// // Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // concurrency/future.hfa -- // // Author : Thierry Delisle & Peiran Hong & Colby Parsons & Peter Buhr // Created On : Wed Jan 06 17:33:18 2021 // Last Modified By : Peter A. Buhr // Last Modified On : Mon Nov 24 16:08:52 2025 // Update Count : 222 // #pragma once #include "bits/locks.hfa" #include "monitor.hfa" #include "select.hfa" #include "locks.hfa" //-------------------------------------------------------------------------------------------------------- // future does not use future_t as it needs a lock to support multiple consumers. future_t is lockfree // and uses atomics which are not needed. //-------------------------------------------------------------------------------------------------------- forall( T ) { // PRIVATE struct future_node$ { inline select_node; T * my_result; }; static inline { // memcpy wrapper to help copy values void copy_T$( T & to, T & from ) { memcpy( (void *)&to, (void *)&from, sizeof(T) ); } } // distribution enum { FUTURE_EMPTY$ = 0, FUTURE_FULFILLED$ = 1 }; // PUBLIC struct future { int state; T result; exception_t * except; futex_mutex lock; dlist( select_node ) waiters; }; __CFA_SELECT_GET_TYPE( future(T) ); // magic static inline { // PRIVATE bool register_select$( future(T) & fut, select_node & s ) with( fut ) { // for waituntil statement lock( lock ); // check if we can complete operation. If so race to establish winner in special OR case if ( !s.park_counter && state != FUTURE_EMPTY$ ) { if ( !__make_select_node_available( s ) ) { // we didn't win the race so give up on registering unlock( lock ); return false; } } // future not ready -> insert select node and return if ( state == FUTURE_EMPTY$ ) { insert_last( waiters, s ); unlock( lock ); return false; } __make_select_node_available( s ); unlock( lock ); return true; } bool unregister_select$( future(T) & fut, select_node & s ) with( fut ) { // for waituntil statement if ( ! isListed( s ) ) return false; lock( lock ); if ( isListed( s ) ) remove( s ); unlock( lock ); return false; } bool on_selected$( future(T) &, select_node & ) { return true; } // for waituntil statement // PUBLIC // General void ?{}( future_node$(T) & fut, thread$ * blocked_thread, T * my_result ) { ((select_node &)fut){ blocked_thread }; fut.my_result = my_result; } void ?{}( future(T) & fut ) with( fut ) { except = 0p; state = FUTURE_EMPTY$; } void ^?{}( future(T) & fut ) with( fut ) { free( except ); } // Used by Client // PRIVATE // Return a value/exception from the future. T get$( future(T) & fut ) with( fut ) { // helper void exceptCheck() { // helper if ( except ) { exception_t * ex = ( exception_t * ) alloca( except->virtual_table->size ); except->virtual_table->copy( ex, except ); unlock( lock ); throwResume * ex; } } T ret_val; // LOCK ACQUIRED IN PUBLIC get if ( state == FUTURE_FULFILLED$ ) { exceptCheck(); copy_T$( ret_val, result ); unlock( lock ); return ret_val; } future_node$(T) node = { active_thread(), &ret_val }; insert_last( waiters, ((select_node &)node) ); unlock( lock ); park( ); exceptCheck(); return ret_val; } // PUBLIC bool available( future( T ) & fut ) { return __atomic_load_n( &fut.state, __ATOMIC_RELAXED ); } // future result available ? // Return a value/exception from the future. [T, bool] get( future(T) & fut ) with( fut ) { lock( lock ); bool ret = state == FUTURE_EMPTY$; return [ get$( fut ), ret ]; } T get( future(T) & fut ) with( fut ) { lock( lock ); return get$( fut ); } T ?()( future(T) & fut ) { return get( fut ); } // alternate interface // Non-blocking get: true => return defined value, false => value return undefined. [T, bool] try_get( future(T) & fut ) with( fut ) { lock( lock ); T ret_val; if ( state == FUTURE_FULFILLED$ ) { copy_T$( ret_val, result ); unlock( lock ); return [ret_val, true]; } unlock( lock ); return [ret_val, false]; } // Used by Server // PRIVATE bool fulfil$( future(T) & fut ) with( fut ) { // helper bool ret_val = ! isEmpty( waiters ); state = FUTURE_FULFILLED$; while ( ! isEmpty( waiters ) ) { if ( !__handle_waituntil_OR( waiters ) ) // handle special waituntil OR case break; // if handle_OR returns false then waiters is empty so break select_node &s = remove_first( waiters ); if ( s.clause_status == 0p ) // poke in result so that woken threads do not need to reacquire any locks copy_T$( *(((future_node$(T) &)s).my_result), result ); wake_one( waiters, s ); } unlock( lock ); return ret_val; } // PUBLIC // Load a value/exception into the future, returns whether or not waiting threads. bool fulfil( future(T) & fut, T val ) with( fut ) { lock( lock ); if ( state != FUTURE_EMPTY$ ) abort("Attempting to fulfil a future that has already been fulfilled"); copy_T$( result, val ); return fulfil$( fut ); } bool ?()( future(T) & fut, T val ) { return fulfil( fut, val ); } // alternate interface bool fulfil( future(T) & fut, exception_t * ex ) with( fut ) { lock( lock ); if ( state != FUTURE_EMPTY$ ) abort( "Attempting to fulfil a future that has already been fulfilled" ); except = ( exception_t * ) malloc( ex->virtual_table->size ); ex->virtual_table->copy( except, ex ); return fulfil$( fut ); } bool ?()( future(T) & fut, exception_t * ex ) { return fulfil( fut, ex ); } // alternate interface void reset( future(T) & fut ) with( fut ) { // mark future as empty (for reuse) lock( lock ); if ( ! isEmpty( waiters ) ) abort( "Attempting to reset a future with blocked waiters" ); state = FUTURE_EMPTY$; free( except ); except = 0p; unlock( lock ); } } // static inline } // forall( T ) //-------------------------------------------------------------------------------------------------------- // future_rc uses reference counting to eliminate explicit storage-management and support the waituntil // statement. //-------------------------------------------------------------------------------------------------------- forall( T ) { // PRIVATE struct future_rc_impl$ { futex_mutex lock; // concurrent protection size_t refCnt; // number of references to future future(T) fut; // underlying future }; // future_rc_impl$ static inline { size_t incRef$( future_rc_impl$( T ) & impl ) with( impl ) { return __atomic_fetch_add( &refCnt, 1, __ATOMIC_SEQ_CST ); } // incRef$ size_t decRef$( future_rc_impl$( T ) & impl ) with( impl ) { return __atomic_fetch_add( &refCnt, -1, __ATOMIC_SEQ_CST ); } // decRef$ void ?{}( future_rc_impl$( T ) & frc ) with( frc ) { refCnt = 1; // count initial object } // ?{} } // static inline // PUBLIC struct future_rc { future_rc_impl$(T) * impl; }; // future_rc __CFA_SELECT_GET_TYPE( future_rc(T) ); // magic static inline { // PRIVATE bool register_select$( future_rc(T) & frc, select_node & s ) with( frc ) { // for waituntil statement return register_select$( frc.impl->fut, s ); } bool unregister_select$( future_rc(T) & frc, select_node & s ) with( frc ) { // for waituntil statement return unregister_select$( frc.impl->fut, s ); } bool on_selected$( future_rc(T) &, select_node & ) { return true; } // for waituntil statement // PUBLIC // General void ?{}( future_rc( T ) & frc ) with( frc ) { // default constructor impl = new(); } // ?{} void ?{}( future_rc( T ) & to, future_rc( T ) & from ) with( to ) { // copy constructor impl = from.impl; // point at new impl incRef$( *impl ); } // ?{} void ^?{}( future_rc( T ) & frc ) with( frc ) { if ( decRef$( *impl ) == 1 ) { delete( impl ); impl = 0p; } } // ^?{} future_rc( T ) & ?=?( future_rc( T ) & lhs, future_rc( T ) & rhs ) with( lhs ) { if ( impl == rhs.impl ) return lhs; // self assignment ? if ( decRef$( *impl ) == 1 ) { delete( impl ); impl = 0p; } // no references ? => delete current impl impl = rhs.impl; // point at new impl incRef$( *impl ); // and increment reference count return lhs; } // ?+? // Used by Client bool available( future_rc( T ) & frc ) { return available( frc.impl->fut ); } // future result available ? // Return a value/exception from the future. [T, bool] get( future_rc(T) & frc ) with( frc ) { return get( impl->fut ); } // return future value T get( future_rc(T) & frc ) with( frc ) { return get( impl->fut ); } // return future value T ?()( future_rc(T) & frc ) with( frc ) { return get( frc ); } // alternate interface [T, bool] try_get( future_rc(T) & frc ) with( frc ) { return try_get( impl->fut ); } int ?==?( future_rc( T ) & lhs, future_rc( T ) & rhs ) { return lhs.impl == rhs.impl; } // referential equality // Used by Server // Load a value/exception into the future, returns whether or not waiting threads. bool fulfil( future_rc(T) & frc, T val ) with( frc ) { return fulfil( impl->fut, val ); } // copy-in future value bool ?()( future_rc(T) & frc, T val ) { return fulfil( frc, val ); } // alternate interface bool fulfil( future_rc(T) & frc, exception_t * ex ) with( frc ) { return fulfil( impl->fut, ex ); } // insert future exception bool ?()( future_rc(T) & frc, exception_t * ex ) { return fulfil( frc, ex ); } // alternate interface void reset( future_rc(T) & frc ) with( frc ) { reset( impl->fut ); } // mark future as empty (for reuse) } // static inline } // forall( T ) //-------------------------------------------------------------------------------------------------------- // This future does not support waituntil statements so it does not have as many features as 'future'. // However, it is cheap and cheerful and is more performant than 'future' since it uses raw atomics // and no locks //-------------------------------------------------------------------------------------------------------- forall( T ) { // PUBLIC struct single_future { inline future_t; T result; }; static inline { // PUBLIC bool available( single_future(T) & fut ) { return available( (future_t &)fut ); } // future result available ? // Return a value/exception from the future. [T, bool] get( single_future(T) & fut ) { return [fut.result, wait( fut )]; } T get( single_future(T) & fut ) { wait( fut ); return fut.result; } T ?()( single_future(T) & fut ) { return get( fut ); } // alternate interface // Load a value into the future, returns whether or not waiting threads. bool fulfil( single_future(T) & fut, T result ) { fut.result = result; return fulfil( (future_t &)fut ) != 0p; } bool ?()( single_future(T) & fut, T val ) { return fulfil( fut, val ); } // alternate interface void reset( single_future(T) & fut ) { reset( (future_t &)fut ); } // mark future as empty (for reuse) } // static inline } // forall( T )