Expression statementsselect an interpretation of the expression as if it had been cast to the

type void.

void f(); // 1: no results

int f(); // 2: one result

f(); // select 1

if, while and do statements have their conditions implicitly rewritten to be compared un-

equal to 0, and the result cast to the type int. Resolution is performed as normal and

results in either zero or one interpretations of the expression.

if( a ) ... � if( (int)( a != 0 ) ) ...

switch statements select the interpretation of their controlling expression that has an integer

type; if there is not a single such interpretation the resolution fails.

char f(); // 1: an integer type

struct x *f(); // 2: not an integer

switch( f() ) ... // select 1
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return statements are implicitly rewritten to cast the expression to the function’s return type;

resolution is performed as normal and results in either zero or one interpretations of the

expression.

int f(); // 1

double f(); // 2

int g() {

return f(); // select 1 due to implicit cast

}

Initializers are implicitly rewritten to cast their expressions to the types of the corresponding

objects or sub-objects; resolution is performed as normal and results in either zero or one

interpretations of the expression.

2.3 Efficiency

The algorithm presented here has not been optimized in any sense, either for theoretical com-

plexity or practical efficiency. The complexity and performance of the current implementation

of this algorithm is poor; this section discusses some of the reasons for this and some ways to

improve the performance. Assessing efficiency is difficult in the absence of empirical data, since

there are many independent dimensions that define the size of the input and it is unclear where it

is appropriate to approximate these dimensions by constants. For instance, the size of function

parameter lists, the nesting depth of expressions in the program, and the number of definitions

for each overloaded name are all independent of each other and all influence the complexity of

the algorithm. As a result of this profusion of parameters, this section does not attempt to derive

the algorithmic complexity of the entire algorithm, but instead focuses its analysis on certain

obviously problematic sections of the algorithm.

2.3.1 Overload Resolution

For each sub-expression in an expression tree, Baker’s original overload resolution algorithm

compares, for each parameter, the type of that parameter with the types of all interpretations of

the corresponding argument. For this reason, if there are � formal parameters for each function
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and 	 interpretations for each sub-expression, the amount of work done is ���	�.5 Because of

the possibility in Cforall that a single sub-expression interpretation might correspond to multiple

parameters, it is impossible to do a simple matching of parameters and arguments in the manner

of Baker. The algorithm presented here considers each combination of argument interpretations

separately, matching parameter types with argument types. Given 	 interpretations for each

sub-expression and 
 sub-expressions (since the number of arguments is now independent of the

number of parameters), there are ��	�� combinations of argument interpretations. The algorithm

compares � types for each combination of interpretations, so the complexity is ���	��.

This complexity is far from the best that can be done, however. The correspondence between

formal and actual may change depending on the choice of interpretations for other actuals, but

there are only a limited number of possible correspondences. This is illustrated by an earlier

example:

void f( int, int, int, int );

int g();

[int, int] g();

[int, int, int] g();

f( g(), g() );

Regardless of how many interpretations there are for g, there are only four possible ways in

which each interpretation can correspond with formal parameters — one way starting at each

formal parameter. Some of these ways are invalid; for instance, it is impossible for an interpre-

tation returning two values (e.g., the second instance of g) to correspond to formal parameters

beginning with the last one (since the second value could have no possible correspondent from

among the formals). Thus there are at most �
 correspondences between actual interpretations

and formal arguments. While this insight does not eliminate the need to consider all 	� combi-

nations of interpretations, it does allow the pre-computation of all possible correspondences in

���
� time, making the total complexity ���
 � 	��. Since type comparisons are relatively

expensive, this is a significant practical savings. A memoization approach is appropriate here, to

prevent the pre-computation of correspondences that do not actually occur.

Another approach, based on a suggestion by G. V. Cormack, is to process each argument in

turn, keeping track of a set of overload alternatives and, for each alternative, the list of parameter

5Assuming that types can be compared in constant time.



38 CHAPTER 2. EXPRESSION ANALYSIS

types that must be matched. At the start of the algorithm, the set of alternatives is initialized with

one alternative for each function having the overloaded name. For each argument, the algorithm

attempts to match argument interpretations with alternatives. The types of each argument inter-

pretation (assume there are � types) are unified with the first � types from the alternative’s list of

types. If these unifications succeed, a new alternative is created based on the old alternative, but

with the first � types dropped. After all combinations of argument interpretation and overload

alternatives have been considered, the algorithm moves on to the next argument using the set of

new alternatives.

This approach still suffers from exponential complexity in the worst case, where each attempt

to match an argument interpretation and overload alternative succeeds. Given � interpretations

for the overloaded name, 	 arguments and 
 interpretations for each argument, for the first argu-

ment the amount of work required is ��
��. If each of the matchings succeeds, the size of the

set of alternatives when processing the second argument is 
�, which must be compared with 


argument interpretations, meaning that the amount of work required is ��
���. Similarly, when

processing argument 	, the amount of work required is ��
���, so the total amount of work

required is ��
��

	�� 

	��. The advantage with this approach is that the worst case is unlikely —

that is, many matchings will likely fail. When a matching fails, all alternative interpretations that

depend on that match succeeding are immediately eliminated from consideration.

The exponential nature is fundamental to the algorithm — indeed, given the presence of

polymorphic types there could be ��	�� valid interpretations for each sub-expression. It has

been observed in Ada that the number of sub-expression interpretations is bounded in practice

by a small constant [33]; it seems reasonable to expect that this is true for Cforall as well.

2.3.2 Type Parameter Inference

Inferring type arguments for type parameters is handled primarily by the unification algorithm.

Although unification algorithms are linear in common cases, without care they can be exponential

in the worst case — indeed, the sizeof the resulting types can be exponential in the size of

the input types. As an example, consider a case with open type parameters ��� ��� � � � � �� on

the formal side and ��� ��� � � � � �� on the actual side, and with corresponding formal and actual
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parameters

��� ��� � � � � ��� void�	����� ���� void�	����� ���� � � � � void�	����� ���


 
 
 
 
 


��� ��� � � � � ����� ��� ��� � � � � ��

The first few parameters make the type parameter �� equivalent to ����, for � � � � 	. The

remaining parameters make �� equivalent to a type involving the pair of types �� � ����, for

� � � � 	. Thus the size of the type ��, once all recursive expansions have been done, is

�����.

Using a clever choice of data structures it is possible to guarantee linear space and time com-

plexity (Martelli [25] describes a way of doing this). One way to achieve this is to represent

types as directed acyclic graphs, where common components are not repeated within the graph.

The unification algorithm discussed here has exponential worst-case behaviour as currently im-

plemented, but it could be modified to use a more sophisticated representation for types.

Since the unification algorithm does many operations on sets of type parameters, its efficiency

is dependent on the efficiency with which set operations can be implemented. Once again, the

current translator implementation is naı̈ve and inefficient, but it could be improved — nearly

constant-time set operations are well known [4].

Type parameter inference is also affected by the exponential complexity of the overload res-

olution. In order to pre-compute correspondences between formal parameters and argument

interpretations (as is suggested in the previous section), it is also necessary to pre-compute the

set of bindings that can be inferred from the potential correspondences. When considering a

particular combination of argument interpretations, the sets of bindings for the appropriate cor-

respondences must be combined to create a complete set of bindings. Combining these sets of

bindings may require additional unifications (where a type parameter is bound in two different

sets of bindings).

2.3.3 Satisfaction of Assertions

Finding a particular definition to satisfy an assertion is essentially a special case of the general

expression resolution algorithm, so it has similar efficiency. What is more troubling is that re-

solving a particular assertion may result in the introduction of more assertions to be resolved
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forall( type T | { void f( T* ); } ) void f( T );

Figure 2.5: A declaration that could generate an infinite set of assertions.

with no guarantee that the introduction of assertions ever terminates. A simple example of a

declaration that could generate an infinite assertion set is shown in Figure 2.5 (from Ziegler [40],

converted to Cforall syntax). With this definition, any application of f to a type T requires the

existence of a function f that applies to objects of type T*. Such a function can be obtained by

instantiating the given function for type T*, but only if a version of f exists that applies to T**.

In the absence of any other definitions of f, this instantiation continues indefinitely.

This defect is not specific to the particular algorithm chosen however — satisfaction of asser-

tions in the Cforall type system is undecidable. Smith [34] shows that an arbitrary Horn-clause

logic program can be embedded in a similar type system, and presents a reduction of the Post

Correspondence Problem to the problem of satisfying assertions .

The formation of infinite assertion sets can be prevented simply by setting a limit on the

number of recursive instantiations permitted. While this inevitably catches certain valid pro-

grams that cause a finite but large number of instantiations, there is undoubtedly some level that

allows almost all practical programs through. This approach has been used to limit recursive

template instantiations in the C++ language [18] and has proven to be successful in practice.

2.4 Related Work

The algorithm presented here is inspired by the one presented by Cormack and Wright [9], al-

though it is structured differently and adapted to the Cforall language. Its treatment of polymor-

phic function parameters is different, and it accounts for the possibility that functions may return

multiple values and that values can be implicitly converted to other types. As well, it expands

context uses into the corresponding assertions. Other adaptations of this algorithm to different

languages are discussed by Shen and Cormack [33] and Ziegler [40].

The classic type inference algorithm is Damas and Milner’s Algorithm W [10], which imple-

ments type inference for ML using the standard unification algorithm. An ML type checker must

infer types for all values across an entire program; in contrast, Cforall only infers type arguments,
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and only at points of function application and specialization.

Although Cforall is similar to Haskell in that it combines overloading and parametric poly-

morphism, expression analysis is very different in the two languages. As in ML, Haskell types

are usually inferred across an entire program. The “satisfaction of assertions” phase of Cforall’s

analysis also plays out quite differently in a Haskell type checker. Since types must be explic-

itly associated with type classes and with functions that implement the operations required by

that class (using an instance declaration), the Haskell system does not search for in-scope dec-

larations for each assertion. Instead, it simply ensures that an instance declaration has already

supplied a set of operations for the particular combination of type and class. Wadler and Blott

[37] show how resolving uses of type classes can be implemented as a preprocessor before an

application of Algorithm W to infer principal types, although their overloading rules result in

the same sort of undecidability as is found in the assertion satisfaction algorithm presented here

[34].

Expression analysis is decidable in Haskell, however, because the set of allowable overload-

ings are restricted compared to Cforall. In particular:

� the types of all overloads must be instances of the same generic type — this type is defined

in the class declaration using a type parameter. The instance declaration specifies a type

argument to be substituted for that type parameter.

� if the type argument specified in the instance declaration is a constructed type, the argu-

ments to the type constructor must be type parameters

� a type class can only constrain a plain type parameter — never a constructed type.

� a type class can not constrain a type parameter that does not appear in the type of the

overloaded functions (even if that type parameter could otherwise become associated with

a type argument through recursive assertion satisfaction).

Figure 2.6 shows a translation of Figure 2.5 into Haskell. A “pointer” data type must be

defined, since Haskell has no built-in type constructor for pointers. The example does not type

check, however, since the constraint (has_f Pointer a) violates the third restriction above.

Intuitively, these restrictions ensure that as recursive assertions are satisfied the types involved

become “less complex” and hence the computation eventually converges.
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data Pointer a = Pointer a

class has_f a where

f : a -> a

instance (has_f Pointer a) => has_f a where

f x = f (Pointer x)

Figure 2.6: A translation of Figure 2.5 into pseudo-Haskell.

These rules guarantee decidability, but they are not minimally restrictive. Duggan, Cormack,

and Ophel [14] show that an instantiating type constructor can have any sort of arguments, so

long as the constructor used is unique across all overload instances and no type parameter appears

multiple times within its arguments.

A different approach to type inference in the presence of implicit conversions is described by

Mitchell [27]. This work is targeted at the different but related problem of general type inference

in ML-like languages. It is fundamentally different from the algorithm presented here, however,

because it assumes that the set of coercions defines a subtyping relationship that extends to type

constructors (e.g., if int can be coerced to double, then function returning int can be coerced

to function returning double). The Cforall coercions do not define subtypes in this way, so two

varieties of unification (exact and inexact) are necessary.



Chapter 3

Code Generation

This chapter describes a translation of Cforall constructs into the C language. All uses of over-

loading, polymorphism, and multiple return values must be converted into another form for com-

pilation by a C compiler that supports none of these features.

Converting functions and objects with overloaded names to C is a well-known problem, with

a standard solution: give the entity a new name that encodes both its original name and its type

(or a part of its type). This new name is known as a decorated name. Since the combination

of name and type must be unique, this process is guaranteed to rename the entity uniquely. As

well, all uses of these names must be updated to reflect the renaming. An encoding of this

kind is described by Ellis and Stroustrup [15] for an implementation of the C++ language. The

current Cforall translator uses a similar scheme, extended to allow variables with overloaded

names, to allow functions to be distinguished based only on their return type, and to allow for

polymorphism.

Converting functions returning multiple values into standard C form has previously been

discussed by Till [35] and is not discussed further in this thesis.

Converting polymorphic functions and objects into a monomorphic form is a complicated

problem that allows a number of different approaches with different trade-offs. This conversion

is the primary subject of this chapter. There are actually two different transformations involved,

corresponding to the two cases in which polymorphic type parameters become associated with

arguments: through specialization and at function calls. First, specializations are eliminated

by converting the program to a form in which type parameters become associated with type

43
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arguments only at function calls, and then the function calls are converted into a monomorphic

form. This chapter discusses these two transformations in reverse order.

3.1 Converting to Monomorphic Form

The fundamental challenge of generating code for polymorphic functions is that the generated

code must depend on certain properties of its type arguments, even if only to pass arguments

of these types to other functions and accept return values. Appel [2] divides implementation

approaches for polymorphic functions into four categories:

Expansion in which a function’s code is duplicated for each combination of type parameters

on which it is used, and type parameters within the function body are replaced by the

corresponding actual type arguments.

Type passing in which arguments representing the actual values of the type parameters are

passed to polymorphic functions. These parameters can be used by the function when

it must rely on the layout of polymorphic data.

Boxing in which the layout of data objects are made uniform so that polymorphic code can then

treat all types of data in the same way.

Coercion in which data values are converted into a boxed representation as they are passed to

polymorphic code, and boxed values are “unboxed” as they are passed to monomorphic

code.

Although polymorphic objects can exist in the language, they are relatively useless (the in-

trinsic null pointer constants being the only useful examples). Since polymorphic objects can be

treated as if they are functions taking no arguments and returning a single value, this discussion

only deals with the problem of implementing functions.

3.1.1 Expansion

The process of expansion involves replacing a polymorphic function with a set of functions, one

for each combination of type arguments of the function. For each copy, occurrences of type pa-
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rameters are replaced with their corresponding arguments, making the copy monomorphic. Calls

to the polymorphic function are replaced with calls to the appropriate expanded variant. Ex-

pansion generally produces the fastest implementation, since the overhead of the polymorphism

can be resolved at compile time. The added cost of polymorphism occurs in the duplication of

code, commonly referred to as “code bloat” — expansion improves code speed at the expense

of increasing code size, which may not be an appropriate trade-off for all applications (such as a

memory-constrained embedded system).

Expansion is unsuitable as a primary method of implementation since a polymorphic func-

tion in Cforall has an identity independent of the types to which it is applied, and expansion

provides no way to represent this identity — all uses of polymorphism must be resolved stati-

cally, typically by the compiler. This requirement has a number of practical implications. The

definition of a polymorphic function cannot be compiled independently of the uses of the func-

tion, which violates the traditional model of separate compilation in C. This limitation is not a

trivial concern, since separate compilation provides the only real form of information hiding in

the C (and Cforall) languages. As well, using pointers to polymorphic functions becomes largely

impossible, because the choice of pointed-at functions may not be predictable at compile time.

In addition to these concerns, there are certain types of polymorphic functions that have no

finite expansion in terms of monomorphic functions. Cforall permits the definition of functions

exhibiting polymorphic recursion, where the type domain over which the function is applied

varies at run time. Figure 3.1 shows a function that may call itself recursively on a pointer that is

one level more indirect than the pointer passed in. The number of levels of indirection, and hence

the number of distinct types on which the function can be invoked, is governed by the run-time

parameter n, so the only way to implement such a function using expansion would be to generate

expansions for all possible values of n, which is impractical.

In short, the expansion approach imposes significant constraints on the way in which poly-

morphic functions can be coded and used, in exchange for maximizing the speed of the generated

code. For this reason, it is unsuitable as a translator’s only implementation strategy, but it is an

important optimization. In this way, it is similar to the process of in-line expansion for functions:

not every function can be in-lined completely, and some functions should not be in-lined even

where it is possible to do so, but the technique is still important in optimizing commonly-used

functions.
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forall( type T ) void *multiptr( T *base, int n ) {

if( n == 0 ) {

return base;

} else {

T** next = malloc( sizeof( T* ) );

*next = base;

return multiptr( next, n - 1 );

}

}

Figure 3.1: Function demonstrating polymorphic recursion.

Implementation

In order to create an expansion of a polymorphic function, the translator simply creates a new

copy of the function and substitutes occurrences of type parameters for the corresponding argu-

ments, according to the substitution created during the type parameter inference phase of expres-

sion analysis. The expression analysis guarantees that the resulting function is valid.

Figure 3.2 shows a simple example of a polymorphic function, and Figure 3.3 shows its

translation according to an expansion algorithm that replaces both type parameters and assertion

parameters with their inferred values. Note that the function ?*? is predefined for integers to

represent the intrinsic multiplication operator, and a function version is provided by the system

to be passed as a parameter. Since ?*? is not a valid function name in C, the function is renamed

to __multiply_int in the generated code. In the output from the real translator, all names are

transformed further to prevent conflicts due to overloading.

The monomorphic function generated as a result of expansion may call a polymorphic func-

tion, requiring an expansion of this second function. This process is repeated until no calls to

polymorphic functions remain. To ensure that this process of repeated expansion eventually ter-

minates, it is necessary to detect functions like the one shown in Figure 3.1. It is unnecessary

to avoid all recursive functions: as long as the function is called with the same set of type ar-

guments, the recursive call can be replaced with a recursive call to the existing expansion. For

calls where the type parameters have different values, however, a full expansion may be impos-

sible. As an optimization, the expansion could be done for a finite number of levels to attempt to
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forall( type T | { T ?*?( T p1, T p2 ); } )

T square( T t )

{

return t * t;

}

int main( int argc, char **argv )

{

printf( "%d\n", square( atoi( argv[1] ) ) );

return 0;

}

Figure 3.2: A simple example of a polymorphic function and its use.

extern int __multiply_int( int, int );

int square_int( int (*multiply)( int, int ), int t )

{

return __multiply( t, t );

}

int main( int argc, char **argv )

{

printf( "%d\n", square_int( __multiply_int, atoi( argv[1] ) ) );

return 0;

}

Figure 3.3: A translation of Figure 3.2 using expansion.
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account for some common cases.

3.1.2 Type Passing

Type passing is perhaps the most literal interpretation of parametric polymorphism: each type

parameter is translated into a data parameter in the real code. This type descriptor describes

the characteristics of the data type, enabling the polymorphic code to deal appropriately with

values of the type. Potentially, the polymorphic code must accept parameters of that type, pass

parameters of that type to other functions, accept return values of that type from those functions,

and finally return a value of that type to its caller. It may also need to allocate local variables of

polymorphic type.

In order to interoperate with monomorphic code, the polymorphic code must obey the same

calling conventions— the rules that define how the low-level mechanisms of a particular proces-

sor architecture (e.g., stacks and registers) are used to implement parameter passing and function

return for values of different types. For instance, integer values could be passed in one kind of

register, floating-point values in another, and structure values on the processor stack. Since types

in polymorphic code may be unknown at compile-time, the translator must generate code that

is able to pass and return values of any type using the low-level mechanism appropriate to that

type.

On one hand, type passing can be an improvement over coercion because the values can be

passed between monomorphic and polymorphic code without an intermediate boxing step. How-

ever there could be a real cost involved in implementing calling conventions at run-time, since

the conditional branches involved could defeat important optimizations and instruction pipelin-

ing. Whether type passing is a net improvement over coercion probably depends on how often

the input program crosses the polymorphism/monomorphism boundary and how complicated the

calling conventions are on the target architecture.

From the perspective of the translator implementation, this approach is dependent upon the

specific calling conventions of the target architecture and compiler, making it inherently non-

portable. A translator from Cforall to C using type passing must augment its output with assem-

bly code or compiler hooks that allow it to precisely control the process of parameter passing

and function return. On many compilers the calling convention can be changed using compile-

time options, so such a translator must be aware of these options as well and adjust its behaviour
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accordingly. These factors make type passing a better candidate for a true compiler, rather than

a translator.

As an example, consider the calling convention of the GNU C compiler on the Intel 386

architecture. This calling convention is simple compared to many conventions, since all function

arguments are (by default) pushed on the processor stack and most return values are placed in the

EAX register. However, there are a number of subtle twists that complicate the implementation.

For example:

� The stack must be word-aligned, so objects whose size is an uneven number of words must

be padded as they are pushed.

� When structures are returned, the caller allocates memory for the structure and passes the

address of this memory as an additional argument.

� When floating-point values are returned they are placed at the top of the floating-point

unit’s register stack.

Code to implement all these possible behaviours must be inserted around each call within a

polymorphic function. There are certain cases in which the compiler can statically rule out some

types (for instance, a function that deals only with pointers), but for common examples like the

square function in Figure 3.2 the return value from the ?*? function must be placed in EAX or

on the floating-point stack or in caller-allocated storage, depending on the type T. In addition,

GNU C has command-line options that change this calling convention (for instance, to pass some

parameters in registers), which would necessitate changes in the output of the Cforall translator.

Accounting for this variability, combined with the inherent machine dependency and the obvious

inefficiency of complicating the call sequence in this way makes a type-passing style impractical.

Alternatively, Cforall could define its own calling convention that makes a type-passing style

reasonable. On virtually all platforms, however, the calling convention for C code is optimized

for maximum speed across a range of practical applications, so it is inevitable that simplifying

this convention for the benefit of polymorphic calls would be less than optimal for monomorphic

calls. As a result, the performance of standard C code would degrade when compiled by the

Cforall compiler, which violates a basic design goal.
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3.1.3 Boxing

The idea of boxing has its origins in dynamically-typed languages such as Lisp, where any vari-

able can potentially hold any data value. The essential idea is to put data values of different

types into “boxes”, where the characteristics of the boxes are uniform and independent of the

type of the data inside. Typically, this is done by using pointers to data values rather than the

data values themselves; on most computers, pointers have the same structure regardless of the

type of the pointed-at data. The C standard mandates that all pointers to data can be coerced to

the type void* and back without loss of information, so void* is an appropriate box type for

data values1.

The disadvantage to boxing is when the data value must be removed from its box, or “un-

boxed”, because it is needed in a type-dependent operation, such as arithmetic. Using a pointer-

style boxing scheme, this makes virtually all value accesses in a program indirect accesses into

memory. The resulting overhead is too much for many computationally intensive applications.

Since restricting Cforall’s application domain in this way is unacceptable, boxing is unacceptable

as an implementation method.

3.1.4 Coercion

A refinement of boxing is the idea of coercion, where values are only boxed when necessary, and

left unboxed otherwise. In particular, values are boxed when they are passed from monomorphic

code to polymorphic code, and unboxed when passed from polymorphic code to monomorphic

code. This isolates the cost of the boxing to those places where polymorphic and monomorphic

code are mixed. The transition occurs when values are passed as the arguments of functions and

returned as results. The essence of the coercive transformation presented here is the insertion of

code at these transition points to handle the boxing and unboxing. For simplicity, this discussion

refers to functions where the type of a particular value is independent of that function’s type

parameters as “monomorphic code”, although that function could manipulate other values of

variable type as well; similarly, “polymorphic code” refers to a function where the type of the

1The C standard does not require that function pointers be representable by void*. It does say that any function

pointer can be cast to another function pointer type and back without loss of information, so void(*)(void),

the type of pointers to functions that take no parameters and return no result, is an appropriate box type.
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value is known only by the name of a type parameter, although there could be other values in the

same function whose type is independent of the type parameters.

Boxing Transformation

Boxing turns every value into a pointer. Those values that have an address (for instance, variables

or members of structures and unions) have their address taken and used as the boxed representa-

tion. For those values that do not have an address (constants and the results of most expressions),

the value is assigned to a temporary variable and the address of the temporary is used as the

boxed representation. The unboxing transformation is a dereference.

The boxing transformation has one unfortunate side effect: for values that have an address,

their address is used as a box, which means that the recipient of the box can potentially modify

the value inside and thus change the actual argument. This situation could change the semantics

of C programs that assume their input parameters are copies of the corresponding actual values.

One solution is to make a temporary copy of the value before passing it (as is done for values

without an address), but this results in needless copying for the many functions that never modify

their arguments. For this reason, any polymorphic function that may cause the modification of

one of its parameters must make a temporary copy of that parameter. The only exception to

this rule is for input parameters that are known to have pointer type, since no pointer values are

ever boxed. Interestingly, a polymorphic function can never change the values of its parameters

directly (since all operations, including assignment, are performed by calling functions), so the

only case in which it could cause the change of a value is when it passes the address of one of its

parameters to another function.

It is important to note that not every parameter with a polymorphic type requires that the cor-

responding argument be boxed. In particular, pointer parameters do not require boxed arguments,

e.g.:

forall( type T ) T *f( T * );

Since data pointers can be coerced back and forth from the box type void*, there is no need

to add another level of boxing. Function and array parameters are implicitly passed through

pointers as well, so no additional boxing is needed for these parameters. As well, it is a common

C programming practice to pass and return structure instances through pointers. As a result of
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these considerations, there is a large class of useful function parameters that do not require boxed

arguments and the consequent overhead.

Adding Coercions

Implementing boxing and unboxing for calls from monomorphic code to polymorphic code is

straightforward. Any code necessary to box parameters can be in-lined just ahead of the function

call. To receive a return value, a temporary is allocated and the address of the temporary is passed

as an extra parameter, removing any need for the polymorphic function to dynamically allocate

storage. These transformations are straightforward because the translator knows the arguments

corresponding to all type parameters, and hence can generate the appropriate code to perform the

boxing and unboxing.

Implementing boxing and unboxing for calls from polymorphic code to monomorphic code

is difficult, however, because the type arguments are unknown to the polymorphic code. This

situation precludes any simple in-lining of boxing and unboxing actions within the polymorphic

code, since the details of boxing and unboxing vary depending on the type arguments. It is only

at the point where the polymorphic code was originally called from monomorphic code that the

type arguments are known, so the monomorphic code must pass additional information to enable

polymorphic code to box and unbox values.

One important observation about calls from polymorphic to monomorphic functions is that

virtually all monomorphic functions called by a polymorphic function must have been passed

as arguments to that function (whether explicitly or through an assertion).2 For example, the

parameter ?*? to the square function in Figure 3.2 is a monomorphic function passed as a

parameter to a polymorphic function. If a polymorphic function calls any other monomorphic

function, that function would have to be declared outside of the polymorphic function, which

means that it could not involve the type parameters of the polymorphic function; there is no way

for any value of unknown type to be compatible with a parameter of fixed type.

The Cforall translator uses this observation to exert control over the calls from polymor-

phic functions to monomorphic ones. For each monomorphic function that is a parameter to a

2The only exception to this rule is monomorphic functions obtained as specializations of polymorphic functions.

Since all polymorphic types have the same (boxed) representation, no extra boxing or unboxing is necessary in this

case.
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extern int __multiply_int( int, int );

void square( void (*__multiply_thunk)( void *result, void *p1, void *p2 ),

void *result,

void *t )

{

__multiply_thunk( result, t, t );

}

void

__multiply_thunk_for_int( void *result, void *p1, void *p2 )

{

*(int*)result = __multiply_int( *(int*)p1, *(int*)p2 );

}

int main( int argc, char **argv )

{

int temp = atoi( argv[1] );

int ret;

square( __multiply_thunk_for_int, &ret, &temp );

printf( "%d\n", ret );

return 0;

}

Figure 3.4: A translation of Figure 3.2 using coercion.

polymorphic function, the translator creates a “thunk” function, whose purpose is to unbox pa-

rameters appropriately, call the original function, and then box the return value. 3 Figure 3.4

shows a translation of Figure 3.2 using a thunk to perform and appropriate unboxing and boxing

in the call to ?*?.

These simple thunks are insufficient in cases where the monomorphic function to be called is

not statically determined, e.g.:

3The term “thunk” was coined by P. Z. Ingerman in 1961 to refer to the encapsulation of an expression passed

as a function parameter in the language Algol 60 [16]. This usage is similar, although the “expression” in this case

simply forwards function parameter and return values to a target using a different calling convention.
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forall(type T)

T select_and_apply( T (*array[])(T), T arg, int selector )

{

return array[selector](arg);

}

At the call site, a pointer to an array of monomorphic functions is passed to a polymorphic

function. It is impossible for a monomorphic function calling select_and_apply to generate

thunks for every function in the array because the contents and size of the array may vary from

one invocation of the function to the next. Instead, the translator uses an “adapter” function that

takes as its parameters the function to be called and the parameters to be unboxed and passed.

After transformation, the polymorphic function has both the adapter and the original function

array as parameters:

void select_and_apply( void (*adapter)( void (*func)(),

void *ret,

void *parm ),

void (*array[])(),

void *ret,

void *arg,

int selector )

{

adapter( array[selector], ret, arg );

return;

}

The monomorphic code that calls select_and_apply generates an appropriate adapter that

unboxes the arguments, passes them to the function passed in, and boxes up the return value. If

select_and_apply is changed to pass the array, or any element thereof, to another polymor-

phic function, the generated code must pass the adapter to that function as well.

In fact, it is necessary to use adapters rather than thunks in all cases, even in cases where

enough information is available to create thunks. Consider the following example (courtesy of

Glen Ditchfield):
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int f(int v) { ... }; // 1

float f(float v) { ... }; // 2

int (*pfi)(int) = f; // pfi points to 1

forall(type T | T f(T) )

int rtti(T) {

return f == pfi;

}

rtti(7); // Must return 1.

rtti(0.5); // Must return 0.

In this case the actual identity of the passed function is important; replacing this function with a

newly-created thunk would cause the pointer comparison to fail in all cases. Thus, the original

function must be passed, along with an adapter to be used when the function is actually called.

Generating Adapters

The most obvious way to generate adapter functions is to emit their definitions into the generated

code immediately before their use. This approach is complicated by the standard C restriction

that function definitions may not be nested. The current translator implementation requires that

the target C compiler support nested functions, which makes its generated code potentially in-

valid C, although nested functions are supported by the popular GNU C compiler. The adapter

functions do not depend on the values of local variables in the containing function, so often they

can be trivially “hoisted” out of the containing function to the top level, making nested func-

tions unnecessary. In some cases, however, they may depend on local declarations of types and

function prototypes, e.g.:
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forall( type T ) void f( T (*)( T ) );

void test() {

union q { int r; float s; };

struct x { struct q a, b; };

struct x g( struct x );

f( g );

}

In this example, any adapter that adapts the function g must mention the structure x, which in

turn mentions the union q. As a result, any attempt to hoist the adapter out of the test function

also requires hoisting x and q. While this is possible, it adds complexity to the implementation

and requires renaming to avoid name clashes in the global scope. For these reasons, this hoisting

transformation has not yet been implemented.

It is also possible to re-use adapter functions. Since the function to be invoked is passed as

a parameter to the adapter, the same adapter can be re-used for any function having the same

parameter and return types. When the adapter functions are nested within a function, their defi-

nition is only available within that function, and hence the possibility for re-use is limited — the

same adapter must be emitted within every function that needs it. If adapter definitions can be

hoisted to the top level, however, the adapters can be re-used across an entire translation unit.

Type Descriptors

By using a boxed representation it is possible to avoid any kind of explicit representation of

types for dtype and ftype type parameters. Type parameters declared using the keyword type,

however, can be instantiated and assigned, e.g.:

forall( type T ) void swap( T *a, T *b ) {

T temp = *a;

*a = *b;

*b = temp;

}
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This case means that a polymorphic function must know the size of the type, so that it can allocate

new instances using a facility such as malloc or alloca.4 As well, an assignment operation

must be provided, even if no assertion requires one. In this sense, a type descriptor is necessary

in addition to boxing.

3.1.5 Representing Assertion Arguments

One obvious way to represent assertion arguments is to convert them into explicit arguments,

which is the approach taken in Figures 3.4 and 3.3. The advantages of this method are its sim-

plicity and the low overhead for using the assertion arguments. The primary disadvantage is a

potential explosion in the number of function arguments in a call; on many architectures a cer-

tain number of arguments can be passed efficiently (i.e., in registers), but exceeding a small fixed

limit can make passing the rest of the arguments substantially more expensive. The possibility

of many assertion arguments is real, given that contexts allow many assertion arguments to be

grouped together and that they can include other contexts.

Another approach is to group the assertion arguments into an array and pass a pointer to the

array as a single argument. This approach is similar to the concept of a virtual function table

in C++. While parameter list explosion is avoided, the overhead is two-fold: the array must

be created, and each use of an assertion parameter requires an additional lookup in the array.

By allowing programmers to group assertion arguments into contexts, a Cforall translator can

use that grouping information to build arrays for various combinations of types and contexts

that can potentially be reused in multiple calls. The creation of such arrays is straightforward

in languages, such as Haskell, where types must be explicitly associated with sets of assertion

arguments, since the array of arguments never changes. In Cforall, it is possible for an assertion

argument to be different for each invocation of a function, even if all of the invocations are

applied to the same type, e.g.:

4Alternatively, an allocation function specific to the type could be passed as a parameter.
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forall( type T | { T f( T ); } ) void callee( T );

void caller( int (*array_of_func)( int ), int n ) {

for( int i = 0; i < x; i++ ) {

int (*f)( int ) = array_of_func[ i ];

callee( i );

}

}

Here, assertion satisfaction matches the assertion of calleewith the function pointer f declared

just inside the for loop. But the value of this pointer is different each time through the loop,

so any array of the assertion arguments to callee must be updated each time f is given a new

value. In this case, any array building undoubtedly wastes more time than it saves. Such perverse

examples are unlikely in practice, however, so this could be a legitimate optimization in general.

This example shows, however, that some form of analysis is necessary to determine at what

points in the program argument arrays should be rebuilt.

A third approach is possible when the polymorphic function is expanded for a particular com-

bination of types: replace references to assertion parameters with references to the corresponding

arguments. This may result in multiple expansions of the same function for the same set of type

arguments, if the set of assertion arguments changes from one use of the function to another.

While this approach removes any overhead associated with assertion parameters, the previous

example demonstrates circumstances in which such a replacement is impossible: the choice of a

particular assertion argument is deferred until run-time.

3.1.6 Efficiency

Clearly, expansion is the most efficient implementation method in situations where it can be

applied. The coercion method is more generally applicable than expansion and more portable

than type-passing so it has been chosen as the implementation method in the current translator,

but it pays a significant price in efficiency. Many data values incur the overhead of boxing

(although many do not), sometimes requiring the allocation of temporaries and copying of the

values. Many calls from polymorphic functions to monomorphic functions must be done through

an adapter, which adds the overhead of another function call.
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These facts seem to suggest a combination of two approaches: expand where possible, and

coerce otherwise. Computationally-intensive polymorphic functions can be written to permit

expansion, while code that is executed less often can be written with more freedom, taking

advantage of additional capabilities such as separate compilation and the use of pointers to poly-

morphic functions. Expansion is most beneficial to code that manipulates arithmetic types, since

boxing imposes a large overhead relative to object size; for objects passed as pointers, the addi-

tional cost of boxing is small.

For new programs making heavy use of polymorphism, it may be advantageous to adopt a

different translation strategy, one that redefines the standard calling convention to make type

passing feasible. In comparison with the hybrid approach just described, it is not clear that there

is any real advantage to this — if critical sections of code are expanded for maximum speed, the

only possible improvement would come on non-critical code, so the potential for increased speed

is small.

3.2 Implementing Specializations

Specialization is the use of a polymorphic function or object in a context where a function or

object having fewer type parameters is required. For any representation of polymorphism, some

additional work is needed when a specialized function or object is used. Consider a specialization

of the square function from Figure 3.2:

int apply_to_seven( int (*func)( int ) ) {

return func( 7 );

}

void test() {

apply_to_seven( square );

}

The function apply_to_seven is entirely monomorphic, and yet in this example it calls the

polymorphic function square. With a coercive boxing approach, the unboxed 7 must be boxed

before being passed, and the return value unboxed. With a type passing approach a type de-

scriptor must be supplied to the square function in addition to its argument. With any form of
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representation, the assertion argument (the multiplication operation) must also be supplied to

square.

One approach is to pass some kind of closure that contains a pointer to a polymorphic function

as well as a representation of the type arguments corresponding to some of its type parameters

and any assertion arguments inferred as the result of specialization. This auxiliary data structure

is filled in at run time as the polymorphic function is specialized. The structure must allow the

same function to have more than one type parameter specialized at different times and in different

orders, e.g.:

forall( type T, type U ) void multi_spec( T, U );

forall( type V ) void (*spec1)( V, int ) = multi_spec;

forall( type W ) void (*spec2)( int, W ) = multi_spec;

void g( void (*)( int, int ) );

g( spec1 );

g( spec2 );

Here, two specializations of the function multi_spec are created, one binding the first type pa-

rameter and one binding the second. Both specializations have their remaining unbound parame-

ter bound as a result of the implicit specialization that occurs when they are passed as arguments

to g.

When the specialized entity is used, the generated code uses the extra information to deter-

mine how to properly call the function. Since a polymorphic function with all type parameters

specialized must be indistinguishable from a monomorphic function (consider the application of

the square function from within apply_to_seven), this approach requires closures (and the

corresponding overhead on use) for all function types. As a result, this approach adds overhead

to all programs, even existing C programs that make no use of polymorphism, which violates

one of the primary design goals for the Cforall translator.

3.2.1 Thunk Functions

Another approach is to replace a passed polymorphic function with a thunk function that has the

same type as the parameter (so that no specialization is required); the only action performed by
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the thunk function is to call the original function and, if necessary, return its result. In a case

such as:

void f( int (*p)( int, int ) );

forall( type U, type V | { U ?+?( U, V ); } ) U g( U, V ) );

f( g );

a suitable thunk would be:

int g_thunk( int p1, int p2 ) {

g( p1, p2 );

}

The call f(g) is then changed to be f(g_thunk). Note that the type of the thunk is the same as

the type of the parameter to f (except that g_thunk is a function while p is a pointer-to-function).

As a consequence of this transformation, type parameters in a function are only associated with

type arguments at the point where the function is called. The results of this transformation can

then be used as input to any of the transformations described earlier in this chapter, which convert

calls to polymorphic functions into a monomorphic form, producing an entirely monomorphic

program.

For specializations of functions that take polymorphic functions as parameters (and functions

that take functions that take polymorphic functions as parameters, and so on), the same method

of thunk generation can be used, but the generated thunk may itself involve a specialization.

void f( void (*p)( forall( type U ) U (*)( U ) ) );

void g( int (*q)( int ) );

f( g );

Here, the thunk function is:

void g_thunk( forall( type U ) U (*p)( U ) ) ) {

g( p );

}

The thunk is valid — it has a type that matches the formal parameter of f — but the call g(p)

still involves a specialization, which means another thunk is necessary:
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int p_thunk( int x ) {

p( x );

}

For a heavily-nested function type, many thunk functions may be necessary. Since the type of the

thunk becomes less heavily-nested for each repetition of the process, this repeated thunk creation

must eventually terminate.

3.2.2 Generating Thunks

Practical considerations apply to the generation of thunk functions that are similar to those which

apply to the generation of adapter functions. However, in the case of thunk functions the object

of specialization may involve local variables of the calling function, so in general it is impossible

to simply hoist the thunks. For example, the thunk p_thunk of the previous section refers to the

local variable p of the function g_thunk, so p_thunk must be nested within g_thunk. This

could be solved by changing the representation of function pointers as previously described, or

by using adapters and passing both the adapter and the function to be specialized. Adopting one

of these approaches would have the additional advantage of allowing specialization to be applied

to an entire array of function pointers. However, both of these approaches impose an additional

level of indirection on all usersof function pointers, including monomorphic functions, so these

approaches are unsuitable for the translator. Another option is to use assembly code, as is done

in the GNU C compiler’s implementation of nested functions [5].

Although the current translator fails to achieve the goal of converting all programs into Stan-

dard C, the wide portability of the GNU C compiler indicates that the implementation of nested

functions does not significantly impair portability, so even with this limitation it is still possible

to implement Cforall compilers for a wide variety of architectures.

3.2.3 A Complete Example

Figure 3.5 shows the previous example in the context of a complete program. main invokes the

function fwith the function g as argument, f invokes the passed in function with the polymorphic

function id as argument. This call specializes the polymorphic function id to the type of q. g

applies the specialized function to the argument 7.
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forall( type T ) T id( T t ) {

return t;

}

void f( void (*p)( forall( type U ) U (*)( U ) ) ) {

p( id );

}

void g( int (*q)( int ) ) {

q( 7 );

}

int main() {

f( g );

}

Figure 3.5: Program requiring a nested specialization thunk.

Figure 3.6 shows the result of expanding specializations in Figure 3.5. The program still uses

polymorphism, but all specializations have been replaced by thunk functions. f does not call g

directly, but instead through a thunk. The thunk calls g, but passes it another thunk instead of the

function argument passed by f. When this thunk is called from within g, it applies the function

passed by f to its parameter. As a result, id is called on the value 7, so the meaning of the

original program is preserved by the transformation.

The conversion of Figure 3.6 into a completely monomorphic form is shown in Figures 3.7

and 3.8. This is the exact output from the current translator, except that name decoration has

been suppressed here to make the output easier to read. All occurrences of the polymorphic type

forall( type T ) T (*)( T )

are replaced by the monomorphic type

void (*)(void (*_adapter)(void (*)(), void *, void *, void *),

long unsigned int T,

void (*assign)(),

void *_retparm,

void *t)
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forall( type T ) T id(T t) {

return ((T )t);

}

void f(forall( type U ) void (*p)(U (*)(U ))) {

p(id);

}

void g(int (*q)(int )) {

q(7);

}

int main() {

void _thunk0(forall( type U ) U (*_p0)(U )) {

int _thunk1(int _pp0) {

return _p0(_pp0);

}

g((&_thunk1));

}

f((&_thunk0));

}

Figure 3.6: Result of expanding specializations in Figure 3.5.
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The parameters of this type are used as follows:

� _adapter is an adapter function used to call the assignment function for type T

� T holds the size of type T

� assign is the assignment function for type T

� _retparm is the box that holds the return value from the function

� t is the box that holds the argument to the function

The translation of function id makes use of all of these parameters. It allocates space for the

value returned by the assignment operator (_temp0) and then applies the assignment operator

(using the adapter) to copy the argument value from its box to the box holding the return value

for id (_retparm). Since the adapter places the result of the assignment operator into a box, the

generated code replaces the original assignment operation with a comma expression that contains

a call to the adapter, and then returns the value of _temp0, where the adapter placed the return

value from the assignment. In this example, the value returned by the assignment operator is not

used.

The function id performs as specified, but its interface is different from the one expected by

function g — g does not box the operand to q, pass the size of the argument type, or pass the

assignment operation. These tasks are handled by the thunk function.

The thunk functions must be defined in function main (Figure 3.8), since main is the only

function that can infer the type argument in the call to f, and this type argument is the same one

that is eventually passed to id. The function _thunk0 allows a new thunk to be created from

within f for each application of f’s parameter, which is necessary since main does not know

the functions to which f applies its parameter, and f does not know the type arguments. When

f calls _thunk0, _thunk0 calls g with a new thunk, _thunk1. _thunk1 allocates space for

the return value (_temp1) and then calls the function passed by f, passing an adapter for the

assignment operator, the size of type int, the predefined integer assignment function, and the

addresses of the return value and argument. Finally, it passes the value returned by the called

function back to its caller.
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void id(void (*_adapter)(void (*)(), void *, void *, void *),

long unsigned int T,

void (*assign)(),

void *_retparm,

void *t) {

void *_temp0;

(_temp0=alloca(T));

(_adapter(assign, _temp0, _retparm, t) , _temp0);

return ;

}

void f(void (*p)(void (*)(void (*_adapter)(void (*)(), void *,

void *, void *),

long unsigned int U,

void (*assign)(),

void *,

void *))) {

p(id);

}

void g(int (*q)(int )) {

q(7);

}

Figure 3.7: Result of adding boxing coercions to functions id, f, and g of Figure 3.6.
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int main() {

void _thunk0(void (*_p0)(void (*_adapter)(void (*)(), void *,

void *, void *),

long unsigned int U,

void (*assign)(),

void *,

void *)) {

int _thunk1(int _pp0) {

void _adapter(void (*_adaptee)(), void *_ret,

void *_p0, void *_p1) {

((*((int *)_ret))

=((int (*)(int *, int ))_adaptee)(((int *)_p0),

(*((int *)_p1))));

}

int _temp1;

return (_p0(_adapter,

sizeof(int ),

((void (*)())(&assign_int)),

(&_temp1),

(&_pp0)),

_temp1);

}

g((&_thunk1));

}

f((&_thunk0));

}

Figure 3.8: Result of adding boxing coercions to function main of Figure 3.6.
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3.2.4 Efficiency

The thunk approach adds the overhead of one polymorphic function call to each call to a function

that has undergone specialization. If a function undergoes specialization multiple times before it

is used (as with the function multi_spec), there is an additional function call for each special-

ization. Each thunk created for a nested function type also has the overhead of one polymorphic

function call, but this overhead is distributed: in the example from the last section, there is an

extra call on entry to the function g, and an extra call any time that g uses its parameter p. How

expensive these calls are depends on how efficiently polymorphic function calls are implemented;

at best, they are no more expensive than a monomorphic function call.

3.3 Related Work

The expansion technique is popular in imperative languages, and for good reason — it is (rela-

tively) simple to implement and very efficient. The semantics of polymorphic functions in C++

[18], known as templatefunctions, and of generics in Modula-3 [20], require expansion as their

implementation. These languages prohibit by fiat any constructs that cannot be implemented

using expansion, including passing polymorphic functions to procedures and polymorphic re-

cursion. Ada [17], while not mandating a particular implementation strategy for generics, does

prohibit programs that can not be implemented by expansion. In C++, this strategy has the

consequence of effectively precluding the separate compilation of template code.5

Boxing has been used successfully in the implementation of many languages, such as Lisp,

Scheme, Smalltalk, and ML. It is a natural choice for these languages since it can facilitate

garbage collection as well, but it has also contributed to their reputation for poor efficiency.

The idea of coercion originates with Leroy [24], who proposed it as a way of improving the

performance of monomorphic code in ML. The boxing transformation is more complicated in

ML, since it is possible for a function to receive, for instance, a tuple of polymorphic values

from which it extracts one; for this reason, the boxing must often be done recursively, although

Shao and Appel [32] discuss a way of minimizing the amount of recursive boxing. In Cforall,

5The C++ standard does define an “export” qualifier that attempts to allow separate compilation, but the seman-

tics of templates prevent the compiler from doing much compilation without knowing the uses of the function.
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any indirect access to polymorphic values must be done through functions, so adapting functions

properly provides a complete solution to the problem.

A different approach to boxing that has been used in some imperative programming lan-

guages is to define a box representation and then make the actual boxing the responsibility of

the programmer. This approach has the advantage of simplifying the implementation and putting

the cost of the boxing up-front, with the disadvantage of increasing the burden on the program-

mer for those types that do not naturally have a boxed representation. It is most advantageous

in situations where nearly all types naturally have an appropriate boxed representation, which is

the case in many object-oriented languages — typically implementations of these languages use

pointers internally to represent all types except a few arithmetic ones. Implementations of this

kind have been described for the Oberon language [31] and for the Java language [7]. The Cy-

clone language [22] adds parametric polymorphism to C, but polymorphic parameters can only

have pointer types. The disadvantages of this approach are magnified for C, since it requires

the programmer to self-box not only arithmetic types but also structure, union, and enumerated

values. A Cforall program with polymorphic functions written in the Cyclone style and com-

piled using the coercion transformation has no boxing overhead compared to Cyclone, since the

arguments corresponding to pointer parameters are never boxed.

Type passing style has been popular as a low-overhead implementation method for polymor-

phic functional languages [21, 36]. These implementations typically do not have to conform to an

established calling convention that favours monomorphic code. Notably, Ziegler [40] describes

a type-passing implementation of his Sea language; he does so by imposing a calling sequence

for all functions that makes polymorphic calls more efficient than the coercion-based approach

described here, but monomorphic calls less efficient than they otherwise could be.
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Translator Examples

This chapter presents an application of Cforall to a simple problem: read in a sequence of integers

(with no fixed bound on the size of the input); when input is complete, output the numbers in

reverse order. This simple problem provides an opportunity to demonstrate the polymorphic type

system of Cforall and the operation of the translator.

The Cforall translator in its current state implements the complete expression analysis al-

gorithm described in Chapter 2. It converts polymorphic specializations into applications using

the technique described in Section 3.2, and converts polymorphic functions into a monomorphic

form using the coercion technique of Section 3.1.4. It does not support any of the alternative

implementations described in Section 3.1 (expansion or type passing).

The names of variables and functions generated by the translator have various decorations

attached in order to allow overloading (Chapter 3). Excerpts from the translator output presented

in this chapter have these decorations removed to make their presentation clearer. The complete

source code for the examples discussed in this chapter, as well as the output from the translator

(with decorations), is found in Appendix A.

4.1 Stream Library

Since Cforall supports the C standard library, the file input and output facilities defined in

stdio.h can be used in any Cforall program. Since these functions are restricted to a fixed set

of stream types and make heavy use of the type-unsafe variable-argument mechanism (used in

70
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functions such as printf and scanf), it is worth considering how the interfaces could be made

more flexible and safe in Cforall. The library presented here draws on the C++ streams library

[18] for inspiration, but uses polymorphism and contexts where C++ uses class inheritance.

One context definition describes an ostream: a type satisfying this context can be used

to write character data to a file, and to signal the occurrence of an error on a previous write

operation.

typedef unsigned long streamsize_type;

context ostream( dtype os_type ) {

os_type *write( os_type *, const char *, streamsize_type );

int fail( os_type * );

};

Given this context, it is possible to define C++-style << operators that write values of different

types to any sort of stream.

forall( dtype os_type | ostream( os_type ) )

os_type * ?<<?( os_type *, char );

forall( dtype os_type | ostream( os_type ) )

os_type * ?<<?( os_type *, int );

forall( dtype os_type | ostream( os_type ) )

os_type * ?<<?( os_type *, const char * );

Note that the type satisfying context ostream is specified to be a dtype. This means that

instances of os_type type can only be passed and returned through pointers, and that the imple-

mentations of these functions cannot instantiate new variables of type os_type. For an abstract

data type these restrictions do not significantly constrain the implementation, and they permit an

efficient translation. For instance, the function

forall( dtype os_type | ostream( os_type ) )

os_type * ?<<?( os_type *os, char c ) {

return write( os, &c, 1 );

}

is translated into
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void *_operator_shiftleft(void *(*write)(void *, const char *,

long unsigned int ),

int (*fail)(void *),

void *os,

char c) {

return write(os, (&c), 1);

}

The translated function is identical to the original except that assertion parameters defined in

the context ostream have become explicit parameters. The function does not require any of

the special mechanisms of Section 3.1.4 (type descriptors, boxing, or adapter functions), since it

cannot manipulate os_type values directly, but only through pointers.

The profusion of << operators suggests another context, one that describes types that can be

written to streams.

context writeable(type T) {

forall(dtype os_type | ostream(os_type)) os_type * ?<<?(os_type *, T);

};

A type satisfying this context must provide a << operation that can be applied to anyostream

type.

In a similar way, contexts istream and readable are defined to describe input streams and

types that can be read from streams. A small but complete set of definitions of these contexts

with << and >> operators is found in Section A.1.1. An implementation that uses the C stdio.h

functions to provide data types ofstream and ifstream that conform to the contexts ostream

and istream, respectively, is presented in Section A.1.2.

4.2 Arrays

An array is defined here to be a sequence of data elements all having the same type, stored

contiguously in memory, where an individual element may be accessed by using an integer rep-

resenting its position in the array.

context array( type array_type, type elt_type ) {

lvalue elt_type ?[?]( array_type, int );

};
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This operation overloads the indexing operator, so that for an array a and an integer i, the

expression a[i] returns the element of the array at index i. The qualifier lvalue means that

the element of the array designated by the expression can be modified; returning an value with

lvalue qualification is similar to returning a value by reference in C++.1 The first element of

the array is at index 0.

Defining the context array in this way means that, for any object type T, the type T* can be

treated as an array of T. This is because the index operation is pre-defined for all pointer types;

the pointer points to the first element of the array.

Given a pointer to a C array, there is no way to know the maximum valid index for the array.

Define a boundedarray type to be an array that can provide its maximum index upon request.

context bounded_array( type array_type, type elt_type

| array( array_type, elt_type ) ) {

int last( array_type );

};

The context bounded_array places the same constraints on the array and element types as the

array context, but also requires that the last function exists.

Note that in the contexts array and bounded_array, the array_type and elt_type

parameters are of kind type, meaning that they must be complete types. This specification

means that values of these types must be assignable and instantiable, and that the values must be

boxed and unboxed.

The structure vector_int and its associated functions implements a bounded array of int

that dynamically resizes itself as elements are added to the end.

typedef struct vector_int {

int last;

int capacity;

int *data;

} vector_int;

Since vector_int is a complete type, it requires an assignment operation. The translator auto-

matically generates an assignment operator for each structure it encounters.

1In translation, functions returning lvalue types return a pointer to the actual result, which is implicitly deref-

erenced in the calling function.
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struct vector_int {

int last;

int capacity;

int *data;

};

static struct vector_int _operator_assign(struct vector_int *_dst,

struct vector_int _src) {

((*_dst).last=_src.last);

((*_dst).capacity=_src.capacity);

((*_dst).data=_src.data);

return _src;

}

The automatically-generated assignment operator invokes assignment for each of the members

of the structure. Here, the members have intrinsic types, so the intrinsic assignment operators

are used; if the structure contained a member having a user defined type with an overloaded

assignment operator, that operator would be invoked here. Note that the copy is a “shallow

copy”, in that the pointer to the vector’s data is copied but not the vector itself — the destination

vector shares the data of the source vector. If a complete copy of the vector is desired, the

assignment operator can be redefined by the user to give this behaviour.

The remaining code for vector_int is found in Section A.2.2. Aside from the overloaded

functions ?[?] and last that implement the context bound_array, vector_int is imple-

mented in pure C.

4.3 Iterators

When dealing with “collection” data structures such as arrays, lists, and sets, it is often useful to

write functions that process elements of a collection one at a time, regardless of the specific type

of the container. This inspiration gives rise to the iterator concept.
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context iterator( type iterator_type, type elt_type ) {

iterator_type ++?( iterator_type* );

iterator_type --?( iterator_type* );

int ?==?( iterator_type, iterator_type );

int ?!=?( iterator_type, iterator_type );

lvalue elt_type *?( iterator_type );

};

An iterator is a generic “pointer” that references some element within a collection. The itera-

tor can be adjusted to point at the “next” element (however “next” is defined for the particular

collection) using the ++ operator, or at the “previous” element using the -- operator. The ==

and != operators allow for equality comparisons among iterators (two iterators are equal if they

reference the same element of the same collection). The * operator provides the ability to read

and change the element referenced by the iterator.

Typically, iterator algorithms operate over a range of elements. This chapter adopts similar

conventions for iterator ranges as the C++ standard library: given two iterators i1 and i2, the

range of elements defined by those iterators includes the element referenced by i1 and all suc-

cessors of that element up to but not including the element referenced by i2. A collection has

two special iterators, begin and end: begin references the first element in the collection, and

end references an imaginary element that is located after the last element in the collection.

Since arrays are stored in contiguous memory, it is possible to use pointers as iterators. Point-

ers have all of the iterator operations defined for them automatically. For a bounded_array,

it is possible to write generic functions that return the begin and end iterators:

forall( type array_type, type elt_type

| bounded_array( array_type, elt_type ) )

elt_type *begin( array_type array ) {

return &array[ 0 ];

}

forall( type array_type, type elt_type

| bounded_array( array_type, elt_type ) )

elt_type *end( array_type array ) {

return &array[ last( array ) ] + 1;

}
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These functions return, respectively, a pointer to the first element of the array and a pointer to one

past the last element. Since these functions are polymorphic, they require adapters and boxing.

For example, the end function becomes:

void *end(void *(*_adapter1)(void (*)(), void *, int ),

int (*_adapter2)(void (*)(), void *),

void (*_adapter3)(void (*)(), void *, void *, void *),

void (*_adapter4)(void (*)(), void *, void *, void *),

long unsigned int array_type,

long unsigned int elt_type,

void (*_operator_assign_array_type)(),

void (*_operator_assign_elt_type)(),

void (*last)(),

void (*_operator_index)(),

void *array) {

return (_adapter1(_operator_index, array, _adapter2(last, array))

+(1*elt_type));

}

The parameters to this function are:

� an adapter for _operator_index

� an adapter for last

� an adapter for _operator_assign_array_type

� an adapter for _operator_assign_elt_type

� the size of an instance of array_type

� the size of an instance of elt_type

� the assignment operator for array_type

� the assignment operator for elt_type

� the last function from context bounded_array
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� the index operator from context array

� the array itself (boxed)

The evaluation of the function first calls the last function through an adapter; the adapter un-

boxes the array, calls last, and returns the integer result. This result is then used in the call

to the index operator, which once again unboxes the array and performs the indexing operation.

The result of the index is a lvalue elt_type, which (as previously described) is returned as

a pointer, so no further boxing is necessary. Finally, the returned pointer must be incremented

to point at the next array element; normally, adding one to a pointer has this effect, but here the

size of the data elements is only known at run-time, so it is necessary to specify the size of the

increment explicitly.

Since vector_int implements the context bounded_array, these functions can be used

to get the beginning and ending iterators for an object of type vector_int.

Using iterators, it is possible to write generic algorithms that can operate over any kind of

collection using iterators:

forall( type elt_type | writeable( elt_type ),

type iterator_type | iterator( iterator_type, elt_type ),

dtype os_type | ostream( os_type ) )

void

write_reverse( iterator_type begin, iterator_type end, os_type *os ) {

iterator_type i = end;

do {

--i;

os << *i << ’ ’;

} while( i != begin );

}

In the output from the translator, this seemingly-simple function is translated into a function with

21 parameters; these convey:

� six adapters

� the sizes of types elt_type and iterator_type

� assignment operators for elt_type and iterator_type
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� the << operator of context writeable

� the five operators of context iterator

� the two functions of context ostream

� the three explicit parameters to the function

Note in particular that the << operation, coming from context writeable, is a polymorphic

function passed as a parameter (as described in Section 2.1.3):

forall( dtype os_type | ostream( os_type ) ) os_type * ?<<?( os_type *, T );

Since one of its parameters is a pointer to a polymorphic type while the other parameter is

monomorphic (the type of the value to be written), the adapter for the << operator must unbox the

monomorphic parameter while passing along the os_type pointer and the ostream operations.

For the function

forall(dtype os_type | ostream(os_type)) os_type * ?<<?(os_type *, int);

an appropriate adapter is

void *_adapter(void *(*write)(void *, const char *, long unsigned int ),

int (*fail)(void *),

void (*_adaptee)(),

void *_p0,

void *_p1) {

return ((void *(*)(void *(*)(void *, const char *, long unsigned int ),

int (*)(void *), void *, int ))_adaptee)

(write, fail, _p0, (*((int *)_p1)));

}

Here, the function to be adapted (_adaptee) is cast to the proper type (accepting four arguments,

the two ostream operations and the two explicit parameters) before being applied to the set of

parameters passed in (where the last of the parameters is unboxed).

The complete translator output for the write_reverse function begins on page 109.
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int main() {

ofstream *sout = ofstream_stdout();

ifstream *sin = ifstream_stdin();

vector_int vec = vector_int_allocate();

// read in numbers until EOF or error

int num;

for(;;) {

sin >> &num;

if( fail( sin ) || eof( sin ) ) break;

append( &vec, num );

}

// write out the numbers

sout << "Array elements: ";

write_reverse( begin( vec ), end( vec ), sout );

sout << "\n";

return 0;

}

Figure 4.1: Program to read in numbers and write them out

4.4 Test Program

Figure 4.1 shows a program that solves the problem posed at the beginning of the chapter, using

the data structures and subroutines presented. The first block of statements allocates input and

output streams corresponding to standard input and standard output, respectively, and allocates

a vector to store the numbers that are read. The next block reads numbers and adds them to the

end of the vector until no more remain to be read. The final block uses the write_reverse

function to write the numbers.

Most of the complexity of the translated output centres around the single line

write_reverse( begin( vec ), end( vec ), sout );

The complete translation of this statement produces three pages of output (this output is found

beginning on page 113). The translation must accomplish a number of tasks:
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� The functions begin and end are polymorphic in the array type (vector_int) and the

element type (int), so the input array (vec) is be boxed and the appropriate array opera-

tions are be passed, along with adapters. Since begin and end have the same assertions

and type arguments, the adapters generated for one are re-used for the other. The results

of begin and end are assigned to temporaries so that they can be boxed to be passed to

write_reverse.

� The function write_reverse is polymorphic in the iterator type (int*), so the five oper-

ations of context iterator must be passed. The operations are pre-defined polymorphic

functions defined over all pointer types; for instance, the equality function is prototyped

as:

forall(dtype DT) int ?==?(DT*, DT*);

Since the equality operation required by context iterator is not polymorphic, a special-

ization is necessary (Section 3.2). The specialization thunk created in this case is:

int _thunk3(int *_p0, int *_p1) {

return _operator_equal_ptr(_p0, _p1);

}

As an additional operation, the translator recognizes that the operation invoked by the

thunk simply implements the intrinsic pointer equality operation, so it expands the opera-

tion in-line:

int _thunk3(int *_p0, int *_p1) {

return (_p0==_p1);

}

Similar thunks are created for the other four operations of context iterator, as well as for

the pointer assignment operation. Adapters are created as well, so that the int* iterators

are properly unboxed before being passed to the thunks. In addition, the size of the iterator

type is passed.

� The function write_reverse is also polymorphic in the type of element returned by the

iterator (int, in this case), which must support the polymorphic << operation of context
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writeable. This operation must be passed, along with an adapter (code for the adapter

is presented in the previous section). In addition, the size of the element type and an

assignment operation are passed.

� The function write_reverse is also polymorphic in the type of the output stream (in

this case, ofstream). Since the stream type is a dtype, no extra adapters, assignment

operations, or type sizes need to be passed, but the two operations of context ostream

must be passed.

The complete output of the translator for the above program is found starting on page 112.



Chapter 5

Conclusions

This thesis describes the basic algorithms and data representations involved in implementing

a compilation system for Cforall. This implementation is constrained by the need to support

traditional C code in a way that preserves its original meaning and efficiency, while still pro-

viding efficient and unrestricted use of the new language features. This constraint has resulted

in an implementation that is in some ways quite different from implementations of comparable

languages.

5.1 Expression Analysis

The expression analysis algorithm essentially adapts the algorithm of Cormack and Wright [9],

with extensions to allow for implicit conversions, the use of contexts, and the composition of

functions returning multiple values. While the problem is solvable, some questions remain about

the overall efficiency of the algorithm. Dealing with functions returning multiple values adds an

exponential factor to the complexity of the algorithm, but it remains to be seen what effect this

theoretical complexity has on practical efficiency. The implementation of the translator must be

optimized and empirical data must be gathered from experimentation with the translator in order

to determine what the real characteristics of the algorithm are.

82
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5.2 Code Generation

This thesis proposes converting polymorphic functions into a monomorphic form using a hybrid

approach of boxing and expansion, while at the same time conceding that the choice is controver-

sial. The choice is strongly influenced by the goals of the translation: to preserve the performance

of monomorphic programs while at the same time supporting polymorphism completely and uni-

formly. Typically, language implementations trade off one of these factors against the other to

improve the performance of polymorphic code: sacrificing performance on monomorphic code,

or restricting the use of polymorphism. It seems that combining both expansion and coercion

makes this trade-off unnecessary, but the proof of this will be in the performance of real Cforall

programs.

5.3 Future Work

The outstanding questions related to this work are performance issues, both of the translator

itself and of the generated code. In order to assess performance, and to quantify the effect

of any improvements on the system, there must be a significant body of real code to use in

experimentation. Since Cforall is a (near) superset of C, it is natural to experiment on the vast

collection of freely-available C programs. These programs are insufficient, however, since they

do not make use of overloading, polymorphism, or multiple return values. For this reason, new

programs must be written or old programs adapted to use the new features to provide a basis for

experimentation with the translator. At this point, it is not even clear how these features will be

used to write practical applications — new programming idioms will undoubtedly evolve, and

supporting these idioms efficiently may motivate the evolution of the compilation system.

Also, the limitations imposed by the need to generate C code should be considered. It may

be possible to improve the performance of the generated code by using a full compiler (or by

integrating a Cforall front end with an existing compiler back end).



Appendix A

Source Code for Examples

This appendix contains the complete source for the example Cforall program described in Chap-

ter 4, as well as the C source code that is generated by the Cforall translator for each module.

The translator output has been annotated with comments showing the original Cforall code in

bold-face. The output of the translator also contains the contents of any included header files

and a set of prototypes for functions that implement the C intrinsic operations; these have been

edited out of the output to conserve space.

A.1 Stream Library

A.1.1 iostream

iostream.h

#ifndef IOSTREAM_H

#define IOSTREAM_H

typedef unsigned long streamsize_type;

// an ostream is any place to which we can write charaters

context ostream( dtype os_type )

{

84
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// send some characters to the stream

os_type *write( os_type *, const char *, streamsize_type );

// returns 1 if an error has occurred, 0 otherwise

int fail( os_type * );

};

// the "<<" operation represents writing an object to a stream

// a type is writeable if it supports this operation

context writeable( type T )

{

forall( dtype os_type | ostream( os_type ) )

os_type * ?<<?( os_type *, T );

};

// implement writable for some intrinsic types

forall( dtype os_type | ostream( os_type ) )

os_type * ?<<?( os_type *, char );

forall( dtype os_type | ostream( os_type ) )

os_type * ?<<?( os_type *, int );

forall( dtype os_type | ostream( os_type ) )

os_type * ?<<?( os_type *, const char * );

// an istream is any place from which we can read charaters

context istream( dtype is_type )

{

// read some characters from the stream

is_type *read( is_type *, char *, streamsize_type );

// put a character back

is_type *unread( is_type *, char );

// returns 1 if an error has occurred, 0 otherwise

int fail( is_type * );
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// returns 1 if the last read encountered the end of file, 0 otherwise

int eof( is_type * );

};

// the ">>" operation represents reading an object from a stream

// a type is readable if it supports this operation

context readable( type T )

{

forall( dtype is_type | istream( is_type ) )

is_type * ?<<?( is_type *, T* );

};

// implement readable for some intrinsic types

forall( dtype is_type | istream( is_type ) )

is_type * ?>>?( is_type *, char* );

forall( dtype is_type | istream( is_type ) )

is_type * ?>>?( is_type *, int* );

#endif /* #ifndef IOSTREAM_H */

iostream.c

#include "iostream.h"

#include <stdio.h>

#include <string.h>

// these functions implement writable and readable for some intrinsic types

forall( dtype os_type | ostream( os_type ) )

os_type *

?<<?( os_type *os, char c )

{

return write( os, &c, 1 );

}
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forall( dtype os_type | ostream( os_type ) )

os_type *

?<<?( os_type *os, int i )

{

char buffer[20]; // can hold any integer

sprintf( buffer, "%d", i );

return write( os, buffer, strlen( buffer ) );

}

forall( dtype os_type | ostream( os_type ) )

os_type *

?<<?( os_type *os, const char *cp )

{

return write( os, cp, strlen( cp ) );

}

forall( dtype is_type | istream( is_type ) )

is_type *

?>>?( is_type *is, char *cp )

{

return read( is, cp, 1 );

}

forall( dtype is_type | istream( is_type ) )

is_type *

?>>?( is_type *is, int *ip )

{

char cur;

// skip some non-digits

do {

is >> &cur;

if( fail( is ) || eof( is ) ) return is;

} while( !( cur >= ’0’ && cur <= ’9’ ) );

// accumulate digits

*ip = 0;

while( cur >= ’0’ && cur <= ’9’ ) {
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*ip = *ip * 10 + ( cur - ’0’ );

is >> &cur;

if( fail( is ) || eof( is ) ) return is;

}

// push back the last non digit

unread( is, cur );

return is;

}

Translator Output

// forall( dtype os_type | ostream( os_type ) )

// os_type *

// ?<<?( os_type *os, char c )

void *___operator_shiftleft__A0_1_0___write__PFP2d0_P2d0PCcUl___fail__PFi_P2d0__

FP2d0_P2d0c_(void *(*__write__PFP8tos_type_P8tos_typePCcUl_)(void *, const char

*, long unsigned int ), int (*__fail__PFi_P8tos_type_)(void *), void *__os__P8to

s_type, char __c__c)

{

// return write( os, &c, 1 );

return __write__PFP8tos_type_P8tos_typePCcUl_(__os__P8tos_type, (&__c__c), 1

);

}

// forall( dtype os_type | ostream( os_type ) )

// os_type *

// ?<<?( os_type *os, int i )

void *___operator_shiftleft__A0_1_0___write__PFP2d0_P2d0PCcUl___fail__PFi_P2d0__

FP2d0_P2d0i_(void *(*__write__PFP8tos_type_P8tos_typePCcUl_)(void *, const char

*, long unsigned int ), int (*__fail__PFi_P8tos_type_)(void *), void *__os__P8to

s_type, int __i__i)

{

// char buffer[20];

char __buffer__A0c[20];

// sprintf( buffer, "%d", i );

sprintf(__buffer__A0c, "%d", __i__i);

// return write( os, buffer, strlen( buffer ) );
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return __write__PFP8tos_type_P8tos_typePCcUl_(__os__P8tos_type, __buffer__A0

c, strlen(__buffer__A0c));

}

// forall( dtype os_type | ostream( os_type ) )

// os_type *

// ?<<?( os_type *os, const char *cp )

void *___operator_shiftleft__A0_1_0___write__PFP2d0_P2d0PCcUl___fail__PFi_P2d0__

FP2d0_P2d0PCc_(void *(*__write__PFP8tos_type_P8tos_typePCcUl_)(void *, const cha

r *, long unsigned int ), int (*__fail__PFi_P8tos_type_)(void *), void *__os__P8

tos_type, const char *__cp__PCc)

{

// return write( os, cp, strlen( cp ) );

return __write__PFP8tos_type_P8tos_typePCcUl_(__os__P8tos_type, __cp__PCc, s

trlen(__cp__PCc));

}

// forall( dtype is_type | istream( is_type ) )

// is_type *

// ?>>?( is_type *is, char *cp )

void *___operator_shiftright__A0_1_0___read__PFP2d0_P2d0PcUl___unread__PFP2d0_P2

d0c___fail__PFi_P2d0___eof__PFi_P2d0__FP2d0_P2d0Pc_(void *(*__read__PFP8tis_type

_P8tis_typePcUl_)(void *, char *, long unsigned int ), void *(*__unread__PFP8tis

_type_P8tis_typec_)(void *, char ), int (*__fail__PFi_P8tis_type_)(void *), int

(*__eof__PFi_P8tis_type_)(void *), void *__is__P8tis_type, char *__cp__Pc)

{

// return read( is, cp, 1 );

return __read__PFP8tis_type_P8tis_typePcUl_(__is__P8tis_type, __cp__Pc, 1);

}

// forall( dtype is_type | istream( is_type ) )

// is_type *

// ?>>?( is_type *is, int *ip )

void *___operator_shiftright__A0_1_0___read__PFP2d0_P2d0PcUl___unread__PFP2d0_P2

d0c___fail__PFi_P2d0___eof__PFi_P2d0__FP2d0_P2d0Pi_(void *(*__read__PFP8tis_type

_P8tis_typePcUl_)(void *, char *, long unsigned int ), void *(*__unread__PFP8tis

_type_P8tis_typec_)(void *, char ), int (*__fail__PFi_P8tis_type_)(void *), int

(*__eof__PFi_P8tis_type_)(void *), void *__is__P8tis_type, int *__ip__Pi)
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{

// char cur;

char __cur__c;

// do {

do{

{

// is >> &cur;

___operator_shiftright__A0_1_0___read__PFP2d0_P2d0PcUl___unread__PFP2d0_

P2d0c___fail__PFi_P2d0___eof__PFi_P2d0__FP2d0_P2d0Pc_(__read__PFP8tis_type_P8tis

_typePcUl_, __unread__PFP8tis_type_P8tis_typec_, __fail__PFi_P8tis_type_, __eof_

_PFi_P8tis_type_, __is__P8tis_type, (&__cur__c));

// if( fail( is ) || eof( is ) ) return is;

if (((int )((((int )(__fail__PFi_P8tis_type_(__is__P8tis_type)!=0)) || (

(int )(__eof__PFi_P8tis_type_(__is__P8tis_type)!=0)))!=0)))

return __is__P8tis_type;

// } while( !( cur >= ’0’ && cur <= ’9’ ) );

}

} while(((int )((!(((int )((__cur__c>=’0’)!=0)) && ((int )((__cur__c<=’9’)!=

0))))!=0)));

// *ip = 0;

((*__ip__Pi)=0);

// while( cur >= ’0’ && cur <= ’9’ ) {

while(((int )((((int )((__cur__c>=’0’)!=0)) && ((int )((__cur__c<=’9’)!=0)))

!=0))){

{

// *ip = *ip * 10 + ( cur - ’0’ );

((*__ip__Pi)=(((*__ip__Pi)*10)+(__cur__c-’0’)));

// is >> &cur;

___operator_shiftright__A0_1_0___read__PFP2d0_P2d0PcUl___unread__PFP2d0_

P2d0c___fail__PFi_P2d0___eof__PFi_P2d0__FP2d0_P2d0Pc_(__read__PFP8tis_type_P8tis

_typePcUl_, __unread__PFP8tis_type_P8tis_typec_, __fail__PFi_P8tis_type_, __eof_

_PFi_P8tis_type_, __is__P8tis_type, (&__cur__c));

// if( fail( is ) || eof( is ) ) return is;

if (((int )((((int )(__fail__PFi_P8tis_type_(__is__P8tis_type)!=0)) || (
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(int )(__eof__PFi_P8tis_type_(__is__P8tis_type)!=0)))!=0)))

return __is__P8tis_type;

}

}

// unread( is, cur );

__unread__PFP8tis_type_P8tis_typec_(__is__P8tis_type, __cur__c);

// return is;

return __is__P8tis_type;

}

A.1.2 fstream

fstream.h

#ifndef FSTREAM_H

#define FSTREAM_H

#include "iostream.h"

typedef struct ofstream ofstream;

// implement context ostream

ofstream *write( ofstream *, const char *, streamsize_type );

int fail( ofstream * );

// stream corresponding to standard output

ofstream *ofstream_stdout();

typedef struct ifstream ifstream;

// implement context istream

ifstream *read( ifstream *, char *, streamsize_type );

ifstream *unread( ifstream *, char );

int fail( ifstream * );

int eof( ifstream * );
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// stream corresponding to standard input

ifstream *ifstream_stdin();

#endif /* #ifndef FSTREAM_H */

fstream.c

#include "fstream.h"

#include <stdio.h>

#include <stdlib.h>

// ofstream and ifstream are simply a wrapper around ANSI stdio

struct ofstream

{

FILE *file;

int fail;

};

ofstream *

write( ofstream *os, const char *data, streamsize_type size )

{

if( !os->fail ) {

fwrite( data, size, 1, os->file );

os->fail = ferror( os->file );

}

return os;

}

int

fail( ofstream *os )

{

return os->fail;

}

static ofstream*

make_ofstream()
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{

ofstream *new_stream = malloc( sizeof( ofstream ) );

new_stream->fail = 0;

return new_stream;

}

ofstream *

ofstream_stdout()

{

ofstream *stdout_stream = make_ofstream();

stdout_stream->file = stdout;

return stdout_stream;

}

struct ifstream

{

FILE *file;

int fail;

int eof;

};

ifstream *

read( ifstream *is, char *data, streamsize_type size )

{

if( !is->fail && !is->eof ) {

fread( data, size, 1, is->file );

is->fail = ferror( is->file );

is->eof = feof( is->file );

}

return is;

}

ifstream *unread( ifstream *is, char c )

{

if( !is->fail ) {

if( EOF == ungetc( c, is->file ) ) {

is->fail = 1;

}
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}

return is;

}

int fail( ifstream *is )

{

return is->fail;

}

int eof( ifstream *is )

{

return is->eof;

}

static ifstream*

make_ifstream()

{

ifstream *new_stream = malloc( sizeof( ifstream ) );

new_stream->fail = 0;

new_stream->eof = 0;

return new_stream;

}

ifstream *ifstream_stdin()

{

ifstream *stdin_stream = make_ifstream();

stdin_stream->file = stdin;

return stdin_stream;

}

Translator Output

// struct ofstream

// {

// FILE *file;

// int fail;

// };

struct ofstream
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{

struct __FILE *__file__P7s__FILE;

int __fail__i;

};

static struct ofstream ___operator_assign__F9sofstream_P9sofstream9sofstream_(st

ruct ofstream *___dst__P9sofstream, struct ofstream ___src__9sofstream)

{

((*___dst__P9sofstream).__file__P7s__FILE=___src__9sofstream.__file__P7s__FI

LE);

((*___dst__P9sofstream).__fail__i=___src__9sofstream.__fail__i);

return ___src__9sofstream;

}

// ofstream *

// write( ofstream *os, const char *data, streamsize_type size )

struct ofstream *__write__FP9sofstream_P9sofstreamPCcUl_(struct ofstream *__os__

P9sofstream, const char *__data__PCc, long unsigned int __size__Ul)

{

// if( !os->fail ) {

if (((int )((!(*__os__P9sofstream).__fail__i)!=0)))

{

// fwrite( data, size, 1, os->file );

fwrite(__data__PCc, __size__Ul, 1, (*__os__P9sofstream).__file__P7s_

_FILE);

// os->fail = ferror( os->file );

((*__os__P9sofstream).__fail__i=((*(*__os__P9sofstream).__file__P7s_

_FILE)._flag&0040));

}

// return os;

return __os__P9sofstream;

}

// int

// fail( ofstream *os )

int __fail__Fi_P9sofstream_(struct ofstream *__os__P9sofstream)
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{

// return os->fail;

return (*__os__P9sofstream).__fail__i;

}

// static ofstream*

// make_ofstream()

static struct ofstream *__make_ofstream__FP9sofstream__()

{

// ofstream *new_stream = malloc( sizeof( ofstream ) );

struct ofstream *__new_stream__P9sofstream;

(__new_stream__P9sofstream=malloc(sizeof(struct ofstream )));

// new_stream->fail = 0;

((*__new_stream__P9sofstream).__fail__i=0);

// return new_stream;

return __new_stream__P9sofstream;

}

// ofstream *

// ofstream_stdout()

struct ofstream *__ofstream_stdout__FP9sofstream__()

{

// ofstream *stdout_stream = make_ofstream();

struct ofstream *__stdout_stream__P9sofstream;

(__stdout_stream__P9sofstream=__make_ofstream__FP9sofstream__());

// stdout_stream->file = stdout;

((*__stdout_stream__P9sofstream).__file__P7s__FILE=(&__iob[1]));

// return stdout_stream;

return __stdout_stream__P9sofstream;

}

// struct ifstream

// {

// FILE *file;

// int fail;

// int eof;

// };

struct ifstream
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{

struct __FILE *__file__P7s__FILE;

int __fail__i;

int __eof__i;

};

static struct ifstream ___operator_assign__F9sifstream_P9sifstream9sifstream_(st

ruct ifstream *___dst__P9sifstream, struct ifstream ___src__9sifstream)

{

((*___dst__P9sifstream).__file__P7s__FILE=___src__9sifstream.__file__P7s__FI

LE);

((*___dst__P9sifstream).__fail__i=___src__9sifstream.__fail__i);

((*___dst__P9sifstream).__eof__i=___src__9sifstream.__eof__i);

return ___src__9sifstream;

}

// ifstream *

// read( ifstream *is, char *data, streamsize_type size )

struct ifstream *__read__FP9sifstream_P9sifstreamPcUl_(struct ifstream *__is__P9

sifstream, char *__data__Pc, long unsigned int __size__Ul)

{

// if( !is->fail && !is->eof ) {

if (((int )((((int )((!(*__is__P9sifstream).__fail__i)!=0)) && ((int )((!(*_

_is__P9sifstream).__eof__i)!=0)))!=0)))

{

// fread( data, size, 1, is->file );

fread(__data__Pc, __size__Ul, 1, (*__is__P9sifstream).__file__P7s__F

ILE);

// is->fail = ferror( is->file );

((*__is__P9sifstream).__fail__i=((*(*__is__P9sifstream).__file__P7s_

_FILE)._flag&0040));

// is->eof = feof( is->file );

((*__is__P9sifstream).__eof__i=((*(*__is__P9sifstream).__file__P7s__

FILE)._flag&0020));

}

// return is;
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return __is__P9sifstream;

}

// ifstream *unread( ifstream *is, char c )

struct ifstream *__unread__FP9sifstream_P9sifstreamc_(struct ifstream *__is__P9s

ifstream, char __c__c)

{

// if( !is->fail ) {

if (((int )((!(*__is__P9sifstream).__fail__i)!=0)))

{

// if( EOF == ungetc( c, is->file ) ) {

if (((int )(((-1)==ungetc(__c__c, (*__is__P9sifstream).__file__P7s__

FILE))!=0)))

{

// is->fail = 1;

((*__is__P9sifstream).__fail__i=1);

}

}

// return is;

return __is__P9sifstream;

}

// int fail( ifstream *is )

int __fail__Fi_P9sifstream_(struct ifstream *__is__P9sifstream)

{

// return is->fail;

return (*__is__P9sifstream).__fail__i;

}

// int eof( ifstream *is )

int __eof__Fi_P9sifstream_(struct ifstream *__is__P9sifstream)

{
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// return is->eof;

return (*__is__P9sifstream).__eof__i;

}

// static ifstream*

// make_ifstream()

static struct ifstream *__make_ifstream__FP9sifstream__()

{

// ifstream *new_stream = malloc( sizeof( ifstream ) );

struct ifstream *__new_stream__P9sifstream;

(__new_stream__P9sifstream=malloc(sizeof(struct ifstream )));

// new_stream->fail = 0;

((*__new_stream__P9sifstream).__fail__i=0);

// new_stream->eof = 0;

((*__new_stream__P9sifstream).__eof__i=0);

// return new_stream;

return __new_stream__P9sifstream;

}

// ifstream *ifstream_stdin()

struct ifstream *__ifstream_stdin__FP9sifstream__()

{

// ifstream *stdin_stream = make_ifstream();

struct ifstream *__stdin_stream__P9sifstream;

(__stdin_stream__P9sifstream=__make_ifstream__FP9sifstream__());

// stdin_stream->file = stdin;

((*__stdin_stream__P9sifstream).__file__P7s__FILE=(&__iob[0]));

// return stdin_stream;

return __stdin_stream__P9sifstream;

}
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A.2 Arrays

A.2.1 array

array.h

#ifndef ARRAY_H

#define ARRAY_H

// An array has contiguous elements accessible in any order using integer

// indicies. The first element has index 0.

context array( type array_type, type elt_type )

{

lvalue elt_type ?[?]( array_type, int );

};

// a bounded array is an array that carries its maximum index with it

context bounded_array( type array_type, type elt_type

| array( array_type, elt_type ) )

{

int last( array_type );

};

// A bounded array can be iterated over by using a pointer to the element

// type. These functions return iterators corresponding to the first

// element and the one-past-the-end element, STL-style.

forall( type array_type, type elt_type

| bounded_array( array_type, elt_type ) )

elt_type *begin( array_type );

forall( type array_type, type elt_type

| bounded_array( array_type, elt_type ) )

elt_type *end( array_type );

#endif /* #ifndef ARRAY_H */
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array.c

#include "array.h"

// the first element is always at index 0

forall( type array_type, type elt_type

| bounded_array( array_type, elt_type ) )

elt_type *

begin( array_type array )

{

return &array[ 0 ];

}

// the end iterator should point one past the last element

forall( type array_type, type elt_type

| bounded_array( array_type, elt_type ) )

elt_type *

end( array_type array )

{

return &array[ last( array ) ] + 1;

}

Translator Output

// forall( type array_type, type elt_type

// | bounded_array( array_type, elt_type ) )

// elt_type *

// begin( array_type array )

void *__begin__A2_0_0____operator_assign__PF2t0_P2t02t0____operator_assign__PF2t

1_P2t12t1___last__PFi_2t0____operator_index__PFL2t1_2t0i__FP2t1_2t0_(void *(*_ad

apterFP9telt_type_11tarray_typei_)(void (*)(), void *, int ), int (*_adapterFi_1

1tarray_type_)(void (*)(), void *), void (*_adapterF9telt_type_P9telt_type9telt_

type_)(void (*)(), void *, void *, void *), void (*_adapterF11tarray_type_P11tar

ray_type11tarray_type_)(void (*)(), void *, void *, void *), long unsigned int a

rray_type, long unsigned int elt_type, void (*___operator_assign__PF11tarray_typ

e_P11tarray_type11tarray_type_)(), void (*___operator_assign__PF9telt_type_P9tel

t_type9telt_type_)(), void (*__last__PFi_11tarray_type_)(), void (*___operator_i
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ndex__PFL9telt_type_11tarray_typei_)(), void *__array__11tarray_type)

{

// return &array[ 0 ];

return _adapterFP9telt_type_11tarray_typei_(___operator_index__PFL9telt_type

_11tarray_typei_, __array__11tarray_type, 0);

}

// forall( type array_type, type elt_type

// | bounded_array( array_type, elt_type ) )

// elt_type *

// end( array_type array )

void *__end__A2_0_0____operator_assign__PF2t0_P2t02t0____operator_assign__PF2t1_

P2t12t1___last__PFi_2t0____operator_index__PFL2t1_2t0i__FP2t1_2t0_(void *(*_adap

terFP9telt_type_11tarray_typei_)(void (*)(), void *, int ), int (*_adapterFi_11t

array_type_)(void (*)(), void *), void (*_adapterF9telt_type_P9telt_type9telt_ty

pe_)(void (*)(), void *, void *, void *), void (*_adapterF11tarray_type_P11tarra

y_type11tarray_type_)(void (*)(), void *, void *, void *), long unsigned int arr

ay_type, long unsigned int elt_type, void (*___operator_assign__PF11tarray_type_

P11tarray_type11tarray_type_)(), void (*___operator_assign__PF9telt_type_P9telt_

type9telt_type_)(), void (*__last__PFi_11tarray_type_)(), void (*___operator_ind

ex__PFL9telt_type_11tarray_typei_)(), void *__array__11tarray_type)

{

// return &array[ last( array ) ] + 1;

return (_adapterFP9telt_type_11tarray_typei_(___operator_index__PFL9telt_typ

e_11tarray_typei_, __array__11tarray_type, _adapterFi_11tarray_type_(__last__PFi

_11tarray_type_, __array__11tarray_type))+(1*elt_type));

}

A.2.2 vector int

vector int.h

#ifndef VECTOR_INT_H

#define VECTOR_INT_H

// a "flexible array", similar to a C++ vector, that holds integers

// and can be resized dynamically
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typedef struct vector_int

{

// the last used index

int last;

// the last possible index before reallocation is necessary

int capacity;

// the array itself

int *data;

} vector_int;

// allocate a vector with default capacity

vector_int vector_int_allocate();

// allocate a vector with specified capacity

vector_int vector_int_allocate( int reserve );

// deallocate the vector’s storage

void vector_int_deallocate( vector_int );

// reserve more capacity

void reserve( vector_int *vec, int reserve );

// add an element to the end of the vector, resizing as necessary

void append( vector_int *vec, int element );

// implement bounded_array (array.h)

// access to an arbitrary element (will not resize)

lvalue int ?[?]( vector_int vec, int index );

// return the current last element

int last( vector_int vec );

#endif /* #ifndef VECTOR_INT_H */
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vector int.c

#include "vector_int.h"

#include <stdlib.h>

#define DEFAULT_CAPACITY 20

vector_int

vector_int_allocate()

{

return vector_int_allocate( DEFAULT_CAPACITY );

}

vector_int

vector_int_allocate( int reserve )

{

vector_int new_vector;

new_vector.last = -1;

new_vector.capacity = reserve;

new_vector.data = malloc( sizeof( int ) * reserve );

return new_vector;

}

void

vector_int_deallocate( vector_int vec )

{

free( vec.data );

}

void append( vector_int *vec, int element )

{

vec->last++;

if( vec->last == vec->capacity ) {

vec->capacity *= 2;

vec->data = realloc( vec->data, sizeof( int ) * vec->capacity );

}

vec->data[ vec->last ] = element;

}
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// implement bounded_array

lvalue int

?[?]( vector_int vec, int index )

{

return vec.data[ index ];

}

int

last( vector_int vec )

{

return vec.last;

}

Translator Output

// typedef struct vector_int

// {

// int last;

// int capacity;

// int *data;

// } vector_int;

struct vector_int

{

int __last__i;

int __capacity__i;

int *__data__Pi;

};

static struct vector_int ___operator_assign__F11svector_int_P11svector_int11svec

tor_int_(struct vector_int *___dst__P11svector_int, struct vector_int ___src__11

svector_int)

{

((*___dst__P11svector_int).__last__i=___src__11svector_int.__last__i);

((*___dst__P11svector_int).__capacity__i=___src__11svector_int.__capacity__i

);

((*___dst__P11svector_int).__data__Pi=___src__11svector_int.__data__Pi);
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return ___src__11svector_int;

}

// vector_int

// vector_int_allocate()

struct vector_int __vector_int_allocate__F11svector_int__()

{

// return vector_int_allocate( DEFAULT_CAPACITY );

return __vector_int_allocate__F11svector_int_i_(20);

}

// vector_int

// vector_int_allocate( int reserve )

struct vector_int __vector_int_allocate__F11svector_int_i_(int __reserve__i)

{

// vector_int new_vector;

struct vector_int __new_vector__11svector_int;

// new_vector.last = -1;

(__new_vector__11svector_int.__last__i=(-1));

// new_vector.capacity = reserve;

(__new_vector__11svector_int.__capacity__i=__reserve__i);

// new_vector.data = malloc( sizeof( int ) * reserve );

(__new_vector__11svector_int.__data__Pi=malloc((sizeof(int )*__reserve__i)))

;

// return new_vector;

return __new_vector__11svector_int;

}

// void

// vector_int_deallocate( vector_int vec )

void __vector_int_deallocate__F_11svector_int_(struct vector_int __vec__11svecto

r_int)

{

// free( vec.data );

free(__vec__11svector_int.__data__Pi);

}

// void append( vector_int *vec, int element )
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void __append__F_P11svector_inti_(struct vector_int *__vec__P11svector_int, int

__element__i)

{

// vec->last++;

(*__vec__P11svector_int).__last__i++;

// if( vec->last == vec->capacity ) {

if (((int )(((*__vec__P11svector_int).__last__i==(*__vec__P11svector_int).__

capacity__i)!=0)))

{

// vec->capacity *= 2;

((*__vec__P11svector_int).__capacity__i*=2);

// vec->data = realloc( vec->data, sizeof( int ) * vec->capacity );

((*__vec__P11svector_int).__data__Pi=realloc((*__vec__P11svector_int

).__data__Pi, (sizeof(int )*(*__vec__P11svector_int).__capacity__i)));

}

// vec->data[ vec->last ] = element;

((*__vec__P11svector_int).__data__Pi[(*__vec__P11svector_int).__last__i]=__e

lement__i);

}

// lvalue int

// ?[?]( vector_int vec, int index )

int *___operator_index__FLi_11svector_inti_(struct vector_int __vec__11svector_i

nt, int __index__i)

{

// return vec.data[ index ];

return (&__vec__11svector_int.__data__Pi[__index__i]);

}

// int

// last( vector_int vec )

int __last__Fi_11svector_int_(struct vector_int __vec__11svector_int)

{

// return vec.last;

return __vec__11svector_int.__last__i;
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}

A.3 Iterators

A.3.1 iterator

iterator.h

#ifndef ITERATOR_H

#define ITERATOR_H

#include "iostream.h"

// an iterator can be used to traverse a data structure

context iterator( type iterator_type, type elt_type )

{

// point to the next element

iterator_type ++?( iterator_type* );

iterator_type --?( iterator_type* );

// can be tested for equality with other iterators

int ?==?( iterator_type, iterator_type );

int ?!=?( iterator_type, iterator_type );

// dereference to get the pointed-at element

lvalue elt_type *?( iterator_type );

};

// writes the range [begin, end) to the given stream

forall( type elt_type | writeable( elt_type ),

type iterator_type | iterator( iterator_type, elt_type ),

dtype os_type | ostream( os_type ) )

void write_reverse( iterator_type begin, iterator_type end, os_type *os );

#endif /* #ifndef ITERATOR_H */



A.3. ITERATORS 109

iterator.c

#include "iterator.h"

forall( type elt_type | writeable( elt_type ),

type iterator_type | iterator( iterator_type, elt_type ),

dtype os_type | ostream( os_type ) )

void

write_reverse( iterator_type begin, iterator_type end, os_type *os )

{

iterator_type i = end;

do {

--i;

os << *i << ’ ’;

} while( i != begin );

}

Translator Output

// forall( type elt_type | writeable( elt_type ),

// type iterator_type | iterator( iterator_type, elt_type ),

// dtype os_type | ostream( os_type ) )

// void

// write_reverse( iterator_type begin, iterator_type end, os_type *os )

void __write_reverse__A2_1_0____operator_assign__PF2t0_P2t02t0____operator_shift

left__PA0_1_0___write__PFP2d1_P2d1PCcUl___fail__PFi_P2d1__FP2d1_P2d12t0____opera

tor_assign__PF2t1_P2t12t1____operator_preincr__PF2t1_P2t1____operator_predecr__P

F2t1_P2t1____operator_equal__PFi_2t12t1____operator_notequal__PFi_2t12t1____oper

ator_deref__PFL2t0_2t1___write__PFP2d2_P2d2PCcUl___fail__PFi_P2d2__F_2t12t1P2d2_

(void *(*_adapterFP9telt_type_14titerator_type_)(void (*)(), void *), int (*_ada

pterFi_14titerator_type14titerator_type_)(void (*)(), void *, void *), void (*_a

dapterF14titerator_type_P14titerator_type_)(void (*)(), void *, void *), void (*

_adapterF14titerator_type_P14titerator_type14titerator_type_)(void (*)(), void *

, void *, void *), void *(*_adapterA0_1_0___write__PFP2d0_P2d0PCcUl___fail__PFi_

P2d0__FP2d0_P2d09telt_type_)(void *(*__write__PFP8tos_type_P8tos_typePCcUl_)(voi

d *, const char *, long unsigned int ), int (*__fail__PFi_P8tos_type_)(void *),

void (*)(), void *, void *), void (*_adapterF9telt_type_P9telt_type9telt_type_)(
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void (*)(), void *, void *, void *), long unsigned int elt_type, long unsigned i

nt iterator_type, void (*___operator_assign__PF9telt_type_P9telt_type9telt_type_

)(), void (*___operator_shiftleft__PA0_1_0___write__PFP2d0_P2d0PCcUl___fail__PFi

_P2d0__FP2d0_P2d09telt_type_)(), void (*___operator_assign__PF14titerator_type_P

14titerator_type14titerator_type_)(), void (*___operator_preincr__PF14titerator_

type_P14titerator_type_)(), void (*___operator_predecr__PF14titerator_type_P14ti

terator_type_)(), void (*___operator_equal__PFi_14titerator_type14titerator_type

_)(), void (*___operator_notequal__PFi_14titerator_type14titerator_type_)(), voi

d (*___operator_deref__PFL9telt_type_14titerator_type_)(), void *(*__write__PFP8

tos_type_P8tos_typePCcUl_)(void *, const char *, long unsigned int ), int (*__fa

il__PFi_P8tos_type_)(void *), void *__begin__14titerator_type, void *__end__14ti

terator_type, void *__os__P8tos_type)

{

// iterator_type i = end;

void *__i__14titerator_type;

(__i__14titerator_type=alloca(iterator_type));

void *_temp0;

(_temp0=alloca(iterator_type));

(_adapterF14titerator_type_P14titerator_type14titerator_type_(___operator_as

sign__PF14titerator_type_P14titerator_type14titerator_type_, _temp0, __i__14tite

rator_type, __end__14titerator_type) , _temp0);

// do {

do{

{

// --i;

void *_temp1;

(_temp1=alloca(iterator_type));

(_adapterF14titerator_type_P14titerator_type_(___operator_predecr__PF14t

iterator_type_P14titerator_type_, _temp1, __i__14titerator_type) , _temp1);

// os << *i << ’ ’;

___operator_shiftleft__A0_1_0___write__PFP2d0_P2d0PCcUl___fail__PFi_P2d0

__FP2d0_P2d0c_(__write__PFP8tos_type_P8tos_typePCcUl_, __fail__PFi_P8tos_type_,

_adapterA0_1_0___write__PFP2d0_P2d0PCcUl___fail__PFi_P2d0__FP2d0_P2d09telt_type_

(__write__PFP8tos_type_P8tos_typePCcUl_, __fail__PFi_P8tos_type_, ___operator_sh

iftleft__PA0_1_0___write__PFP2d0_P2d0PCcUl___fail__PFi_P2d0__FP2d0_P2d09telt_typ

e_, __os__P8tos_type, _adapterFP9telt_type_14titerator_type_(___operator_deref__

PFL9telt_type_14titerator_type_, __i__14titerator_type)), ’ ’);
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}

// } while( i != begin );

} while(((int )(_adapterFi_14titerator_type14titerator_type_(___operator_not

equal__PFi_14titerator_type14titerator_type_, __i__14titerator_type, __begin__14

titerator_type)!=0)));

}

A.4 Test Program

A.4.1 vector test

vector test.c

#include "fstream.h"

#include "vector_int.h"

#include "array.h"

#include "iterator.h"

int

main()

{

ofstream *sout = ofstream_stdout();

ifstream *sin = ifstream_stdin();

vector_int vec = vector_int_allocate();

// read in numbers until EOF or error

int num;

for(;;) {

sin >> &num;

if( fail( sin ) || eof( sin ) ) break;

append( &vec, num );

}

// write out the numbers

sout << "Array elements: ";

write_reverse( begin( vec ), end( vec ), sout );
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sout << "\n";

return 0;

}

Translator Output

// int

// main()

int main()

{

// ofstream *sout = ofstream_stdout();

// ifstream *sin = ifstream_stdin();

// vector_int vec = vector_int_allocate();

// int num;

struct ofstream *__sout__P9sofstream;

struct ifstream *__sin__P9sifstream;

struct vector_int __vec__11svector_int;

int __num__i;

(__sout__P9sofstream=__ofstream_stdout__FP9sofstream__());

(__sin__P9sifstream=__ifstream_stdin__FP9sifstream__());

___operator_assign__F11svector_int_P11svector_int11svector_int_((&__vec__11s

vector_int), __vector_int_allocate__F11svector_int__());

// for(;;) {

for (;;)

{

// sin >> &num;

___operator_shiftright__A0_1_0___read__PFP2d0_P2d0PcUl___unread__PFP

2d0_P2d0c___fail__PFi_P2d0___eof__PFi_P2d0__FP2d0_P2d0Pi_(__read__FP9sifstream_P

9sifstreamPcUl_, __unread__FP9sifstream_P9sifstreamc_, __fail__Fi_P9sifstream_,

__eof__Fi_P9sifstream_, __sin__P9sifstream, (&__num__i));

// if( fail( sin ) || eof( sin ) ) break;

if (((int )((((int )(__fail__Fi_P9sifstream_(__sin__P9sifstream)!=0)

) || ((int )(__eof__Fi_P9sifstream_(__sin__P9sifstream)!=0)))!=0)))

break;

// append( &vec, num );

__append__F_P11svector_inti_((&__vec__11svector_int), __num__i);
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}

// sout << "Array elements: ";

___operator_shiftleft__A0_1_0___write__PFP2d0_P2d0PCcUl___fail__PFi_P2d0__FP

2d0_P2d0PCc_(__write__FP9sofstream_P9sofstreamPCcUl_, __fail__Fi_P9sofstream_, _

_sout__P9sofstream, "Array elements: ");

// write_reverse( begin( vec ), end( vec ), sout );

int *_thunk0(int **_p0, int *_p1)

{

return ((*_p0)=_p1);

}

int *_thunk1(int **_p0)

{

return (++(*_p0));

}

int *_thunk2(int **_p0)

{

return (--(*_p0));

}

int _thunk3(int *_p0, int *_p1)

{

return (_p0==_p1);

}

int _thunk4(int *_p0, int *_p1)

{

return (_p0!=_p1);

}

int *_thunk5(int *_p0)

{

return (&(*_p0));

}

void _adapterF11svector_int_P11svector_int11svector_int_(void (*_adaptee)(),
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void *_ret, void *_p0, void *_p1)

{

((*((struct vector_int *)_ret))=((struct vector_int (*)(struct vector_in

t *, struct vector_int ))_adaptee)(_p0, (*((struct vector_int *)_p1))));

}

void _adapterFi_Pii_(void (*_adaptee)(), void *_ret, void *_p0, void *_p1)

{

((*((int *)_ret))=((int (*)(int *, int ))_adaptee)(_p0, (*((int *)_p1)))

);

}

int _adapterFi_11svector_int_(void (*_adaptee)(), void *_p0)

{

return ((int (*)(struct vector_int ))_adaptee)((*((struct vector_int *)_

p0)));

}

void *_adapterFPi_11svector_inti_(void (*_adaptee)(), void *_p0, int _p1)

{

return ((int *(*)(struct vector_int , int ))_adaptee)((*((struct vector_

int *)_p0)), _p1);

}

int *_temp0;

(_temp0=__begin__A2_0_0____operator_assign__PF2t0_P2t02t0____operator_assign

__PF2t1_P2t12t1___last__PFi_2t0____operator_index__PFL2t1_2t0i__FP2t1_2t0_(_adap

terFPi_11svector_inti_, _adapterFi_11svector_int_, _adapterFi_Pii_, _adapterF11s

vector_int_P11svector_int11svector_int_, sizeof(struct vector_int ), sizeof(int

), ((void (*)())___operator_assign__F11svector_int_P11svector_int11svector_int_)

, ((void (*)())___operator_assign__Fi_Pii_), ((void (*)())__last__Fi_11svector_i

nt_), ((void (*)())___operator_index__FLi_11svector_inti_), (&__vec__11svector_i

nt)));

int *_temp1;

(_temp1=__end__A2_0_0____operator_assign__PF2t0_P2t02t0____operator_assign__

PF2t1_P2t12t1___last__PFi_2t0____operator_index__PFL2t1_2t0i__FP2t1_2t0_(_adapte

rFPi_11svector_inti_, _adapterFi_11svector_int_, _adapterFi_Pii_, _adapterF11sve

ctor_int_P11svector_int11svector_int_, sizeof(struct vector_int ), sizeof(int ),
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((void (*)())___operator_assign__F11svector_int_P11svector_int11svector_int_),

((void (*)())___operator_assign__Fi_Pii_), ((void (*)())__last__Fi_11svector_int

_), ((void (*)())___operator_index__FLi_11svector_inti_), (&__vec__11svector_int

)));

void *_adapterA0_1_0___write__PFP2d0_P2d0PCcUl___fail__PFi_P2d0__FP2d0_P2d0i

_(void *(*__write__PFP8tos_type_P8tos_typePCcUl_)(void *, const char *, long uns

igned int ), int (*__fail__PFi_P8tos_type_)(void *), void (*_adaptee)(), void *_

p0, void *_p1)

{

return ((void *(*)(void *(*__write__PFP8tos_type_P8tos_typePCcUl_)(void

*, const char *, long unsigned int ), int (*__fail__PFi_P8tos_type_)(void *), vo

id *, int ))_adaptee)(__write__PFP8tos_type_P8tos_typePCcUl_, __fail__PFi_P8tos_

type_, _p0, (*((int *)_p1)));

}

void _adapterFPi_PPiPi_(void (*_adaptee)(), void *_ret, void *_p0, void *_p1

)

{

((*((int **)_ret))=((int *(*)(int **, int *))_adaptee)(_p0, (*((int **)_

p1))));

}

void _adapterFPi_PPi_(void (*_adaptee)(), void *_ret, void *_p0)

{

((*((int **)_ret))=((int *(*)(int **))_adaptee)(_p0));

}

int _adapterFi_PiPi_(void (*_adaptee)(), void *_p0, void *_p1)

{

return ((int (*)(int *, int *))_adaptee)((*((int **)_p0)), (*((int **)_p

1)));

}

void *_adapterFPi_Pi_(void (*_adaptee)(), void *_p0)

{

return ((int *(*)(int *))_adaptee)((*((int **)_p0)));

}
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__write_reverse__A2_1_0____operator_assign__PF2t0_P2t02t0____operator_shiftl

eft__PA0_1_0___write__PFP2d1_P2d1PCcUl___fail__PFi_P2d1__FP2d1_P2d12t0____operat

or_assign__PF2t1_P2t12t1____operator_preincr__PF2t1_P2t1____operator_predecr__PF

2t1_P2t1____operator_equal__PFi_2t12t1____operator_notequal__PFi_2t12t1____opera

tor_deref__PFL2t0_2t1___write__PFP2d2_P2d2PCcUl___fail__PFi_P2d2__F_2t12t1P2d2_(

_adapterFPi_Pi_, _adapterFi_PiPi_, _adapterFPi_PPi_, _adapterFPi_PPiPi_, _adapte

rA0_1_0___write__PFP2d0_P2d0PCcUl___fail__PFi_P2d0__FP2d0_P2d0i_, _adapterFi_Pii

_, sizeof(int ), sizeof(int *), ((void (*)())___operator_assign__Fi_Pii_), ((voi

d (*)())___operator_shiftleft__A0_1_0___write__PFP2d0_P2d0PCcUl___fail__PFi_P2d0

__FP2d0_P2d0i_), ((void (*)())(&_thunk0)), ((void (*)())(&_thunk1)), ((void (*)(

))(&_thunk2)), ((void (*)())(&_thunk3)), ((void (*)())(&_thunk4)), ((void (*)())

(&_thunk5)), __write__FP9sofstream_P9sofstreamPCcUl_, __fail__Fi_P9sofstream_, (

&_temp0), (&_temp1), __sout__P9sofstream);

// sout << "\n";

___operator_shiftleft__A0_1_0___write__PFP2d0_P2d0PCcUl___fail__PFi_P2d0__FP

2d0_P2d0PCc_(__write__FP9sofstream_P9sofstreamPCcUl_, __fail__Fi_P9sofstream_, _

_sout__P9sofstream, "\n");

// return 0;

return 0;

}
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