#pragma once #include "bits/collection.hfa" #include "bits/defs.hfa" struct Seqable { __cfa_anonymous_object(Colable); struct Seqable * back; // pointer to previous node in the list }; #ifdef __cforall static inline { // PUBLIC void ?{}( Seqable & sq ) with( sq ) { ((Colable &)sq){}; back = 0p; } // post: ! listed() Seqable & getBack( Seqable & sq ) with( sq ) { return *back; } // PRIVATE Seqable *& Back( Seqable * sq ) { return sq->back; } // // wrappers to make Collection have T // forall( T & ) { // T *& Back( T * n ) { // return (T *)Back( (Seqable *)n ); // } // } // distribution } // distribution // A Sequence(T) is a Collection(T) defining the ordering of a uStack and uQueue, and to insert and remove elements // anywhere in the sequence. T must be a public descendant of uSeqable. // The implementation is a typical doubly-linked list, except the next field of the last node points at the first node // and the back field of the last node points at the first node (circular). forall( T & | { T *& Back ( T * ); T *& Next ( T * ); } ) { struct Sequence { inline Collection; // Plan 9 inheritance }; static inline { // wrappers to make Collection have T T & head( Sequence(T) & s ) with( s ) { return *(T *)head( (Collection &)s ); } // post: empty() & head() == 0 | !empty() & head() in *s void ?{}( Sequence(T) &, const Sequence(T) & ) = void; // no copy Sequence(T) & ?=?( const Sequence(T) & ) = void; // no assignment void ?{}( Sequence(T) & s ) with( s ) { ((Collection &)s){}; } // post: isEmpty() // Return a pointer to the last sequence element, without removing it. T & tail( Sequence(T) & s ) with( s ) { return root ? (T &)*Back( &head( s ) ) : *0p; } // post: empty() & tail() == 0 | !empty() & tail() in *s // Return a pointer to the element after *n, or 0p if list empty. T * succ( Sequence(T) & s, T * n ) with( s ) { // pre: *n in *s #ifdef __CFA_DEBUG__ if ( ! listed( n ) ) abort( "(Sequence &)%p.succ( %p ) : Node is not on a list.", &s, n ); #endif // __CFA_DEBUG__ return Next( n ) == &head( s ) ? 0p : Next( n ); } // post: n == tail() & succ(n) == 0 | n != tail() & *succ(n) in *s // Return a pointer to the element before *n, or 0p if list empty. T * pred( Sequence(T) & s, T * n ) with( s ) { // pre: *n in *s #ifdef __CFA_DEBUG__ if ( ! listed( n ) ) abort( "(Sequence &)%p.pred( %p ) : Node is not on a list.", &s, n ); #endif // __CFA_DEBUG__ return n == &head( s ) ? 0p : Back( n ); } // post: n == head() & head(n) == 0 | n != head() & *pred(n) in *s // Insert *n into the sequence before *bef, or at the end if bef == 0p. T & insertBef( Sequence(T) & s, T & n, T & bef ) with( s ) { // pre: !n->listed() & *bef in *s #ifdef __CFA_DEBUG__ if ( listed( &n ) ) abort( "(Sequence &)%p.insertBef( %p, %p ) : Node is already on another list.", &s, n, &bef ); #endif // __CFA_DEBUG__ if ( &bef == &head( s ) ) { // must change root if ( root ) { Next( &n ) = &head( s ); Back( &n ) = Back( &head( s ) ); // inserted node must be consistent before it is seen asm( "" : : : "memory" ); // prevent code movement across barrier Back( &head( s ) ) = &n; Next( Back( &n ) ) = &n; } else { Next( &n ) = &n; Back( &n ) = &n; } // if // inserted node must be consistent before it is seen asm( "" : : : "memory" ); // prevent code movement across barrier root = &n; } else { if ( ! &bef ) &bef = &head( s ); Next( &n ) = &bef; Back( &n ) = Back( &bef ); // inserted node must be consistent before it is seen asm( "" : : : "memory" ); // prevent code movement across barrier Back( &bef ) = &n; Next( Back( &n ) ) = &n; } // if return n; } // post: n->listed() & *n in *s & succ(n) == bef // Insert *n into the sequence after *aft, or at the beginning if aft == 0. T & insertAft( Sequence(T) & s, T & aft, T & n ) with( s ) { // pre: !n->listed() & *aft in *s #ifdef __CFA_DEBUG__ if ( listed( &n ) ) abort( "(Sequence &)%p.insertAft( %p, %p ) : Node is already on another list.", &s, &aft, &n ); #endif // __CFA_DEBUG__ if ( ! &aft ) { // must change root if ( root ) { Next( &n ) = &head( s ); Back( &n ) = Back( &head( s ) ); // inserted node must be consistent before it is seen asm( "" : : : "memory" ); // prevent code movement across barrier Back( &head( s ) ) = &n; Next( Back( &n ) ) = &n; } else { Next( &n ) = &n; Back( &n ) = &n; } // if asm( "" : : : "memory" ); // prevent code movement across barrier root = &n; } else { Next( &n ) = Next( &aft ); Back( &n ) = &aft; // inserted node must be consistent before it is seen asm( "" : : : "memory" ); // prevent code movement across barrier Back( Next( &n ) ) = &n; Next( &aft ) = &n; } // if return n; } // post: n->listed() & *n in *s & succ(n) == bef // pre: n->listed() & *n in *s T & remove( Sequence(T) & s, T & n ) with( s ) { // O(1) #ifdef __CFA_DEBUG__ if ( ! listed( &n ) ) abort( "(Sequence &)%p.remove( %p ) : Node is not on a list.", &s, &n ); #endif // __CFA_DEBUG__ if ( &n == &head( s ) ) { if ( Next( &head( s ) ) == &head( s ) ) root = 0p; else root = Next( &head( s ) ); } // if Back( Next( &n ) ) = Back( &n ); Next( Back( &n ) ) = Next( &n ); Next( &n ) = Back( &n ) = 0p; return n; } // post: !n->listed() // Add an element to the head of the sequence. T & addHead( Sequence(T) & s, T & n ) { // pre: !n->listed(); post: n->listed() & head() == n return insertAft( s, *0p, n ); } // Add an element to the tail of the sequence. T & addTail( Sequence(T) & s, T & n ) { // pre: !n->listed(); post: n->listed() & head() == n return insertBef( s, n, *0p ); } // Add an element to the tail of the sequence. T & add( Sequence(T) & s, T & n ) { // pre: !n->listed(); post: n->listed() & head() == n return addTail( s, n ); } // Remove and return the head element in the sequence. T & dropHead( Sequence(T) & s ) { T & n = head( s ); return &n ? remove( s, n ), n : *0p; } // Remove and return the head element in the sequence. T & drop( Sequence(T) & s ) { return dropHead( s ); } // Remove and return the tail element in the sequence. T & dropTail( Sequence(T) & s ) { T & n = tail( s ); return &n ? remove( s, n ), n : *0p; } // Transfer the "from" list to the end of s sequence; the "from" list is empty after the transfer. void transfer( Sequence(T) & s, Sequence(T) & from ) with( s ) { if ( empty( from ) ) return; // "from" list empty ? if ( empty( s ) ) { // "to" list empty ? root = from.root; } else { // "to" list not empty T * toEnd = Back( &head( s ) ); T * fromEnd = Back( &head( from ) ); Back( (T *)root ) = fromEnd; Next( fromEnd ) = &head( s ); Back( (T *)from.root ) = toEnd; Next( toEnd ) = &head( from ); } // if from.root = 0p; // mark "from" list empty } // Transfer the "from" list up to node "n" to the end of s list; the "from" list becomes the sequence after node "n". // Node "n" must be in the "from" list. void split( Sequence(T) & s, Sequence(T) & from, T & n ) with( s ) { #ifdef __CFA_DEBUG__ if ( ! listed( &n ) ) abort( "(Sequence &)%p.split( %p ) : Node is not on a list.", &s, &n ); #endif // __CFA_DEBUG__ Sequence(T) to; to.root = from.root; // start of "to" list from.root = Next( &n ); // start of "from" list if ( to.root == from.root ) { // last node in list ? from.root = 0p; // mark "from" list empty } else { Back( &head( from ) ) = Back( &head( to ) ); // fix "from" list Next( Back( &head( to ) ) ) = &head( from ); Next( &n ) = &head( to ); // fix "to" list Back( &head( to ) ) = &n; } // if transfer( s, to ); } } // distribution } // distribution forall( T & | { T *& Back ( T * ); T *& Next ( T * ); } ) { // SeqIter(T) is used to iterate over a Sequence(T) in head-to-tail order. struct SeqIter { inline ColIter; // The Sequence must be passed to pred and succ to check for the end of the Sequence and return 0p. Without // passing the sequence, traversing would require its length. Thus the iterator needs a pointer to the sequence // to pass to succ/pred. Both stack and queue just encounter 0p since the lists are not circular. Sequence(T) * seq; // FIX ME: cannot be reference }; static inline { void ?{}( SeqIter(T) & si ) with( si ) { ((ColIter &)si){}; seq = 0p; } // post: elts = null // Create a iterator active in sequence s. void ?{}( SeqIter(T) & si, Sequence(T) & s ) with( si ) { ((ColIter &)si){}; seq = &s; curr = &head( s ); } // post: elts = null void ?{}( SeqIter(T) & si, Sequence(T) & s, T & start ) with( si ) { ((ColIter &)si){}; seq = &s; curr = &start; } // post: elts = null // Make the iterator active in sequence s. void over( SeqIter(T) & si, Sequence(T) & s ) with( si ) { seq = &s; curr = &head( s ); } // post: elts = {e in s} bool ?|?( SeqIter(T) & si, T && tp ) with( si ) { if ( curr ) { &tp = Curr( si ); T * n = succ( *seq, Curr( si ) ); curr = n == &head( *seq ) ? 0p : n; } else &tp = 0p; return &tp != 0p; } } // distribution // A SeqIterRev(T) is used to iterate over a Sequence(T) in tail-to-head order. struct SeqIterRev { inline ColIter; // See above for explanation. Sequence(T) * seq; // FIX ME: cannot be reference }; static inline { void ?{}( SeqIterRev(T) & si ) with( si ) { ((ColIter &)si){}; seq = 0p; } // post: elts = null // Create a iterator active in sequence s. void ?{}( SeqIterRev(T) & si, Sequence(T) & s ) with( si ) { ((ColIter &)si){}; seq = &s; curr = &tail( s ); } // post: elts = null void ?{}( SeqIterRev(T) & si, Sequence(T) & s, T & start ) with( si ) { ((ColIter &)si){}; seq = &s; curr = &start; } // post: elts = null // Make the iterator active in sequence s. void over( SeqIterRev(T) & si, Sequence(T) & s ) with( si ) { seq = &s; curr = &tail( s ); } // post: elts = {e in s} bool ?|?( SeqIterRev(T) & si, T && tp ) with( si ) { if ( curr ) { &tp = Curr( si ); T * n = pred( *seq, Curr( si ) ); curr = n == &tail( *seq ) ? 0p : n; } else &tp = 0p; return &tp != 0p; } } // distribution } // distribution #endif