// -*- Mode: C++ -*- // // CForall Grammar Version 1.0, Copyright (C) Peter A. Buhr 2001 // // cfa.y -- // // Author : Peter A. Buhr // Created On : Sat Sep 1 20:22:55 2001 // Last Modified By : Peter A. Buhr // Last Modified On : Tue May 12 17:24:53 2015 // Update Count : 963 // // This grammar is based on the ANSI99/11 C grammar, specifically parts of EXPRESSION and STATEMENTS, and on the C // grammar by James A. Roskind, specifically parts of DECLARATIONS and EXTERNAL DEFINITIONS. While parts have been // copied, important changes have been made in all sections; these changes are sufficient to constitute a new grammar. // In particular, this grammar attempts to be more syntactically precise, i.e., it parses less incorrect language syntax // that must be subsequently rejected by semantic checks. Nevertheless, there are still several semantic checks // required and many are noted in the grammar. Finally, the grammar is extended with GCC and CFA language extensions. // Acknowledgments to Richard Bilson, Glen Ditchfield, and Rodolfo Gabriel Esteves who all helped when I got stuck with // the grammar. // The root language for this grammar is ANSI99/11 C. All of ANSI99/11 is parsed, except for: // // 1. designation with '=' (use ':' instead) // // Most of the syntactic extensions from ANSI90 to ANSI11 C are marked with the comment "C99/C11". This grammar also has // two levels of extensions. The first extensions cover most of the GCC C extensions, except for: // // 1. nested functions // 2. generalized lvalues // 3. designation with and without '=' (use ':' instead) // 4. attributes not allowed in parenthesis of declarator // // All of the syntactic extensions for GCC C are marked with the comment "GCC". The second extensions are for Cforall // (CFA), which fixes several of C's outstanding problems and extends C with many modern language concepts. All of the // syntactic extensions for CFA C are marked with the comment "CFA". As noted above, there is one unreconcileable // parsing problem between C99 and CFA with respect to designators; this is discussed in detail before the "designation" // grammar rule. %{ #define YYDEBUG_LEXER_TEXT (yylval) // lexer loads this up each time #define YYDEBUG 1 // get the pretty debugging code to compile #undef __GNUC_MINOR__ #include #include #include "TypedefTable.h" #include "lex.h" #include "ParseNode.h" #include "LinkageSpec.h" DeclarationNode *theTree = 0; // the resulting parse tree LinkageSpec::Type linkage = LinkageSpec::Cforall; std::stack< LinkageSpec::Type > linkageStack; TypedefTable typedefTable; %} //************************* TERMINAL TOKENS ******************************** // keywords %token TYPEDEF %token AUTO EXTERN REGISTER STATIC %token INLINE // C99 %token FORTRAN // C99, extension ISO/IEC 9899:1999 Section J.5.9(1) %token CONST VOLATILE %token RESTRICT // C99 %token FORALL LVALUE // CFA %token VOID CHAR SHORT INT LONG FLOAT DOUBLE SIGNED UNSIGNED %token BOOL COMPLEX IMAGINARY // C99 %token TYPEOF LABEL // GCC %token ENUM STRUCT UNION %token TYPE FTYPE DTYPE CONTEXT // CFA %token SIZEOF %token ATTRIBUTE EXTENSION // GCC %token IF ELSE SWITCH CASE DEFAULT DO WHILE FOR BREAK CONTINUE GOTO RETURN %token CHOOSE FALLTHRU TRY CATCH FINALLY THROW // CFA %token ASM // C99, extension ISO/IEC 9899:1999 Section J.5.10(1) %token ALIGNAS ALIGNOF ATOMIC GENERIC NORETURN STATICASSERT THREADLOCAL // C11 // names and constants: lexer differentiates between identifier and typedef names %token IDENTIFIER QUOTED_IDENTIFIER TYPEDEFname TYPEGENname %token ATTR_IDENTIFIER ATTR_TYPEDEFname ATTR_TYPEGENname %token INTEGERconstant FLOATINGconstant CHARACTERconstant STRINGliteral %token ZERO ONE // CFA // multi-character operators %token ARROW /* -> */ %token ICR DECR /* ++ -- */ %token LS RS /* << >> */ %token LE GE EQ NE /* <= >= == != */ %token ANDAND OROR /* && || */ %token ELLIPSIS /* ... */ %token MULTassign DIVassign MODassign /* *= /= %= */ %token PLUSassign MINUSassign /* += -= */ %token LSassign RSassign /* <<= >>= */ %token ANDassign ERassign ORassign /* &= ^= |= */ // Types declaration %union { Token tok; ParseNode *pn; ExpressionNode *en; DeclarationNode *decl; DeclarationNode::TyCon aggKey; DeclarationNode::TypeClass tclass; StatementNode *sn; ConstantNode *constant; InitializerNode *in; } %type zero_one identifier no_attr_identifier no_01_identifier %type identifier_or_typedef_name no_attr_identifier_or_typedef_name no_01_identifier_or_typedef_name %type string_literal_list // expressions %type constant %type tuple tuple_expression_list %type unary_operator assignment_operator %type primary_expression postfix_expression unary_expression %type cast_expression multiplicative_expression additive_expression shift_expression %type relational_expression equality_expression AND_expression exclusive_OR_expression %type inclusive_OR_expression logical_AND_expression logical_OR_expression conditional_expression %type constant_expression assignment_expression assignment_expression_opt %type comma_expression comma_expression_opt %type argument_expression_list argument_expression for_control_expression assignment_opt %type subrange // statements %type labeled_statement compound_statement expression_statement selection_statement %type iteration_statement jump_statement exception_statement asm_statement %type fall_through_opt fall_through %type statement statement_list %type block_item_list block_item %type case_clause %type case_value case_value_list %type case_label case_label_list %type switch_clause_list_opt switch_clause_list choose_clause_list_opt choose_clause_list %type handler_list handler_clause finally_clause // declarations %type abstract_array abstract_declarator abstract_function abstract_parameter_array %type abstract_parameter_declaration abstract_parameter_declarator abstract_parameter_function %type abstract_parameter_ptr abstract_ptr %type aggregate_key %type aggregate_name %type array_dimension array_parameter_1st_dimension array_parameter_dimension multi_array_dimension %type assertion assertion_list_opt %type bit_subrange_size_opt bit_subrange_size %type basic_declaration_specifier basic_type_name basic_type_specifier direct_type_name indirect_type_name %type context_declaration context_declaration_list context_declaring_list context_specifier %type declaration declaration_list declaration_list_opt declaration_qualifier_list %type declaration_specifier declarator declaring_list %type elaborated_type_name %type enumerator_list enum_name %type enumerator_value_opt %type exception_declaration external_definition external_definition_list external_definition_list_opt %type field_declaration field_declaration_list field_declarator field_declaring_list %type field field_list %type function_array function_declarator function_definition function_no_ptr function_ptr %type identifier_parameter_array identifier_parameter_declarator identifier_parameter_function %type identifier_parameter_ptr identifier_list %type new_abstract_array new_abstract_declarator_no_tuple new_abstract_declarator_tuple %type new_abstract_function new_abstract_parameter_declaration new_abstract_parameter_list %type new_abstract_ptr new_abstract_tuple %type new_array_parameter_1st_dimension %type new_context_declaring_list new_declaration new_field_declaring_list %type new_function_declaration new_function_return new_function_specifier %type new_identifier_parameter_array new_identifier_parameter_declarator_no_tuple %type new_identifier_parameter_declarator_tuple new_identifier_parameter_ptr %type new_parameter_declaration new_parameter_list new_parameter_type_list new_parameter_type_list_opt %type new_typedef_declaration new_variable_declaration new_variable_specifier %type old_declaration old_declaration_list old_declaration_list_opt old_function_array %type old_function_declarator old_function_no_ptr old_function_ptr %type parameter_declaration parameter_list parameter_type_list %type parameter_type_list_opt %type paren_identifier paren_typedef %type storage_class storage_class_name storage_class_list %type sue_declaration_specifier sue_type_specifier %type type_class %type type_declarator type_declarator_name type_declaring_list %type typedef typedef_array typedef_declaration typedef_declaration_specifier typedef_expression %type typedef_function typedef_parameter_array typedef_parameter_function typedef_parameter_ptr %type typedef_parameter_redeclarator typedef_ptr typedef_redeclarator typedef_type_specifier %type typegen_declaration_specifier typegen_type_specifier %type type_name type_name_no_function %type type_parameter type_parameter_list %type type_name_list %type type_qualifier type_qualifier_name type_qualifier_list type_qualifier_list_opt type_specifier %type variable_abstract_array variable_abstract_declarator variable_abstract_function %type variable_abstract_ptr variable_array variable_declarator variable_function variable_ptr // initializers %type initializer initializer_list initializer_opt // designators %type designator designator_list designation // Handle single shift/reduce conflict for dangling else by shifting the ELSE token. For example, this string is // ambiguous: // .---------. matches IF '(' comma_expression ')' statement // if ( C ) S1 else S2 // `-----------------' matches IF '(' comma_expression ')' statement ELSE statement */ %nonassoc THEN // rule precedence for IF '(' comma_expression ')' statement %nonassoc ELSE // token precedence for start of else clause in IF statement %start translation_unit // parse-tree root %% //************************* Namespace Management ******************************** // The grammar in the ANSI C standard is not strictly context-free, since it relies upon the distinct terminal symbols // "identifier" and "TYPEDEFname" that are lexically identical. While it is possible to write a purely context-free // grammar, such a grammar would obscure the relationship between syntactic and semantic constructs. Hence, this // grammar uses the ANSI style. // // Cforall compounds this problem by introducing type names local to the scope of a declaration (for instance, those // introduced through "forall" qualifiers), and by introducing "type generators" -- parametrized types. This latter // type name creates a third class of identifiers that must be distinguished by the scanner. // // Since the scanner cannot distinguish among the different classes of identifiers without some context information, it // accesses a data structure (the TypedefTable) to allow classification of an identifier that it has just read. // Semantic actions during the parser update this data structure when the class of identifiers change. // // Because the Cforall language is block-scoped, there is the possibility that an identifier can change its class in a // local scope; it must revert to its original class at the end of the block. Since type names can be local to a // particular declaration, each declaration is itself a scope. This requires distinguishing between type names that are // local to the current declaration scope and those that persist past the end of the declaration (i.e., names defined in // "typedef" or "type" declarations). // // The non-terminals "push" and "pop" derive the empty string; their only use is to denote the opening and closing of // scopes. Every push must have a matching pop, although it is regrettable the matching pairs do not always occur // within the same rule. These non-terminals may appear in more contexts than strictly necessary from a semantic point // of view. Unfortunately, these extra rules are necessary to prevent parsing conflicts -- the parser may not have // enough context and look-ahead information to decide whether a new scope is necessary, so the effect of these extra // rules is to open a new scope unconditionally. As the grammar evolves, it may be neccesary to add or move around // "push" and "pop" nonterminals to resolve conflicts of this sort. push: { typedefTable.enterScope(); } ; pop: { typedefTable.leaveScope(); } ; //************************* CONSTANTS ******************************** constant: // ENUMERATIONconstant is not included here; it is treated as a variable with type "enumeration // constant". INTEGERconstant { $$ = new ConstantNode(ConstantNode::Integer, $1); } | FLOATINGconstant { $$ = new ConstantNode(ConstantNode::Float, $1); } | CHARACTERconstant { $$ = new ConstantNode(ConstantNode::Character, $1); } ; identifier: IDENTIFIER | ATTR_IDENTIFIER // CFA | zero_one // CFA ; no_01_identifier: IDENTIFIER | ATTR_IDENTIFIER // CFA ; no_attr_identifier: IDENTIFIER ; zero_one: // CFA ZERO | ONE ; string_literal_list: // juxtaposed strings are concatenated STRINGliteral { $$ = new ConstantNode(ConstantNode::String, $1); } | string_literal_list STRINGliteral { $$ = $1->append( $2 ); } ; //************************* EXPRESSIONS ******************************** primary_expression: IDENTIFIER // typedef name cannot be used as a variable name { $$ = new VarRefNode($1); } | zero_one { $$ = new VarRefNode($1); } | constant { $$ = $1; } | string_literal_list { $$ = $1; } | '(' comma_expression ')' { $$ = $2; } | '(' compound_statement ')' // GCC, lambda expression { $$ = new ValofExprNode($2); } ; postfix_expression: primary_expression | postfix_expression '[' push assignment_expression pop ']' // CFA, comma_expression disallowed in the context because it results in a commom user error: // subscripting a matrix with x[i,j] instead of x[i][j]. While this change is not backwards // compatible, there seems to be little advantage to this feature and many disadvantages. It is // possible to write x[(i,j)] in CFA, which is equivalent to the old x[i,j]. { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Index), $1, $4); } | postfix_expression '(' argument_expression_list ')' { $$ = new CompositeExprNode($1, $3); } | postfix_expression '.' no_attr_identifier { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::FieldSel), $1, new VarRefNode($3)); } | postfix_expression '.' '[' push field_list pop ']' // CFA, tuple field selector | postfix_expression ARROW no_attr_identifier { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::PFieldSel), $1, new VarRefNode($3)); } | postfix_expression ARROW '[' push field_list pop ']' // CFA, tuple field selector | postfix_expression ICR { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::IncrPost), $1); } | postfix_expression DECR { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::DecrPost), $1); } // GCC has priority: cast_expression | '(' type_name_no_function ')' '{' initializer_list comma_opt '}' // C99 { $$ = 0; } ; argument_expression_list: argument_expression | argument_expression_list ',' argument_expression { $$ = (ExpressionNode *)($1->set_link($3)); } ; argument_expression: // empty { $$ = 0; } // use default argument | assignment_expression | no_attr_identifier ':' assignment_expression { $$ = $3->set_asArgName($1); } // Only a list of no_attr_identifier_or_typedef_name is allowed in this context. However, there is // insufficient look ahead to distinguish between this list of parameter names and a tuple, so the // tuple form must be used with an appropriate semantic check. | '[' push assignment_expression pop ']' ':' assignment_expression { $$ = $7->set_asArgName($3); } | '[' push assignment_expression ',' tuple_expression_list pop ']' ':' assignment_expression { $$ = $9->set_asArgName(new CompositeExprNode( new OperatorNode( OperatorNode::TupleC ), (ExpressionNode *)$3->set_link( flattenCommas( $5 )))); } ; field_list: // CFA, tuple field selector field | field_list ',' field { $$ = (ExpressionNode *)$1->set_link( $3 ); } ; field: // CFA, tuple field selector no_attr_identifier { $$ = new VarRefNode( $1 ); } | no_attr_identifier '.' field { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::FieldSel), new VarRefNode( $1 ), $3); } | no_attr_identifier '.' '[' push field_list pop ']' { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::FieldSel), new VarRefNode( $1 ), $5); } | no_attr_identifier ARROW field { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::PFieldSel), new VarRefNode( $1 ), $3); } | no_attr_identifier ARROW '[' push field_list pop ']' { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::PFieldSel), new VarRefNode( $1 ), $5); } ; unary_expression: postfix_expression | ICR unary_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Incr), $2); } | DECR unary_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Decr), $2); } | EXTENSION cast_expression // GCC { $$ = $2; } | unary_operator cast_expression { $$ = new CompositeExprNode($1, $2); } | '!' cast_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Neg), $2); } | '*' cast_expression // CFA { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::PointTo), $2); } // '*' is is separated from unary_operator because of shift/reduce conflict in: // { * X; } // dereference X // { * int X; } // CFA declaration of pointer to int // '&' must be moved here if C++ reference variables are supported. | SIZEOF unary_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::SizeOf), $2); } | SIZEOF '(' type_name_no_function ')' { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::SizeOf), new TypeValueNode($3)); } | ATTR_IDENTIFIER { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Attr), new VarRefNode($1)); } | ATTR_IDENTIFIER '(' type_name ')' { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Attr), new VarRefNode($1), new TypeValueNode($3)); } | ATTR_IDENTIFIER '(' argument_expression ')' { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Attr), new VarRefNode($1), $3); } | ALIGNOF unary_expression // GCC, variable alignment { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::AlignOf), $2); } | ALIGNOF '(' type_name_no_function ')' // GCC, type alignment { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::AlignOf), new TypeValueNode($3)); } | ANDAND no_attr_identifier // GCC, address of label { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::LabelAddress), new VarRefNode($2, true)); } ; unary_operator: '&' { $$ = new OperatorNode(OperatorNode::AddressOf); } | '+' { $$ = new OperatorNode(OperatorNode::UnPlus); } | '-' { $$ = new OperatorNode(OperatorNode::UnMinus); } | '~' { $$ = new OperatorNode(OperatorNode::BitNeg); } ; cast_expression: unary_expression | '(' type_name_no_function ')' cast_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Cast), new TypeValueNode($2), $4); } | '(' type_name_no_function ')' tuple { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Cast), new TypeValueNode($2), $4); } ; multiplicative_expression: cast_expression | multiplicative_expression '*' cast_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Mul),$1,$3); } | multiplicative_expression '/' cast_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Div),$1,$3); } | multiplicative_expression '%' cast_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Mod),$1,$3); } ; additive_expression: multiplicative_expression | additive_expression '+' multiplicative_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Plus),$1,$3); } | additive_expression '-' multiplicative_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Minus),$1,$3); } ; shift_expression: additive_expression | shift_expression LS additive_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::LShift),$1,$3); } | shift_expression RS additive_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::RShift),$1,$3); } ; relational_expression: shift_expression | relational_expression '<' shift_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::LThan),$1,$3); } | relational_expression '>' shift_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::GThan),$1,$3); } | relational_expression LE shift_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::LEThan),$1,$3); } | relational_expression GE shift_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::GEThan),$1,$3); } ; equality_expression: relational_expression | equality_expression EQ relational_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Eq), $1, $3); } | equality_expression NE relational_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Neq), $1, $3); } ; AND_expression: equality_expression | AND_expression '&' equality_expression { $$ =new CompositeExprNode(new OperatorNode(OperatorNode::BitAnd), $1, $3); } ; exclusive_OR_expression: AND_expression | exclusive_OR_expression '^' AND_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Xor), $1, $3); } ; inclusive_OR_expression: exclusive_OR_expression | inclusive_OR_expression '|' exclusive_OR_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::BitOr), $1, $3); } ; logical_AND_expression: inclusive_OR_expression | logical_AND_expression ANDAND inclusive_OR_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::And), $1, $3); } ; logical_OR_expression: logical_AND_expression | logical_OR_expression OROR logical_AND_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Or), $1, $3); } ; conditional_expression: logical_OR_expression | logical_OR_expression '?' comma_expression ':' conditional_expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Cond), (ExpressionNode *)mkList((*$1,*$3,*$5))); } | logical_OR_expression '?' /* empty */ ':' conditional_expression // GCC, omitted first operand { $$=new CompositeExprNode(new OperatorNode(OperatorNode::NCond),$1,$4); } | logical_OR_expression '?' comma_expression ':' tuple // CFA, tuple expression { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Cond), (ExpressionNode *)mkList(( *$1, *$3, *$5 ))); } ; constant_expression: conditional_expression ; assignment_expression: // CFA, assignment is separated from assignment_operator to ensure no assignment operations for tuples conditional_expression | unary_expression '=' assignment_expression { $$ =new CompositeExprNode(new OperatorNode(OperatorNode::Assign), $1, $3); } | unary_expression assignment_operator assignment_expression { $$ =new CompositeExprNode($2, $1, $3); } | tuple assignment_opt // CFA, tuple expression { if ( $2 == 0 ) { $$ = $1; } else { $$ = new CompositeExprNode( new OperatorNode( OperatorNode::Assign ), $1, $2 ); } } ; assignment_expression_opt: // empty { $$ = new NullExprNode; } | assignment_expression ; tuple: // CFA, tuple // CFA, one assignment_expression is factored out of comma_expression to eliminate a shift/reduce // conflict with comma_expression in new_identifier_parameter_array and new_abstract_array '[' push pop ']' { $$ = new CompositeExprNode( new OperatorNode( OperatorNode::TupleC ) ); } | '[' push assignment_expression pop ']' { $$ = new CompositeExprNode( new OperatorNode( OperatorNode::TupleC ), $3 ); } | '[' push ',' tuple_expression_list pop ']' { $$ = new CompositeExprNode( new OperatorNode( OperatorNode::TupleC ), (ExpressionNode *)(new NullExprNode)->set_link( $4 ) ); } | '[' push assignment_expression ',' tuple_expression_list pop ']' { $$ = new CompositeExprNode( new OperatorNode( OperatorNode::TupleC ), (ExpressionNode *)$3->set_link( flattenCommas( $5 ) ) ); } ; tuple_expression_list: assignment_expression_opt | tuple_expression_list ',' assignment_expression_opt { $$ = (ExpressionNode *)$1->set_link( $3 ); } ; assignment_operator: MULTassign { $$ = new OperatorNode(OperatorNode::MulAssn); } | DIVassign { $$ = new OperatorNode(OperatorNode::DivAssn); } | MODassign { $$ = new OperatorNode(OperatorNode::ModAssn); } | PLUSassign { $$ = new OperatorNode(OperatorNode::PlusAssn); } | MINUSassign { $$ = new OperatorNode(OperatorNode::MinusAssn); } | LSassign { $$ = new OperatorNode(OperatorNode::LSAssn); } | RSassign { $$ = new OperatorNode(OperatorNode::RSAssn); } | ANDassign { $$ = new OperatorNode(OperatorNode::AndAssn); } | ERassign { $$ = new OperatorNode(OperatorNode::ERAssn); } | ORassign { $$ = new OperatorNode(OperatorNode::OrAssn); } ; comma_expression: assignment_expression | comma_expression ',' assignment_expression // { $$ = (ExpressionNode *)$1->add_to_list($3); } { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Comma),$1,$3); } ; comma_expression_opt: // empty { $$ = 0; } | comma_expression ; //*************************** STATEMENTS ******************************* statement: labeled_statement | compound_statement | expression_statement { $$ = $1; } | selection_statement | iteration_statement | jump_statement | exception_statement | asm_statement ; labeled_statement: no_attr_identifier ':' attribute_list_opt statement { $$ = $4->add_label($1);} ; compound_statement: '{' '}' { $$ = new CompoundStmtNode( (StatementNode *)0 ); } | '{' // Two scopes are necessary because the block itself has a scope, but every declaration within the block // also requires its own scope push push label_declaration_opt // GCC, local labels block_item_list pop '}' // C99, intermix declarations and statements { $$ = new CompoundStmtNode( $5 ); } ; block_item_list: // C99 block_item | block_item_list push block_item { if ($1 != 0) { $1->set_link($3); $$ = $1; } } ; block_item: declaration // CFA, new & old style declarations { $$ = new StatementNode( $1 ); } | EXTENSION declaration // GCC { $$ = new StatementNode( $2 ); } | statement pop ; statement_list: statement | statement_list statement { if ($1 != 0) { $1->set_link($2); $$ = $1; } } ; expression_statement: comma_expression_opt ';' { $$ = new StatementNode(StatementNode::Exp, $1, 0); } ; selection_statement: IF '(' comma_expression ')' statement %prec THEN // explicitly deal with the shift/reduce conflict on if/else { $$ = new StatementNode(StatementNode::If, $3, $5); } | IF '(' comma_expression ')' statement ELSE statement { $$ = new StatementNode(StatementNode::If, $3, (StatementNode *)mkList((*$5, *$7)) ); } | SWITCH '(' comma_expression ')' case_clause // CFA { $$ = new StatementNode(StatementNode::Switch, $3, $5); } | SWITCH '(' comma_expression ')' '{' push declaration_list_opt switch_clause_list_opt '}' // CFA { $$ = new StatementNode(StatementNode::Switch, $3, $8); /* xxx */ } // The semantics of the declaration list is changed to include any associated initialization, which is // performed *before* the transfer to the appropriate case clause. Statements after the initial // declaration list can never be executed, and therefore, are removed from the grammar even though C // allows it. | CHOOSE '(' comma_expression ')' case_clause // CFA { $$ = new StatementNode(StatementNode::Choose, $3, $5); } | CHOOSE '(' comma_expression ')' '{' push declaration_list_opt choose_clause_list_opt '}' // CFA { $$ = new StatementNode(StatementNode::Choose, $3, $8); } ; // CASE and DEFAULT clauses are only allowed in the SWITCH statement, precluding Duff's device. In addition, a case // clause allows a list of values and subranges. case_value: // CFA constant_expression { $$ = $1; } | constant_expression ELLIPSIS constant_expression // GCC, subrange { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Range),$1,$3); } | subrange // CFA, subrange ; case_value_list: // CFA case_value | case_value_list ',' case_value { $$ = new CompositeExprNode(new OperatorNode( OperatorNode::TupleC ), (ExpressionNode *)(tupleContents($1))->set_link($3) ); } ; case_label: // CFA CASE case_value_list ':' { $$ = new StatementNode(StatementNode::Case, $2, 0); } | DEFAULT ':' { $$ = new StatementNode(StatementNode::Default); } // A semantic check is required to ensure only one default clause per switch/choose statement. ; case_label_list: // CFA case_label | case_label_list case_label { $$ = (StatementNode *)($1->set_link($2)); } ; case_clause: // CFA case_label_list statement { $$ = $1->append_last_case($2); } ; switch_clause_list_opt: // CFA // empty { $$ = 0; } | switch_clause_list ; switch_clause_list: // CFA case_label_list statement_list { $$ = $1->append_last_case($2); } | switch_clause_list case_label_list statement_list { $$ = (StatementNode *)($1->set_link($2->append_last_case($3))); } ; choose_clause_list_opt: // CFA // empty { $$ = 0; } | choose_clause_list ; choose_clause_list: // CFA case_label_list fall_through { $$ = $1->append_last_case($2); } | case_label_list statement_list fall_through_opt { $$ = $1->append_last_case((StatementNode *)mkList((*$2,*$3))); } | choose_clause_list case_label_list fall_through { $$ = (StatementNode *)($1->set_link($2->append_last_case($3))); } | choose_clause_list case_label_list statement_list fall_through_opt { $$ = (StatementNode *)($1->set_link($2->append_last_case((StatementNode *)mkList((*$3,*$4))))); } ; fall_through_opt: // CFA // empty { $$ = 0; } | fall_through ; fall_through: // CFA FALLTHRU { $$ = new StatementNode(StatementNode::Fallthru, 0, 0); } | FALLTHRU ';' { $$ = new StatementNode(StatementNode::Fallthru, 0, 0); } ; iteration_statement: WHILE '(' comma_expression ')' statement { $$ = new StatementNode(StatementNode::While, $3, $5); } | DO statement WHILE '(' comma_expression ')' ';' { $$ = new StatementNode(StatementNode::Do, $5, $2); } | FOR '(' push for_control_expression ')' statement { $$ = new StatementNode(StatementNode::For, $4, $6); } ; for_control_expression: comma_expression_opt pop ';' comma_expression_opt ';' comma_expression_opt { $$ = new ForCtlExprNode($1, $4, $6); } | declaration comma_expression_opt ';' comma_expression_opt // C99 // Like C++, the loop index can be declared local to the loop. { $$ = new ForCtlExprNode($1, $2, $4); } ; jump_statement: GOTO no_attr_identifier ';' { $$ = new StatementNode(StatementNode::Goto, $2); } | GOTO '*' comma_expression ';' // GCC, computed goto // The syntax for the GCC computed goto violates normal expression precedence, e.g., goto *i+3; => // goto *(i+3); whereas normal operator precedence yields goto (*i)+3; { $$ = new StatementNode(StatementNode::Goto, $3); } | CONTINUE ';' // A semantic check is required to ensure this statement appears only in the body of an iteration // statement. { $$ = new StatementNode(StatementNode::Continue, 0, 0); } | CONTINUE no_attr_identifier ';' // CFA, multi-level continue // A semantic check is required to ensure this statement appears only in the body of an iteration // statement, and the target of the transfer appears only at the start of an iteration statement. { $$ = new StatementNode(StatementNode::Continue, $2); } | BREAK ';' // A semantic check is required to ensure this statement appears only in the body of an iteration // statement. { $$ = new StatementNode(StatementNode::Break, 0, 0); } | BREAK no_attr_identifier ';' // CFA, multi-level exit // A semantic check is required to ensure this statement appears only in the body of an iteration // statement, and the target of the transfer appears only at the start of an iteration statement. { $$ = new StatementNode(StatementNode::Break, $2 ); } | RETURN comma_expression_opt ';' { $$ = new StatementNode(StatementNode::Return, $2, 0); } | THROW assignment_expression ';' { $$ = new StatementNode(StatementNode::Throw, $2, 0); } | THROW ';' { $$ = new StatementNode(StatementNode::Throw, 0, 0); } ; exception_statement: TRY compound_statement handler_list { $$ = new StatementNode(StatementNode::Try, 0,(StatementNode *)(mkList((*$2,*$3)))); } | TRY compound_statement finally_clause { $$ = new StatementNode(StatementNode::Try, 0,(StatementNode *)(mkList((*$2,*$3)))); } | TRY compound_statement handler_list finally_clause { $3->set_link($4); $$ = new StatementNode(StatementNode::Try, 0,(StatementNode *)(mkList((*$2,*$3)))); } ; handler_list: // There must be at least one catch clause handler_clause // ISO/IEC 9899:1999 Section 15.3(6) If present, a "..." handler shall be the last handler for its try // block. | CATCH '(' ELLIPSIS ')' compound_statement { $$ = StatementNode::newCatchStmt( 0, $5, true ); } | handler_clause CATCH '(' ELLIPSIS ')' compound_statement { $$ = $1->set_link( StatementNode::newCatchStmt( 0, $6, true ) ); } ; handler_clause: CATCH '(' push push exception_declaration pop ')' compound_statement pop { $$ = StatementNode::newCatchStmt($5, $8); } | handler_clause CATCH '(' push push exception_declaration pop ')' compound_statement pop { $$ = $1->set_link( StatementNode::newCatchStmt($6, $9) ); } ; finally_clause: FINALLY compound_statement { $$ = new StatementNode(StatementNode::Finally, 0, $2); std::cout << "Just created a finally node" << std::endl; } ; exception_declaration: // A semantic check is required to ensure type_specifier does not create a new type, e.g.: // // catch ( struct { int i; } x ) ... // // This new type cannot catch any thrown type because of name equivalence among types. type_specifier | type_specifier declarator { typedefTable.addToEnclosingScope( TypedefTable::ID ); $$ = $2->addType( $1 ); } | type_specifier variable_abstract_declarator { $$ = $2->addType( $1 ); } | new_abstract_declarator_tuple no_attr_identifier // CFA { typedefTable.addToEnclosingScope( TypedefTable::ID ); $$ = $1->addName( $2 ); } | new_abstract_declarator_tuple // CFA ; asm_statement: ASM type_qualifier_list_opt '(' constant_expression ')' ';' { $$ = new StatementNode(StatementNode::Asm, 0, 0); } | ASM type_qualifier_list_opt '(' constant_expression ':' asm_operands_opt ')' ';' // remaining GCC { $$ = new StatementNode(StatementNode::Asm, 0, 0); } | ASM type_qualifier_list_opt '(' constant_expression ':' asm_operands_opt ':' asm_operands_opt ')' ';' { $$ = new StatementNode(StatementNode::Asm, 0, 0); } | ASM type_qualifier_list_opt '(' constant_expression ':' asm_operands_opt ':' asm_operands_opt ':' asm_clobbers_list ')' ';' { $$ = new StatementNode(StatementNode::Asm, 0, 0); } ; asm_operands_opt: // GCC // empty | asm_operands_list ; asm_operands_list: // GCC asm_operand | asm_operands_list ',' asm_operand ; asm_operand: // GCC STRINGliteral '(' constant_expression ')' {} ; asm_clobbers_list: // GCC STRINGliteral {} | asm_clobbers_list ',' STRINGliteral ; //******************************* DECLARATIONS ********************************* declaration_list_opt: // used at beginning of switch statement pop { $$ = 0; } | declaration_list ; declaration_list: declaration | declaration_list push declaration { $$ = $1->appendList( $3 ); } ; old_declaration_list_opt: // used to declare parameter types in K&R style functions pop { $$ = 0; } | old_declaration_list ; old_declaration_list: old_declaration | old_declaration_list push old_declaration { $$ = $1->appendList( $3 ); } ; label_declaration_opt: // GCC, local label // empty | label_declaration_list ; label_declaration_list: // GCC, local label LABEL label_list ';' | label_declaration_list LABEL label_list ';' ; label_list: // GCC, local label no_attr_identifier_or_typedef_name {} | label_list ',' no_attr_identifier_or_typedef_name {} ; declaration: // CFA, new & old style declarations new_declaration | old_declaration ; // C declaration syntax is notoriously confusing and error prone. Cforall provides its own type, variable and function // declarations. CFA declarations use the same declaration tokens as in C; however, CFA places declaration modifiers to // the left of the base type, while C declarations place modifiers to the right of the base type. CFA declaration // modifiers are interpreted from left to right and the entire type specification is distributed across all variables in // the declaration list (as in Pascal). ANSI C and the new CFA declarations may appear together in the same program // block, but cannot be mixed within a specific declaration. // // CFA C // [10] int x; int x[10]; // array of 10 integers // [10] * char y; char *y[10]; // array of 10 pointers to char new_declaration: // CFA new_variable_declaration pop ';' | new_typedef_declaration pop ';' | new_function_declaration pop ';' | type_declaring_list pop ';' | context_specifier pop ';' ; new_variable_declaration: // CFA new_variable_specifier initializer_opt { typedefTable.addToEnclosingScope( TypedefTable::ID ); $$ = $1; } | declaration_qualifier_list new_variable_specifier initializer_opt // declaration_qualifier_list also includes type_qualifier_list, so a semantic check is necessary to // preclude them as a type_qualifier cannot appear in that context. { typedefTable.addToEnclosingScope( TypedefTable::ID ); $$ = $2->addQualifiers( $1 ); } | new_variable_declaration pop ',' push identifier_or_typedef_name initializer_opt { typedefTable.addToEnclosingScope( *$5, TypedefTable::ID ); $$ = $1->appendList( $1->cloneType( $5 ) ); } ; new_variable_specifier: // CFA // A semantic check is required to ensure asm_name only appears on declarations with implicit or // explicit static storage-class new_abstract_declarator_no_tuple identifier_or_typedef_name asm_name_opt { typedefTable.setNextIdentifier( *$2 ); $$ = $1->addName( $2 ); } | new_abstract_tuple identifier_or_typedef_name asm_name_opt { typedefTable.setNextIdentifier( *$2 ); $$ = $1->addName( $2 ); } | type_qualifier_list new_abstract_tuple identifier_or_typedef_name asm_name_opt { typedefTable.setNextIdentifier( *$3 ); $$ = $2->addQualifiers( $1 )->addName( $3 ); } ; new_function_declaration: // CFA new_function_specifier { typedefTable.addToEnclosingScope( TypedefTable::ID ); $$ = $1; } | declaration_qualifier_list new_function_specifier // declaration_qualifier_list also includes type_qualifier_list, so a semantic check is necessary to // preclude them as a type_qualifier cannot appear in this context. { typedefTable.addToEnclosingScope( TypedefTable::ID ); $$ = $2->addQualifiers( $1 ); } | new_function_declaration pop ',' push identifier_or_typedef_name { typedefTable.addToEnclosingScope( *$5, TypedefTable::ID ); $$ = $1->appendList( $1->cloneType( $5 ) ); } ; new_function_specifier: // CFA '[' push pop ']' identifier '(' push new_parameter_type_list_opt pop ')' { typedefTable.setNextIdentifier( *($5) ); $$ = DeclarationNode::newFunction( $5, DeclarationNode::newTuple( 0 ), $8, 0, true ); } | '[' push pop ']' TYPEDEFname '(' push new_parameter_type_list_opt pop ')' { typedefTable.setNextIdentifier( *($5) ); $$ = DeclarationNode::newFunction( $5, DeclarationNode::newTuple( 0 ), $8, 0, true ); } /* identifier_or_typedef_name must be broken apart because of the sequence: '[' ']' identifier_or_typedef_name '(' new_parameter_type_list_opt ')' '[' ']' type_specifier type_specifier can resolve to just TYPEDEFname (e.g. typedef int T; int f( T );). Therefore this must be flattened to allow lookahead to the '(' without having to reduce identifier_or_typedef_name. */ | new_abstract_tuple identifier_or_typedef_name '(' push new_parameter_type_list_opt pop ')' /* To obtain LR(1), this rule must be factored out from function return type (see new_abstract_declarator). */ { $$ = DeclarationNode::newFunction( $2, $1, $5, 0, true ); } | new_function_return identifier_or_typedef_name '(' push new_parameter_type_list_opt pop ')' { $$ = DeclarationNode::newFunction( $2, $1, $5, 0, true ); } ; new_function_return: // CFA '[' push new_parameter_list pop ']' { $$ = DeclarationNode::newTuple( $3 ); } | '[' push new_parameter_list pop ',' push new_abstract_parameter_list pop ']' /* To obtain LR(1), the last new_abstract_parameter_list is added into this flattened rule to lookahead to the ']'. */ { $$ = DeclarationNode::newTuple( $3->appendList( $7 ) ); } ; new_typedef_declaration: // CFA TYPEDEF new_variable_specifier { typedefTable.addToEnclosingScope( TypedefTable::TD); $$ = $2->addTypedef(); } | TYPEDEF new_function_specifier { typedefTable.addToEnclosingScope( TypedefTable::TD); $$ = $2->addTypedef(); } | new_typedef_declaration pop ',' push no_attr_identifier { typedefTable.addToEnclosingScope( *$5, TypedefTable::TD); $$ = $1->appendList( $1->cloneType( $5 ) ); } ; /* Traditionally typedef is part of storage-class specifier for syntactic convenience only. Here, it is factored out as a separate form of declaration, which syntactically precludes storage-class specifiers and initialization. */ typedef_declaration: TYPEDEF type_specifier declarator { typedefTable.addToEnclosingScope( TypedefTable::TD); $$ = $3->addType( $2 )->addTypedef(); } | typedef_declaration pop ',' push declarator { typedefTable.addToEnclosingScope( TypedefTable::TD); $$ = $1->appendList( $1->cloneBaseType( $5 )->addTypedef() ); } | type_qualifier_list TYPEDEF type_specifier declarator // remaining OBSOLESCENT (see 2) { typedefTable.addToEnclosingScope( TypedefTable::TD); $$ = $4->addType( $3 )->addQualifiers( $1 )->addTypedef(); } | type_specifier TYPEDEF declarator { typedefTable.addToEnclosingScope( TypedefTable::TD); $$ = $3->addType( $1 )->addTypedef(); } | type_specifier TYPEDEF type_qualifier_list declarator { typedefTable.addToEnclosingScope( TypedefTable::TD); $$ = $4->addQualifiers($1)->addTypedef()->addType($1); } ; typedef_expression: // GCC, naming expression type TYPEDEF no_attr_identifier '=' assignment_expression { typedefTable.addToEnclosingScope(*($2), TypedefTable::TD); $$ = DeclarationNode::newName( 0 ); // XXX } | typedef_expression pop ',' push no_attr_identifier '=' assignment_expression { typedefTable.addToEnclosingScope(*($5), TypedefTable::TD); $$ = DeclarationNode::newName( 0 ); // XXX } ; old_declaration: declaring_list pop ';' | typedef_declaration pop ';' | typedef_expression pop ';' // GCC, naming expression type | sue_declaration_specifier pop ';' ; declaring_list: /* A semantic check is required to ensure asm_name only appears on declarations with implicit or explicit static storage-class */ declaration_specifier declarator asm_name_opt initializer_opt { typedefTable.addToEnclosingScope( TypedefTable::ID ); $$ = ($2->addType( $1 ))->addInitializer($4); } | declaring_list ',' attribute_list_opt declarator asm_name_opt initializer_opt { typedefTable.addToEnclosingScope( TypedefTable::ID ); $$ = $1->appendList( $1->cloneBaseType( $4->addInitializer($6) ) ); } ; declaration_specifier: // type specifier + storage class basic_declaration_specifier | sue_declaration_specifier | typedef_declaration_specifier | typegen_declaration_specifier ; type_specifier: // declaration specifier - storage class basic_type_specifier | sue_type_specifier | typedef_type_specifier | typegen_type_specifier ; type_qualifier_list_opt: // GCC, used in asm_statement // empty { $$ = 0; } | type_qualifier_list ; type_qualifier_list: /* A semantic check is necessary to ensure a type qualifier is appropriate for the kind of declaration. ISO/IEC 9899:1999 Section 6.7.3(4) : If the same qualifier appears more than once in the same specifier-qualifier-list, either directly or via one or more typedefs, the behavior is the same as if it appeared only once. */ type_qualifier | type_qualifier_list type_qualifier { $$ = $1->addQualifiers( $2 ); } ; type_qualifier: type_qualifier_name | attribute { $$ = DeclarationNode::newQualifier( DeclarationNode::Attribute ); } ; type_qualifier_name: CONST { $$ = DeclarationNode::newQualifier( DeclarationNode::Const ); } | RESTRICT { $$ = DeclarationNode::newQualifier( DeclarationNode::Restrict ); } | VOLATILE { $$ = DeclarationNode::newQualifier( DeclarationNode::Volatile ); } | LVALUE // CFA { $$ = DeclarationNode::newQualifier( DeclarationNode::Lvalue ); } | ATOMIC { $$ = DeclarationNode::newQualifier( DeclarationNode::Atomic ); } | FORALL '(' { typedefTable.enterScope(); } type_parameter_list ')' // CFA { typedefTable.leaveScope(); $$ = DeclarationNode::newForall( $4 ); } ; declaration_qualifier_list: storage_class_list | type_qualifier_list storage_class_list // remaining OBSOLESCENT (see 2) { $$ = $1->addQualifiers( $2 ); } | declaration_qualifier_list type_qualifier_list storage_class_list { $$ = $1->addQualifiers( $2 )->addQualifiers( $3 ); } ; storage_class_list: /* A semantic check is necessary to ensure a storage class is appropriate for the kind of declaration and that only one of each is specified, except for inline, which can appear with the others. ISO/IEC 9899:1999 Section 6.7.1(2) : At most, one storage-class specifier may be given in the declaration specifiers in a declaration. */ storage_class | storage_class_list storage_class { $$ = $1->addQualifiers( $2 ); } ; storage_class: storage_class_name ; storage_class_name: EXTERN { $$ = DeclarationNode::newStorageClass( DeclarationNode::Extern ); } | STATIC { $$ = DeclarationNode::newStorageClass( DeclarationNode::Static ); } | AUTO { $$ = DeclarationNode::newStorageClass( DeclarationNode::Auto ); } | REGISTER { $$ = DeclarationNode::newStorageClass( DeclarationNode::Register ); } | INLINE // C99 // INLINE is essentially a storage class specifier for functions, and hence, belongs here. { $$ = DeclarationNode::newStorageClass( DeclarationNode::Inline ); } | FORTRAN // C99 { $$ = DeclarationNode::newStorageClass( DeclarationNode::Fortran ); } ; basic_type_name: CHAR { $$ = DeclarationNode::newBasicType( DeclarationNode::Char ); } | DOUBLE { $$ = DeclarationNode::newBasicType( DeclarationNode::Double ); } | FLOAT { $$ = DeclarationNode::newBasicType( DeclarationNode::Float ); } | INT { $$ = DeclarationNode::newBasicType( DeclarationNode::Int ); } | LONG { $$ = DeclarationNode::newModifier( DeclarationNode::Long ); } | SHORT { $$ = DeclarationNode::newModifier( DeclarationNode::Short ); } | SIGNED { $$ = DeclarationNode::newModifier( DeclarationNode::Signed ); } | UNSIGNED { $$ = DeclarationNode::newModifier( DeclarationNode::Unsigned ); } | VOID { $$ = DeclarationNode::newBasicType( DeclarationNode::Void ); } | BOOL // C99 { $$ = DeclarationNode::newBasicType( DeclarationNode::Bool ); } | COMPLEX // C99 { $$ = DeclarationNode::newBasicType( DeclarationNode::Complex ); } | IMAGINARY // C99 { $$ = DeclarationNode::newBasicType( DeclarationNode::Imaginary ); } ; basic_declaration_specifier: // A semantic check is necessary for conflicting storage classes. basic_type_specifier | declaration_qualifier_list basic_type_specifier { $$ = $2->addQualifiers( $1 ); } | basic_declaration_specifier storage_class // remaining OBSOLESCENT (see 2) { $$ = $1->addQualifiers( $2 ); } | basic_declaration_specifier storage_class type_qualifier_list { $$ = $1->addQualifiers( $2 )->addQualifiers( $3 ); } | basic_declaration_specifier storage_class basic_type_specifier { $$ = $3->addQualifiers( $2 )->addType( $1 ); } ; basic_type_specifier: direct_type_name | type_qualifier_list_opt indirect_type_name type_qualifier_list_opt { $$ = $2->addQualifiers( $1 )->addQualifiers( $3 ); } ; direct_type_name: // A semantic check is necessary for conflicting type qualifiers. basic_type_name | type_qualifier_list basic_type_name { $$ = $2->addQualifiers( $1 ); } | direct_type_name type_qualifier { $$ = $1->addQualifiers( $2 ); } | direct_type_name basic_type_name { $$ = $1->addType( $2 ); } ; indirect_type_name: TYPEOF '(' type_name ')' // GCC: typeof(x) y; { $$ = $3; } | TYPEOF '(' comma_expression ')' // GCC: typeof(a+b) y; { $$ = DeclarationNode::newTypeof( $3 ); } | ATTR_TYPEGENname '(' type_name ')' // CFA: e.g., @type(x) y; { $$ = DeclarationNode::newAttr( $1, $3 ); } | ATTR_TYPEGENname '(' comma_expression ')' // CFA: e.g., @type(a+b) y; { $$ = DeclarationNode::newAttr( $1, $3 ); } ; sue_declaration_specifier: sue_type_specifier | declaration_qualifier_list sue_type_specifier { $$ = $2->addQualifiers( $1 ); } | sue_declaration_specifier storage_class // remaining OBSOLESCENT (see 2) { $$ = $1->addQualifiers( $2 ); } | sue_declaration_specifier storage_class type_qualifier_list { $$ = $1->addQualifiers( $2 )->addQualifiers( $3 ); } ; sue_type_specifier: elaborated_type_name // struct, union, enum | type_qualifier_list elaborated_type_name { $$ = $2->addQualifiers( $1 ); } | sue_type_specifier type_qualifier { $$ = $1->addQualifiers( $2 ); } ; typedef_declaration_specifier: typedef_type_specifier | declaration_qualifier_list typedef_type_specifier { $$ = $2->addQualifiers( $1 ); } | typedef_declaration_specifier storage_class // remaining OBSOLESCENT (see 2) { $$ = $1->addQualifiers( $2 ); } | typedef_declaration_specifier storage_class type_qualifier_list { $$ = $1->addQualifiers( $2 )->addQualifiers( $3 ); } ; typedef_type_specifier: // typedef types TYPEDEFname { $$ = DeclarationNode::newFromTypedef( $1 ); } | type_qualifier_list TYPEDEFname { $$ = DeclarationNode::newFromTypedef( $2 )->addQualifiers( $1 ); } | typedef_type_specifier type_qualifier { $$ = $1->addQualifiers( $2 ); } ; elaborated_type_name: aggregate_name | enum_name ; aggregate_name: aggregate_key '{' field_declaration_list '}' { $$ = DeclarationNode::newAggregate( $1, 0, 0, 0, $3 ); } | aggregate_key no_attr_identifier_or_typedef_name { $$ = DeclarationNode::newAggregate( $1, $2, 0, 0, 0 ); } | aggregate_key no_attr_identifier_or_typedef_name '{' field_declaration_list '}' { $$ = DeclarationNode::newAggregate( $1, $2, 0, 0, $4 ); } | aggregate_key '(' push type_parameter_list pop ')' '{' field_declaration_list '}' // CFA { $$ = DeclarationNode::newAggregate( $1, 0, $4, 0, $8 ); } | aggregate_key '(' push type_parameter_list pop ')' no_attr_identifier_or_typedef_name // CFA { $$ = DeclarationNode::newAggregate( $1, $7, $4, 0, 0 ); } | aggregate_key '(' push type_parameter_list pop ')' no_attr_identifier_or_typedef_name '{' field_declaration_list '}' // CFA { $$ = DeclarationNode::newAggregate( $1, $7, $4, 0, $9 ); } | aggregate_key '(' push type_parameter_list pop ')' '(' type_name_list ')' '{' field_declaration_list '}' // CFA { $$ = DeclarationNode::newAggregate( $1, 0, $4, $8, $11 ); } | aggregate_key '(' push type_name_list pop ')' no_attr_identifier_or_typedef_name // CFA // push and pop are only to prevent S/R conflicts { $$ = DeclarationNode::newAggregate( $1, $7, 0, $4, 0 ); } | aggregate_key '(' push type_parameter_list pop ')' '(' type_name_list ')' no_attr_identifier_or_typedef_name '{' field_declaration_list '}' // CFA { $$ = DeclarationNode::newAggregate( $1, $10, $4, $8, $12 ); } ; aggregate_key: STRUCT attribute_list_opt { $$ = DeclarationNode::Struct; } | UNION attribute_list_opt { $$ = DeclarationNode::Union; } ; field_declaration_list: field_declaration { $$ = $1; } | field_declaration_list field_declaration { $$ = $1->appendList( $2 ); } ; field_declaration: new_field_declaring_list ';' // CFA, new style field declaration | EXTENSION new_field_declaring_list ';' // GCC { $$ = $2; } | field_declaring_list ';' | EXTENSION field_declaring_list ';' // GCC { $$ = $2; } ; new_field_declaring_list: // CFA, new style field declaration new_abstract_declarator_tuple // CFA, no field name | new_abstract_declarator_tuple no_attr_identifier_or_typedef_name { $$ = $1->addName( $2 ); } | new_field_declaring_list ',' no_attr_identifier_or_typedef_name { $$ = $1->appendList( $1->cloneType( $3 ) ); } | new_field_declaring_list ',' // CFA, no field name { $$ = $1->appendList( $1->cloneType( 0 ) ); } ; field_declaring_list: type_specifier field_declarator { $$ = $2->addType( $1 ); } | field_declaring_list ',' attribute_list_opt field_declarator { $$ = $1->appendList( $1->cloneBaseType( $4 ) ); } ; field_declarator: // empty { $$ = DeclarationNode::newName( 0 ); /* XXX */ } // CFA, no field name | bit_subrange_size // no field name { $$ = DeclarationNode::newBitfield( $1 ); } | variable_declarator bit_subrange_size_opt // A semantic check is required to ensure bit_subrange only appears on base type int. { $$ = $1->addBitfield( $2 ); } | typedef_redeclarator bit_subrange_size_opt // A semantic check is required to ensure bit_subrange only appears on base type int. { $$ = $1->addBitfield( $2 ); } | variable_abstract_declarator // CFA, no field name ; bit_subrange_size_opt: // empty { $$ = 0; } | bit_subrange_size { $$ = $1; } ; bit_subrange_size: ':' constant_expression { $$ = $2; } ; enum_key: ENUM attribute_list_opt ; enum_name: enum_key '{' enumerator_list comma_opt '}' { $$ = DeclarationNode::newEnum( 0, $3 ); } | enum_key no_attr_identifier_or_typedef_name '{' enumerator_list comma_opt '}' { $$ = DeclarationNode::newEnum( $2, $4 ); } | enum_key no_attr_identifier_or_typedef_name { $$ = DeclarationNode::newEnum( $2, 0 ); } ; enumerator_list: no_attr_identifier_or_typedef_name enumerator_value_opt { $$ = DeclarationNode::newEnumConstant( $1, $2 ); } | enumerator_list ',' no_attr_identifier_or_typedef_name enumerator_value_opt { $$ = $1->appendList( DeclarationNode::newEnumConstant( $3, $4 ) ); } ; enumerator_value_opt: // empty { $$ = 0; } | '=' constant_expression { $$ = $2; } ; // Minimum of one parameter after which ellipsis is allowed only at the end. new_parameter_type_list_opt: // CFA // empty { $$ = 0; } | new_parameter_type_list ; new_parameter_type_list: // CFA, abstract + real new_abstract_parameter_list | new_parameter_list | new_parameter_list pop ',' push new_abstract_parameter_list { $$ = $1->appendList( $5 ); } | new_abstract_parameter_list pop ',' push ELLIPSIS { $$ = $1->addVarArgs(); } | new_parameter_list pop ',' push ELLIPSIS { $$ = $1->addVarArgs(); } ; new_parameter_list: // CFA // To obtain LR(1) between new_parameter_list and new_abstract_tuple, the last // new_abstract_parameter_list is factored out from new_parameter_list, flattening the rules // to get lookahead to the ']'. new_parameter_declaration | new_abstract_parameter_list pop ',' push new_parameter_declaration { $$ = $1->appendList( $5 ); } | new_parameter_list pop ',' push new_parameter_declaration { $$ = $1->appendList( $5 ); } | new_parameter_list pop ',' push new_abstract_parameter_list pop ',' push new_parameter_declaration { $$ = $1->appendList( $5 )->appendList( $9 ); } ; new_abstract_parameter_list: // CFA, new & old style abstract new_abstract_parameter_declaration | new_abstract_parameter_list pop ',' push new_abstract_parameter_declaration { $$ = $1->appendList( $5 ); } ; parameter_type_list_opt: // empty { $$ = 0; } | parameter_type_list ; parameter_type_list: parameter_list | parameter_list pop ',' push ELLIPSIS { $$ = $1->addVarArgs(); } ; parameter_list: // abstract + real abstract_parameter_declaration | parameter_declaration | parameter_list pop ',' push abstract_parameter_declaration { $$ = $1->appendList( $5 ); } | parameter_list pop ',' push parameter_declaration { $$ = $1->appendList( $5 ); } ; // Provides optional identifier names (abstract_declarator/variable_declarator), no initialization, different // semantics for typedef name by using typedef_parameter_redeclarator instead of typedef_redeclarator, and // function prototypes. new_parameter_declaration: // CFA, new & old style parameter declaration parameter_declaration | new_identifier_parameter_declarator_no_tuple identifier_or_typedef_name assignment_opt { $$ = $1->addName( $2 ); } | new_abstract_tuple identifier_or_typedef_name assignment_opt // To obtain LR(1), these rules must be duplicated here (see new_abstract_declarator). { $$ = $1->addName( $2 ); } | type_qualifier_list new_abstract_tuple identifier_or_typedef_name assignment_opt { $$ = $2->addName( $3 )->addQualifiers( $1 ); } | new_function_specifier ; new_abstract_parameter_declaration: // CFA, new & old style parameter declaration abstract_parameter_declaration | new_identifier_parameter_declarator_no_tuple | new_abstract_tuple // To obtain LR(1), these rules must be duplicated here (see new_abstract_declarator). | type_qualifier_list new_abstract_tuple { $$ = $2->addQualifiers( $1 ); } | new_abstract_function ; parameter_declaration: declaration_specifier identifier_parameter_declarator assignment_opt { typedefTable.addToEnclosingScope( TypedefTable::ID ); $$ = $2->addType( $1 )->addInitializer( new InitializerNode($3) ); } | declaration_specifier typedef_parameter_redeclarator assignment_opt { typedefTable.addToEnclosingScope( TypedefTable::ID ); $$ = $2->addType( $1 )->addInitializer( new InitializerNode($3) ); } ; abstract_parameter_declaration: declaration_specifier | declaration_specifier abstract_parameter_declarator { $$ = $2->addType( $1 ); } ; // ISO/IEC 9899:1999 Section 6.9.1(6) : "An identifier declared as a typedef name shall not be redeclared as a // parameter." Because the scope of the K&R-style parameter-list sees the typedef first, the following is // based only on identifiers. The ANSI-style parameter-list can redefine a typedef name. identifier_list: // K&R-style parameter list => no types no_attr_identifier { $$ = DeclarationNode::newName( $1 ); } | identifier_list ',' no_attr_identifier { $$ = $1->appendList( DeclarationNode::newName( $3 ) ); } ; identifier_or_typedef_name: identifier | TYPEDEFname | TYPEGENname ; no_01_identifier_or_typedef_name: no_01_identifier | TYPEDEFname | TYPEGENname ; no_attr_identifier_or_typedef_name: no_attr_identifier | TYPEDEFname | TYPEGENname ; type_name_no_function: // sizeof, alignof, cast (constructor) new_abstract_declarator_tuple // CFA | type_specifier | type_specifier variable_abstract_declarator { $$ = $2->addType( $1 ); } ; type_name: // typeof, assertion new_abstract_declarator_tuple // CFA | new_abstract_function // CFA | type_specifier | type_specifier abstract_declarator { $$ = $2->addType( $1 ); } ; initializer_opt: /* empty */ { $$ = 0; } | '=' initializer { $$ = $2; } ; initializer: assignment_expression { $$ = new InitializerNode($1); } | '{' initializer_list comma_opt '}' { $$ = new InitializerNode($2, true); } ; initializer_list: initializer | designation initializer { $$ = $2->set_designators( $1 ); } | initializer_list ',' initializer { $$ = (InitializerNode *)( $1->set_link($3) ); } | initializer_list ',' designation initializer { $$ = (InitializerNode *)( $1->set_link( $4->set_designators($3) ) ); } ; // There is an unreconcileable parsing problem between C99 and CFA with respect to designators. The problem // is use of '=' to separator the designator from the initializer value, as in: // // int x[10] = { [1] = 3 }; // // The string "[1] = 3" can be parsed as a designator assignment or a tuple assignment. To disambiguate this // case, CFA changes the syntax from "=" to ":" as the separator between the designator and initializer. GCC // does uses ":" for field selection. The optional use of the "=" in GCC, or in this case ":", cannot be // supported either due to shift/reduce conflicts designation: designator_list ':' // C99, CFA uses ":" instead of "=" | no_attr_identifier_or_typedef_name ':' // GCC, field name { $$ = new VarRefNode( $1 ); } ; designator_list: // C99 designator | designator_list designator { $$ = (ExpressionNode *)($1->set_link( $2 )); } ; designator: '.' no_attr_identifier_or_typedef_name // C99, field name { $$ = new VarRefNode( $2 ); } | '[' push assignment_expression pop ']' // C99, single array element /* assignment_expression used instead of constant_expression because of shift/reduce conflicts with tuple. */ { $$ = $3; } | '[' push subrange pop ']' // CFA, multiple array elements { $$ = $3; } | '[' push constant_expression ELLIPSIS constant_expression pop ']' // GCC, multiple array elements { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Range), $3, $5); } | '.' '[' push field_list pop ']' // CFA, tuple field selector { $$ = $4; } ; // The CFA type system is based on parametric polymorphism, the ability to declare functions with type // parameters, rather than an object-oriented type system. This required four groups of extensions: // // Overloading: function, data, and operator identifiers may be overloaded. // // Type declarations: "type" is used to generate new types for declaring objects. Similarly, "dtype" is used // for object and incomplete types, and "ftype" is used for function types. Type declarations with // initializers provide definitions of new types. Type declarations with storage class "extern" provide // opaque types. // // Polymorphic functions: A forall clause declares a type parameter. The corresponding argument is inferred at // the call site. A polymorphic function is not a template; it is a function, with an address and a type. // // Specifications and Assertions: Specifications are collections of declarations parameterized by one or more // types. They serve many of the purposes of abstract classes, and specification hierarchies resemble // subclass hierarchies. Unlike classes, they can define relationships between types. Assertions declare // that a type or types provide the operations declared by a specification. Assertions are normally used // to declare requirements on type arguments of polymorphic functions. typegen_declaration_specifier: // CFA typegen_type_specifier | declaration_qualifier_list typegen_type_specifier { $$ = $2->addQualifiers( $1 ); } | typegen_declaration_specifier storage_class // remaining OBSOLESCENT (see 2) { $$ = $1->addQualifiers( $2 ); } | typegen_declaration_specifier storage_class type_qualifier_list { $$ = $1->addQualifiers( $2 )->addQualifiers( $3 ); } ; typegen_type_specifier: // CFA TYPEGENname '(' type_name_list ')' { $$ = DeclarationNode::newFromTypeGen( $1, $3 ); } | type_qualifier_list TYPEGENname '(' type_name_list ')' { $$ = DeclarationNode::newFromTypeGen( $2, $4 )->addQualifiers( $1 ); } | typegen_type_specifier type_qualifier { $$ = $1->addQualifiers( $2 ); } ; type_parameter_list: // CFA type_parameter assignment_opt | type_parameter_list ',' type_parameter assignment_opt { $$ = $1->appendList( $3 ); } ; type_parameter: // CFA type_class no_attr_identifier_or_typedef_name { typedefTable.addToEnclosingScope(*($2), TypedefTable::TD); } assertion_list_opt { $$ = DeclarationNode::newTypeParam( $1, $2 )->addAssertions( $4 ); } | type_specifier identifier_parameter_declarator ; type_class: // CFA TYPE { $$ = DeclarationNode::Type; } | DTYPE { $$ = DeclarationNode::Ftype; } | FTYPE { $$ = DeclarationNode::Dtype; } ; assertion_list_opt: // CFA // empty { $$ = 0; } | assertion_list_opt assertion { $$ = $1 == 0 ? $2 : $1->appendList( $2 ); } ; assertion: // CFA '|' no_attr_identifier_or_typedef_name '(' type_name_list ')' { typedefTable.openContext( *($2) ); $$ = DeclarationNode::newContextUse( $2, $4 ); } | '|' '{' push context_declaration_list '}' { $$ = $4; } | '|' '(' push type_parameter_list pop ')' '{' push context_declaration_list '}' '(' type_name_list ')' { $$ = 0; } ; type_name_list: // CFA type_name { $$ = new TypeValueNode( $1 ); } | assignment_expression | type_name_list ',' type_name { $$ = (ExpressionNode *)($1->set_link(new TypeValueNode( $3 ))); } | type_name_list ',' assignment_expression { $$ = (ExpressionNode *)($1->set_link($3)); } ; type_declaring_list: // CFA TYPE type_declarator { $$ = $2; } | storage_class_list TYPE type_declarator { $$ = $3->addQualifiers( $1 ); } | type_declaring_list ',' type_declarator { $$ = $1->appendList( $3->copyStorageClasses( $1 ) ); } ; type_declarator: // CFA type_declarator_name assertion_list_opt { $$ = $1->addAssertions( $2 ); } | type_declarator_name assertion_list_opt '=' type_name { $$ = $1->addAssertions( $2 )->addType( $4 ); } ; type_declarator_name: // CFA no_attr_identifier_or_typedef_name { typedefTable.addToEnclosingScope(*($1), TypedefTable::TD); $$ = DeclarationNode::newTypeDecl( $1, 0 ); } | no_01_identifier_or_typedef_name '(' push type_parameter_list pop ')' { typedefTable.addToEnclosingScope(*($1), TypedefTable::TG); $$ = DeclarationNode::newTypeDecl( $1, $4 ); } ; context_specifier: // CFA CONTEXT no_attr_identifier_or_typedef_name '(' push type_parameter_list pop ')' '{' '}' { typedefTable.addToEnclosingScope(*($2), TypedefTable::ID ); $$ = DeclarationNode::newContext( $2, $5, 0 ); } | CONTEXT no_attr_identifier_or_typedef_name '(' push type_parameter_list pop ')' '{' { typedefTable.enterContext( *($2) ); typedefTable.enterScope(); } context_declaration_list '}' { typedefTable.leaveContext(); typedefTable.addToEnclosingScope(*($2), TypedefTable::ID ); $$ = DeclarationNode::newContext( $2, $5, $10 ); } ; context_declaration_list: // CFA context_declaration | context_declaration_list push context_declaration { $$ = $1->appendList( $3 ); } ; context_declaration: // CFA new_context_declaring_list pop ';' | context_declaring_list pop ';' ; new_context_declaring_list: // CFA new_variable_specifier { typedefTable.addToEnclosingScope2( TypedefTable::ID ); $$ = $1; } | new_function_specifier { typedefTable.addToEnclosingScope2( TypedefTable::ID ); $$ = $1; } | new_context_declaring_list pop ',' push identifier_or_typedef_name { typedefTable.addToEnclosingScope2( *($5), TypedefTable::ID ); $$ = $1->appendList( $1->cloneType( $5 ) ); } ; context_declaring_list: // CFA type_specifier declarator { typedefTable.addToEnclosingScope2( TypedefTable::ID ); $$ = $2->addType( $1 ); } | context_declaring_list pop ',' push declarator { typedefTable.addToEnclosingScope2( TypedefTable::ID ); $$ = $1->appendList( $1->cloneBaseType( $5 ) ); } ; //***************************** EXTERNAL DEFINITIONS ***************************** translation_unit: // empty {} // empty input file | external_definition_list { if ( theTree ) { theTree->appendList( $1 ); } else { theTree = $1; } } ; external_definition_list: external_definition | external_definition_list push external_definition { if ( $1 ) { $$ = $1->appendList( $3 ); } else { $$ = $3; } } ; external_definition_list_opt: // empty { $$ = 0; } | external_definition_list ; external_definition: declaration | function_definition | asm_statement // GCC, global assembler statement {} | EXTERN STRINGliteral { linkageStack.push( linkage ); linkage = LinkageSpec::fromString( *$2 ); } '{' external_definition_list_opt '}' // C++-style linkage specifier { linkage = linkageStack.top(); linkageStack.pop(); $$ = $5; } | EXTENSION external_definition { $$ = $2; } ; function_definition: new_function_specifier compound_statement // CFA { typedefTable.addToEnclosingScope( TypedefTable::ID ); typedefTable.leaveScope(); $$ = $1->addFunctionBody( $2 ); } | declaration_qualifier_list new_function_specifier compound_statement // CFA // declaration_qualifier_list also includes type_qualifier_list, so a semantic check is // necessary to preclude them as a type_qualifier cannot appear in this context. { typedefTable.addToEnclosingScope( TypedefTable::ID ); typedefTable.leaveScope(); $$ = $2->addFunctionBody( $3 )->addQualifiers( $1 ); } | declaration_specifier function_declarator compound_statement { typedefTable.addToEnclosingScope( TypedefTable::ID ); typedefTable.leaveScope(); $$ = $2->addFunctionBody( $3 )->addType( $1 ); } // These rules are a concession to the "implicit int" type_specifier because there is a // significant amount of code with functions missing a type-specifier on the return type. // Parsing is possible because function_definition does not appear in the context of an // expression (nested functions would preclude this concession). A function prototype // declaration must still have a type_specifier. OBSOLESCENT (see 1) | function_declarator compound_statement { typedefTable.addToEnclosingScope( TypedefTable::ID ); typedefTable.leaveScope(); $$ = $1->addFunctionBody( $2 ); } | type_qualifier_list function_declarator compound_statement { typedefTable.addToEnclosingScope( TypedefTable::ID ); typedefTable.leaveScope(); $$ = $2->addFunctionBody( $3 )->addQualifiers( $1 ); } | declaration_qualifier_list function_declarator compound_statement { typedefTable.addToEnclosingScope( TypedefTable::ID ); typedefTable.leaveScope(); $$ = $2->addFunctionBody( $3 )->addQualifiers( $1 ); } | declaration_qualifier_list type_qualifier_list function_declarator compound_statement { typedefTable.addToEnclosingScope( TypedefTable::ID ); typedefTable.leaveScope(); $$ = $3->addFunctionBody( $4 )->addQualifiers( $2 )->addQualifiers( $1 ); } // Old-style K&R function definition, OBSOLESCENT (see 4) | declaration_specifier old_function_declarator push old_declaration_list_opt compound_statement { typedefTable.addToEnclosingScope( TypedefTable::ID ); typedefTable.leaveScope(); $$ = $2->addOldDeclList( $4 )->addFunctionBody( $5 )->addType( $1 ); } | old_function_declarator push old_declaration_list_opt compound_statement { typedefTable.addToEnclosingScope( TypedefTable::ID ); typedefTable.leaveScope(); $$ = $1->addOldDeclList( $3 )->addFunctionBody( $4 ); } | type_qualifier_list old_function_declarator push old_declaration_list_opt compound_statement { typedefTable.addToEnclosingScope( TypedefTable::ID ); typedefTable.leaveScope(); $$ = $2->addOldDeclList( $4 )->addFunctionBody( $5 )->addQualifiers( $1 ); } // Old-style K&R function definition with "implicit int" type_specifier, OBSOLESCENT (see 4) | declaration_qualifier_list old_function_declarator push old_declaration_list_opt compound_statement { typedefTable.addToEnclosingScope( TypedefTable::ID ); typedefTable.leaveScope(); $$ = $2->addOldDeclList( $4 )->addFunctionBody( $5 )->addQualifiers( $1 ); } | declaration_qualifier_list type_qualifier_list old_function_declarator push old_declaration_list_opt compound_statement { typedefTable.addToEnclosingScope( TypedefTable::ID ); typedefTable.leaveScope(); $$ = $3->addOldDeclList( $5 )->addFunctionBody( $6 )->addQualifiers( $2 )->addQualifiers( $1 ); } ; declarator: variable_declarator | function_declarator | typedef_redeclarator ; subrange: constant_expression '~' constant_expression // CFA, integer subrange { $$ = new CompositeExprNode(new OperatorNode(OperatorNode::Range), $1, $3); } ; asm_name_opt: // GCC // empty | ASM '(' string_literal_list ')' attribute_list_opt ; attribute_list_opt: // GCC // empty | attribute_list ; attribute_list: // GCC attribute | attribute_list attribute ; attribute: // GCC ATTRIBUTE '(' '(' attribute_parameter_list ')' ')' ; attribute_parameter_list: // GCC attrib | attribute_parameter_list ',' attrib ; attrib: // GCC // empty | any_word | any_word '(' comma_expression_opt ')' ; any_word: // GCC identifier_or_typedef_name {} | storage_class_name {} | basic_type_name {} | type_qualifier {} ; // ============================================================================ // The following sections are a series of grammar patterns used to parse declarators. Multiple patterns are // necessary because the type of an identifier in wrapped around the identifier in the same form as its usage // in an expression, as in: // // int (*f())[10] { ... }; // ... (*f())[3] += 1; // definition mimics usage // // Because these patterns are highly recursive, changes at a lower level in the recursion require copying some // or all of the pattern. Each of these patterns has some subtle variation to ensure correct syntax in a // particular context. // ============================================================================ // ---------------------------------------------------------------------------- // The set of valid declarators before a compound statement for defining a function is less than the set of // declarators to define a variable or function prototype, e.g.: // // valid declaration invalid definition // ----------------- ------------------ // int f; int f {} // int *f; int *f {} // int f[10]; int f[10] {} // int (*f)(int); int (*f)(int) {} // // To preclude this syntactic anomaly requires separating the grammar rules for variable and function // declarators, hence variable_declarator and function_declarator. // ---------------------------------------------------------------------------- // This pattern parses a declaration of a variable that is not redefining a typedef name. The pattern // precludes declaring an array of functions versus a pointer to an array of functions. variable_declarator: paren_identifier attribute_list_opt | variable_ptr | variable_array attribute_list_opt | variable_function attribute_list_opt ; paren_identifier: identifier { typedefTable.setNextIdentifier( *($1) ); $$ = DeclarationNode::newName( $1 ); } | '(' paren_identifier ')' // redundant parenthesis { $$ = $2; } ; variable_ptr: '*' variable_declarator { $$ = $2->addPointer( DeclarationNode::newPointer( 0 ) ); } | '*' type_qualifier_list variable_declarator { $$ = $3->addPointer( DeclarationNode::newPointer( $2 ) ); } | '(' variable_ptr ')' { $$ = $2; } ; variable_array: paren_identifier array_dimension { $$ = $1->addArray( $2 ); } | '(' variable_ptr ')' array_dimension { $$ = $2->addArray( $4 ); } | '(' variable_array ')' multi_array_dimension // redundant parenthesis { $$ = $2->addArray( $4 ); } | '(' variable_array ')' // redundant parenthesis { $$ = $2; } ; variable_function: '(' variable_ptr ')' '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $2->addParamList( $6 ); } | '(' variable_function ')' // redundant parenthesis { $$ = $2; } ; // This pattern parses a function declarator that is not redefining a typedef name. Because functions cannot // be nested, there is no context where a function definition can redefine a typedef name. To allow nested // functions requires further separation of variable and function declarators in typedef_redeclarator. The // pattern precludes returning arrays and functions versus pointers to arrays and functions. function_declarator: function_no_ptr attribute_list_opt | function_ptr | function_array attribute_list_opt ; function_no_ptr: paren_identifier '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $1->addParamList( $4 ); } | '(' function_ptr ')' '(' push parameter_type_list_opt pop ')' { $$ = $2->addParamList( $6 ); } | '(' function_no_ptr ')' // redundant parenthesis { $$ = $2; } ; function_ptr: '*' function_declarator { $$ = $2->addPointer( DeclarationNode::newPointer( 0 ) ); } | '*' type_qualifier_list function_declarator { $$ = $3->addPointer( DeclarationNode::newPointer( $2 ) ); } | '(' function_ptr ')' { $$ = $2; } ; function_array: '(' function_ptr ')' array_dimension { $$ = $2->addArray( $4 ); } | '(' function_array ')' multi_array_dimension // redundant parenthesis { $$ = $2->addArray( $4 ); } | '(' function_array ')' // redundant parenthesis { $$ = $2; } ; // This pattern parses an old-style K&R function declarator (OBSOLESCENT, see 4) that is not redefining a // typedef name (see function_declarator for additional comments). The pattern precludes returning arrays and // functions versus pointers to arrays and functions. old_function_declarator: old_function_no_ptr | old_function_ptr | old_function_array ; old_function_no_ptr: paren_identifier '(' identifier_list ')' // function_declarator handles empty parameter { $$ = $1->addIdList( $3 ); } | '(' old_function_ptr ')' '(' identifier_list ')' { $$ = $2->addIdList( $5 ); } | '(' old_function_no_ptr ')' // redundant parenthesis { $$ = $2; } ; old_function_ptr: '*' old_function_declarator { $$ = $2->addPointer( DeclarationNode::newPointer( 0 ) ); } | '*' type_qualifier_list old_function_declarator { $$ = $3->addPointer( DeclarationNode::newPointer( $2 ) ); } | '(' old_function_ptr ')' { $$ = $2; } ; old_function_array: '(' old_function_ptr ')' array_dimension { $$ = $2->addArray( $4 ); } | '(' old_function_array ')' multi_array_dimension // redundant parenthesis { $$ = $2->addArray( $4 ); } | '(' old_function_array ')' // redundant parenthesis { $$ = $2; } ; // This pattern parses a declaration for a variable or function prototype that redefines a typedef name, e.g.: // // typedef int foo; // { // int foo; // redefine typedef name in new scope // } // // The pattern precludes declaring an array of functions versus a pointer to an array of functions, and // returning arrays and functions versus pointers to arrays and functions. typedef_redeclarator: paren_typedef attribute_list_opt | typedef_ptr | typedef_array attribute_list_opt | typedef_function attribute_list_opt ; paren_typedef: TYPEDEFname { typedefTable.setNextIdentifier( *($1) ); $$ = DeclarationNode::newName( $1 ); } | '(' paren_typedef ')' { $$ = $2; } ; typedef_ptr: '*' typedef_redeclarator { $$ = $2->addPointer( DeclarationNode::newPointer( 0 ) ); } | '*' type_qualifier_list typedef_redeclarator { $$ = $3->addPointer( DeclarationNode::newPointer( $2 ) ); } | '(' typedef_ptr ')' { $$ = $2; } ; typedef_array: paren_typedef array_dimension { $$ = $1->addArray( $2 ); } | '(' typedef_ptr ')' array_dimension { $$ = $2->addArray( $4 ); } | '(' typedef_array ')' multi_array_dimension // redundant parenthesis { $$ = $2->addArray( $4 ); } | '(' typedef_array ')' // redundant parenthesis { $$ = $2; } ; typedef_function: paren_typedef '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $1->addParamList( $4 ); } | '(' typedef_ptr ')' '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $2->addParamList( $6 ); } | '(' typedef_function ')' // redundant parenthesis { $$ = $2; } ; // This pattern parses a declaration for a parameter variable or function prototype that is not redefining a // typedef name and allows the C99 array options, which can only appear in a parameter list. The pattern // precludes declaring an array of functions versus a pointer to an array of functions, and returning arrays // and functions versus pointers to arrays and functions. identifier_parameter_declarator: paren_identifier attribute_list_opt | identifier_parameter_ptr | identifier_parameter_array attribute_list_opt | identifier_parameter_function attribute_list_opt ; identifier_parameter_ptr: '*' identifier_parameter_declarator { $$ = $2->addPointer( DeclarationNode::newPointer( 0 ) ); } | '*' type_qualifier_list identifier_parameter_declarator { $$ = $3->addPointer( DeclarationNode::newPointer( $2 ) ); } | '(' identifier_parameter_ptr ')' { $$ = $2; } ; identifier_parameter_array: paren_identifier array_parameter_dimension { $$ = $1->addArray( $2 ); } | '(' identifier_parameter_ptr ')' array_dimension { $$ = $2->addArray( $4 ); } | '(' identifier_parameter_array ')' multi_array_dimension // redundant parenthesis { $$ = $2->addArray( $4 ); } | '(' identifier_parameter_array ')' // redundant parenthesis { $$ = $2; } ; identifier_parameter_function: paren_identifier '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $1->addParamList( $4 ); } | '(' identifier_parameter_ptr ')' '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $2->addParamList( $6 ); } | '(' identifier_parameter_function ')' // redundant parenthesis { $$ = $2; } ; // This pattern parses a declaration for a parameter variable or function prototype that is redefining a typedef name, // e.g.: // // typedef int foo; // int f( int foo ); // redefine typedef name in new scope // // and allows the C99 array options, which can only appear in a parameter list. In addition, the pattern handles the // special meaning of parenthesis around a typedef name: // // ISO/IEC 9899:1999 Section 6.7.5.3(11) : "In a parameter declaration, a single typedef name in // parentheses is taken to be an abstract declarator that specifies a function with a single parameter, // not as redundant parentheses around the identifier." // // which precludes the following cases: // // typedef float T; // int f( int ( T [5] ) ); // see abstract_parameter_declarator // int g( int ( T ( int ) ) ); // see abstract_parameter_declarator // int f( int f1( T a[5] ) ); // see identifier_parameter_declarator // int g( int g1( T g2( int p ) ) ); // see identifier_parameter_declarator // // In essence, a '(' immediately to the left of typedef name, T, is interpreted as starting a parameter type list, and // not as redundant parentheses around a redeclaration of T. Finally, the pattern also precludes declaring an array of // functions versus a pointer to an array of functions, and returning arrays and functions versus pointers to arrays and // functions. typedef_parameter_redeclarator: typedef attribute_list_opt | typedef_parameter_ptr | typedef_parameter_array attribute_list_opt | typedef_parameter_function attribute_list_opt ; typedef: TYPEDEFname { typedefTable.setNextIdentifier( *($1) ); $$ = DeclarationNode::newName( $1 ); } ; typedef_parameter_ptr: '*' typedef_parameter_redeclarator { $$ = $2->addPointer( DeclarationNode::newPointer( 0 ) ); } | '*' type_qualifier_list typedef_parameter_redeclarator { $$ = $3->addPointer( DeclarationNode::newPointer( $2 ) ); } | '(' typedef_parameter_ptr ')' { $$ = $2; } ; typedef_parameter_array: typedef array_parameter_dimension { $$ = $1->addArray( $2 ); } | '(' typedef_parameter_ptr ')' array_parameter_dimension { $$ = $2->addArray( $4 ); } ; typedef_parameter_function: typedef '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $1->addParamList( $4 ); } | '(' typedef_parameter_ptr ')' '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $2->addParamList( $6 ); } ; // This pattern parses a declaration of an abstract variable or function prototype, i.e., there is no identifier to // which the type applies, e.g.: // // sizeof( int ); // sizeof( int [10] ); // // The pattern precludes declaring an array of functions versus a pointer to an array of functions, and returning arrays // and functions versus pointers to arrays and functions. abstract_declarator: abstract_ptr | abstract_array attribute_list_opt | abstract_function attribute_list_opt ; abstract_ptr: '*' { $$ = DeclarationNode::newPointer( 0 ); } | '*' type_qualifier_list { $$ = DeclarationNode::newPointer( $2 ); } | '*' abstract_declarator { $$ = $2->addPointer( DeclarationNode::newPointer( 0 ) ); } | '*' type_qualifier_list abstract_declarator { $$ = $3->addPointer( DeclarationNode::newPointer( $2 ) ); } | '(' abstract_ptr ')' { $$ = $2; } ; abstract_array: array_dimension | '(' abstract_ptr ')' array_dimension { $$ = $2->addArray( $4 ); } | '(' abstract_array ')' multi_array_dimension // redundant parenthesis { $$ = $2->addArray( $4 ); } | '(' abstract_array ')' // redundant parenthesis { $$ = $2; } ; abstract_function: '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3) { $$ = DeclarationNode::newFunction( 0, 0, $3, 0 ); } | '(' abstract_ptr ')' '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $2->addParamList( $6 ); } | '(' abstract_function ')' // redundant parenthesis { $$ = $2; } ; array_dimension: // Only the first dimension can be empty. '[' push pop ']' { $$ = DeclarationNode::newArray( 0, 0, false ); } | '[' push pop ']' multi_array_dimension { $$ = DeclarationNode::newArray( 0, 0, false )->addArray( $5 ); } | multi_array_dimension ; multi_array_dimension: '[' push assignment_expression pop ']' { $$ = DeclarationNode::newArray( $3, 0, false ); } | '[' push '*' pop ']' // C99 { $$ = DeclarationNode::newVarArray( 0 ); } | multi_array_dimension '[' push assignment_expression pop ']' { $$ = $1->addArray( DeclarationNode::newArray( $4, 0, false ) ); } | multi_array_dimension '[' push '*' pop ']' // C99 { $$ = $1->addArray( DeclarationNode::newVarArray( 0 ) ); } ; // This pattern parses a declaration of a parameter abstract variable or function prototype, i.e., there is no // identifier to which the type applies, e.g.: // // int f( int ); // abstract variable parameter; no parameter name specified // int f( int (int) ); // abstract function-prototype parameter; no parameter name specified // // The pattern precludes declaring an array of functions versus a pointer to an array of functions, and returning arrays // and functions versus pointers to arrays and functions. */ abstract_parameter_declarator: abstract_parameter_ptr | abstract_parameter_array attribute_list_opt | abstract_parameter_function attribute_list_opt ; abstract_parameter_ptr: '*' { $$ = DeclarationNode::newPointer( 0 ); } | '*' type_qualifier_list { $$ = DeclarationNode::newPointer( $2 ); } | '*' abstract_parameter_declarator { $$ = $2->addPointer( DeclarationNode::newPointer( 0 ) ); } | '*' type_qualifier_list abstract_parameter_declarator { $$ = $3->addPointer( DeclarationNode::newPointer( $2 ) ); } | '(' abstract_parameter_ptr ')' { $$ = $2; } ; abstract_parameter_array: array_parameter_dimension | '(' abstract_parameter_ptr ')' array_parameter_dimension { $$ = $2->addArray( $4 ); } | '(' abstract_parameter_array ')' multi_array_dimension // redundant parenthesis { $$ = $2->addArray( $4 ); } | '(' abstract_parameter_array ')' // redundant parenthesis { $$ = $2; } ; abstract_parameter_function: '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3) { $$ = DeclarationNode::newFunction( 0, 0, $3, 0 ); } | '(' abstract_parameter_ptr ')' '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $2->addParamList( $6 ); } | '(' abstract_parameter_function ')' // redundant parenthesis { $$ = $2; } ; array_parameter_dimension: // Only the first dimension can be empty or have qualifiers. array_parameter_1st_dimension | array_parameter_1st_dimension multi_array_dimension { $$ = $1->addArray( $2 ); } | multi_array_dimension ; // The declaration of an array parameter has additional syntax over arrays in normal variable declarations: // // ISO/IEC 9899:1999 Section 6.7.5.2(1) : "The optional type qualifiers and the keyword static shall appear only in // a declaration of a function parameter with an array type, and then only in the outermost array type derivation." array_parameter_1st_dimension: '[' push pop ']' { $$ = DeclarationNode::newArray( 0, 0, false ); } // multi_array_dimension handles the '[' '*' ']' case | '[' push type_qualifier_list '*' pop ']' // remaining C99 { $$ = DeclarationNode::newVarArray( $3 ); } | '[' push type_qualifier_list pop ']' { $$ = DeclarationNode::newArray( 0, $3, false ); } // multi_array_dimension handles the '[' assignment_expression ']' case | '[' push type_qualifier_list assignment_expression pop ']' { $$ = DeclarationNode::newArray( $4, $3, false ); } | '[' push STATIC type_qualifier_list_opt assignment_expression pop ']' { $$ = DeclarationNode::newArray( $5, $4, true ); } | '[' push type_qualifier_list STATIC assignment_expression pop ']' { $$ = DeclarationNode::newArray( $5, $3, true ); } ; // This pattern parses a declaration of an abstract variable, i.e., there is no identifier to which the type applies, // e.g.: // // sizeof( int ); // abstract variable; no identifier name specified // // The pattern precludes declaring an array of functions versus a pointer to an array of functions, and returning arrays // and functions versus pointers to arrays and functions. */ variable_abstract_declarator: variable_abstract_ptr | variable_abstract_array attribute_list_opt | variable_abstract_function attribute_list_opt ; variable_abstract_ptr: '*' { $$ = DeclarationNode::newPointer( 0 ); } | '*' type_qualifier_list { $$ = DeclarationNode::newPointer( $2 ); } | '*' variable_abstract_declarator { $$ = $2->addPointer( DeclarationNode::newPointer( 0 ) ); } | '*' type_qualifier_list variable_abstract_declarator { $$ = $3->addPointer( DeclarationNode::newPointer( $2 ) ); } | '(' variable_abstract_ptr ')' { $$ = $2; } ; variable_abstract_array: array_dimension | '(' variable_abstract_ptr ')' array_dimension { $$ = $2->addArray( $4 ); } | '(' variable_abstract_array ')' multi_array_dimension // redundant parenthesis { $$ = $2->addArray( $4 ); } | '(' variable_abstract_array ')' // redundant parenthesis { $$ = $2; } ; variable_abstract_function: '(' variable_abstract_ptr ')' '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3) { $$ = $2->addParamList( $6 ); } | '(' variable_abstract_function ')' // redundant parenthesis { $$ = $2; } ; // This pattern parses a new-style declaration for a parameter variable or function prototype that is either an // identifier or typedef name and allows the C99 array options, which can only appear in a parameter list. new_identifier_parameter_declarator_tuple: // CFA new_identifier_parameter_declarator_no_tuple | new_abstract_tuple | type_qualifier_list new_abstract_tuple { $$ = $2->addQualifiers( $1 ); } ; new_identifier_parameter_declarator_no_tuple: // CFA new_identifier_parameter_ptr | new_identifier_parameter_array ; new_identifier_parameter_ptr: // CFA '*' type_specifier { $$ = $2->addNewPointer( DeclarationNode::newPointer( 0 ) ); } | type_qualifier_list '*' type_specifier { $$ = $3->addNewPointer( DeclarationNode::newPointer( $1 ) ); } | '*' new_abstract_function { $$ = $2->addNewPointer( DeclarationNode::newPointer( 0 ) ); } | type_qualifier_list '*' new_abstract_function { $$ = $3->addNewPointer( DeclarationNode::newPointer( $1 ) ); } | '*' new_identifier_parameter_declarator_tuple { $$ = $2->addNewPointer( DeclarationNode::newPointer( 0 ) ); } | type_qualifier_list '*' new_identifier_parameter_declarator_tuple { $$ = $3->addNewPointer( DeclarationNode::newPointer( $1 ) ); } ; new_identifier_parameter_array: // CFA // Only the first dimension can be empty or have qualifiers. Empty dimension must be factored out due to // shift/reduce conflict with new-style empty (void) function return type. */ '[' push pop ']' type_specifier { $$ = $5->addNewArray( DeclarationNode::newArray( 0, 0, false ) ); } | new_array_parameter_1st_dimension type_specifier { $$ = $2->addNewArray( $1 ); } | '[' push pop ']' multi_array_dimension type_specifier { $$ = $6->addNewArray( $5 )->addNewArray( DeclarationNode::newArray( 0, 0, false ) ); } | new_array_parameter_1st_dimension multi_array_dimension type_specifier { $$ = $3->addNewArray( $2 )->addNewArray( $1 ); } | multi_array_dimension type_specifier { $$ = $2->addNewArray( $1 ); } | '[' push pop ']' new_identifier_parameter_ptr { $$ = $5->addNewArray( DeclarationNode::newArray( 0, 0, false ) ); } | new_array_parameter_1st_dimension new_identifier_parameter_ptr { $$ = $2->addNewArray( $1 ); } | '[' push pop ']' multi_array_dimension new_identifier_parameter_ptr { $$ = $6->addNewArray( $5 )->addNewArray( DeclarationNode::newArray( 0, 0, false ) ); } | new_array_parameter_1st_dimension multi_array_dimension new_identifier_parameter_ptr { $$ = $3->addNewArray( $2 )->addNewArray( $1 ); } | multi_array_dimension new_identifier_parameter_ptr { $$ = $2->addNewArray( $1 ); } ; new_array_parameter_1st_dimension: '[' push type_qualifier_list '*' pop ']' // remaining C99 { $$ = DeclarationNode::newVarArray( $3 ); } | '[' push type_qualifier_list assignment_expression pop ']' { $$ = DeclarationNode::newArray( $4, $3, false ); } | '[' push declaration_qualifier_list assignment_expression pop ']' // declaration_qualifier_list must be used because of shift/reduce conflict with assignment_expression, // so a semantic check is necessary to preclude them as a type_qualifier cannot appear in this // context. { $$ = DeclarationNode::newArray( $4, $3, true ); } | '[' push declaration_qualifier_list type_qualifier_list assignment_expression pop ']' { $$ = DeclarationNode::newArray( $5, $4->addQualifiers( $3 ), true ); } ; // This pattern parses a new-style declaration of an abstract variable or function prototype, i.e., there is no // identifier to which the type applies, e.g.: // // [int] f( int ); // abstract variable parameter; no parameter name specified // [int] f( [int] (int) ); // abstract function-prototype parameter; no parameter name specified // // These rules need LR(3): // // new_abstract_tuple identifier_or_typedef_name // '[' new_parameter_list ']' identifier_or_typedef_name '(' new_parameter_type_list_opt ')' // // since a function return type can be syntactically identical to a tuple type: // // [int, int] t; // [int, int] f( int ); // // Therefore, it is necessary to look at the token after identifier_or_typedef_name to know when to reduce // new_abstract_tuple. To make this LR(1), several rules have to be flattened (lengthened) to allow the necessary // lookahead. To accomplish this, new_abstract_declarator has an entry point without tuple, and tuple declarations are // duplicated when appearing with new_function_specifier. new_abstract_declarator_tuple: // CFA new_abstract_tuple | type_qualifier_list new_abstract_tuple { $$ = $2->addQualifiers( $1 ); } | new_abstract_declarator_no_tuple ; new_abstract_declarator_no_tuple: // CFA new_abstract_ptr | new_abstract_array ; new_abstract_ptr: // CFA '*' type_specifier { $$ = $2->addNewPointer( DeclarationNode::newPointer( 0 ) ); } | type_qualifier_list '*' type_specifier { $$ = $3->addNewPointer( DeclarationNode::newPointer( $1 ) ); } | '*' new_abstract_function { $$ = $2->addNewPointer( DeclarationNode::newPointer( 0 ) ); } | type_qualifier_list '*' new_abstract_function { $$ = $3->addNewPointer( DeclarationNode::newPointer( $1 ) ); } | '*' new_abstract_declarator_tuple { $$ = $2->addNewPointer( DeclarationNode::newPointer( 0 ) ); } | type_qualifier_list '*' new_abstract_declarator_tuple { $$ = $3->addNewPointer( DeclarationNode::newPointer( $1 ) ); } ; new_abstract_array: // CFA // Only the first dimension can be empty. Empty dimension must be factored out due to shift/reduce // conflict with empty (void) function return type. '[' push pop ']' type_specifier { $$ = $5->addNewArray( DeclarationNode::newArray( 0, 0, false ) ); } | '[' push pop ']' multi_array_dimension type_specifier { $$ = $6->addNewArray( $5 )->addNewArray( DeclarationNode::newArray( 0, 0, false ) ); } | multi_array_dimension type_specifier { $$ = $2->addNewArray( $1 ); } | '[' push pop ']' new_abstract_ptr { $$ = $5->addNewArray( DeclarationNode::newArray( 0, 0, false ) ); } | '[' push pop ']' multi_array_dimension new_abstract_ptr { $$ = $6->addNewArray( $5 )->addNewArray( DeclarationNode::newArray( 0, 0, false ) ); } | multi_array_dimension new_abstract_ptr { $$ = $2->addNewArray( $1 ); } ; new_abstract_tuple: // CFA '[' push new_abstract_parameter_list pop ']' { $$ = DeclarationNode::newTuple( $3 ); } ; new_abstract_function: // CFA '[' push pop ']' '(' new_parameter_type_list_opt ')' { $$ = DeclarationNode::newFunction( 0, DeclarationNode::newTuple( 0 ), $6, 0 ); } | new_abstract_tuple '(' push new_parameter_type_list_opt pop ')' { $$ = DeclarationNode::newFunction( 0, $1, $4, 0 ); } | new_function_return '(' push new_parameter_type_list_opt pop ')' { $$ = DeclarationNode::newFunction( 0, $1, $4, 0 ); } ; // 1) ISO/IEC 9899:1999 Section 6.7.2(2) : "At least one type specifier shall be given in the declaration specifiers in // each declaration, and in the specifier-qualifier list in each structure declaration and type name." // // 2) ISO/IEC 9899:1999 Section 6.11.5(1) : "The placement of a storage-class specifier other than at the beginning of // the declaration specifiers in a declaration is an obsolescent feature." // // 3) ISO/IEC 9899:1999 Section 6.11.6(1) : "The use of function declarators with empty parentheses (not // prototype-format parameter type declarators) is an obsolescent feature." // // 4) ISO/IEC 9899:1999 Section 6.11.7(1) : "The use of function definitions with separate parameter identifier and // declaration lists (not prototype-format parameter type and identifier declarators) is an obsolescent feature. //************************* MISCELLANEOUS ******************************** comma_opt: // redundant comma // empty | ',' ; assignment_opt: // empty { $$ = 0; } | '=' assignment_expression { $$ = $2; } ; %% // ----end of grammar---- void yyerror( char *string ) { using std::cout; using std::endl; cout << "Error "; if ( yyfilename ) { cout << "in file " << yyfilename << " "; } cout << "at line " << yylineno << " reading token \"" << *(yylval.tok.str) << "\"" << endl; } // Local Variables: // // fill-column: 110 // // compile-command: "make install" // // End: //