
Received XXXXX; Revised XXXXX; Accepted XXXXX

DOI: xxx/xxxx

RESEARCH ARTICLE1

Concurrency in C

A

2

Thierry Delisle | Peter A. Buhr*3

1Cheriton School of Computer Science,
University of Waterloo, Waterloo, ON,
Canada

Correspondence

*Peter A. Buhr, Cheriton School of Computer
Science, University of Waterloo, 200
University Avenue West, Waterloo, ON, N2L
3G1, Canada. Email: pabuhr@uwaterloo.ca

Funding information
Natural Sciences and Engineering Research
Council of Canada

Summary

C

A

is a modern, polymorphic, non-object-oriented extension of the C program-

ming language. This paper discusses the design of the concurrency and parallelism

features in C

A

, and its concurrent runtime-system. These features are created from

scratch as ISO C lacks concurrency, relying largely on the pthreads library for con-

currency. Coroutines and lightweight (user) threads are introduced into C

A

; as well,

monitors are added as a high-level mechanism for mutual exclusion and synchro-

nization. A unique contribution of this work is allowing multiple monitors to be

safely acquired simultaneously. All features respect the expectations of C program-

mers, while being fully integrate with the C

A

polymorphic type-system and other

language features. Experimental results show comparable performance of the new

features with similar mechanisms in other concurrent programming-languages.

KEYWORDS

concurrency, parallelism, coroutines, threads, monitors, runtime, C, Cforall

4

1 INTRODUCTION5

This paper provides a minimal concurrency Application Program Interface (API) that is simple, efficient and can be used to6

build other concurrency features. While the simplest concurrency system is a thread and a lock, this low-level approach is hard7

to master. An easier approach for programmers is to support higher-level constructs as the basis of concurrency. Indeed, for8

highly-productive concurrent-programming, high-level approaches are much more popular1. Examples of high-level approaches9

are jobs (thread pool)2, implicit threading3, monitors4, channels5,6, and message passing7,8.10

The following terminology is used. A thread is a fundamental unit of execution that runs a sequence of code and requires a11

stack to maintain state. Multiple simultaneous threads give rise to concurrency, which requires locking to ensure access to shared12

data and safe communication. Locking, and by extension locks, are defined as a mechanism to prevent progress of threads to13

provide safety. Parallelism is running multiple threads simultaneously. Parallelism implies actual simultaneous execution, where14

concurrency only requires apparent simultaneous execution. As such, parallelism only affects performance, which is observed15

through differences in space and/or time at runtime. Hence, there are two problems to be solved: concurrency and parallelism.16

While these two concepts are often combined, they are distinct, requiring different tools9, § 2. Concurrency tools handle mutual17

exclusion and synchronization, while parallelism tools handle performance, cost, and resource utilization.18

The proposed concurrency API is implemented in a dialect of C, called C

A

(pronounced C-for-all). The paper discusses how19

the language features are added to the C

A

translator with respect to parsing, semantics, and type checking, and the corresponding20

high-performance runtime-library to implement the concurrent features.21

2 DELISLE ET AL.

2 C

A

OVERVIEW1

The following is a quick introduction to the C

A

language, specifically tailored to the features needed to support concurrency.2

Extended versions and explanation of the following code examples are available at the C

A

website10 or in Moss et al.11.3

C

A

is a non-object-oriented extension of ISO-C, and hence, supports all C paradigms. Like C, the building blocks of C

A

are4

structures and routines. Virtually all of the code generated by the C

A

translator respects C memory layouts and calling conven-5

tions. While C

A

is not object oriented, lacking the concept of a receiver (eg, this) and nominal inheritance-relationships, C has a6

notion of objects: “region of data storage in the execution environment, the contents of which can represent values”12, 3.15. While7

some object-oriented features appear in C

A

, they are independent capabilities, allowing C

A

to adopt them while maintaining a8

procedural paradigm.9

2.1 References10

C

A

provides multi-level rebindable references, as an alternative to pointers, which significantly reduces syntactic noise.11

int x = 1, y = 2, z = 3;12

int ∗ p1 = &x, ∗∗ p2 = &p1, ∗∗∗ p3 = &p2, // pointers to x13

& r1 = x, && r2 = r1, &&& r3 = r2; // references to x14

int ∗ p4 = &z, & r4 = z;15

16

∗p1 = 3; ∗∗p2 = 3; ∗∗∗p3 = 3; // change x17

r1 = 3; r2 = 3; r3 = 3; // change x: implicit dereferences ∗r1, ∗∗r2, ∗∗∗r318

∗∗p3 = &y; ∗p3 = &p4; // change p1, p219

&r3 = &y; &&r3 = &&r4; // change r1, r2: cancel implicit dereferences (&∗)∗∗r3, (&(&∗)∗)∗r3, &(&∗)r420

A reference is a handle to an object, like a pointer, but is automatically dereferenced the specified number of levels. Referencing21

(address-of &) a reference variable cancels one of the implicit dereferences, until there are no more implicit references, after22

which normal expression behaviour applies.23

2.2 with Statement24

Heterogeneous data is aggregated into a structure/union. To reduce syntactic noise, C

A

provides a with statement (see25

Pascal13, § 4.F) to elide aggregate field-qualification by opening a scope containing the field identifiers.2627

struct S { char c; int i; double d; };28

struct T { double m, n; };29

// multiple aggregate parameters30

void f(S & s, T & t) {
s.c; s.i; s.d;
t.m; t.n;

}

void f(S & s, T & t) with (s, t) {
c; i; d; // no qualification
m; n;

}

31

Object-oriented programming languages only provide implicit qualification for the receiver.32

In detail, the with-statement syntax is:33

with-statement:34

'with' '(' expression-list ')' compound-statement35

and may appear as the body of a routine or nested within a routine body. Each expression in the expression-list provides a type36

and object. The type must be an aggregate type. (Enumerations are already opened.) The object is the implicit qualifier for37

the open structure-fields. All expressions in the expression list are opened in parallel within the compound statement, which is38

different from Pascal, which nests the openings from left to right.39

2.3 Overloading40

C

A

maximizes the ability to reuse names via overloading to aggressively address the naming problem. Both variables and41

routines may be overloaded, where selection is based on number and types of returns and arguments (as in Ada14).42

DELISLE ET AL. 3

1

// selection based on type2

const short int MIN = 32768;
const int MIN = 2147483648;
const long int MIN = 9223372036854775808L;

short int si = MIN;
int i = MIN;
long int li = MIN;

3

// selection based on type and number of parameters4

void f(void);
void f(char);
void f(int, double);

f();
f('a');
f(3, 5.2);

5

// selection based on type and number of returns6

char f(int);
double f(int);
[char, double] f(int);

char c = f(3);
double d = f(3);
[d, c] = f(3);

7

Overloading is important for C

A

concurrency since the runtime system relies on creating different types to represent concurrency8

objects. Therefore, overloading eliminates long prefixes and other naming conventions to prevent name clashes. As seen in9

Section 3, routine main is heavily overloaded. As another example, variable overloading is useful in the parallel semantics of10

the with statement for fields with the same name:11

struct S { int i; int j; double m; } s;12

struct T { int i; int k; int m; } t;13

with (s, t) {14

j + k; // unambiguous, s.j + t.k15

m = 5.0; // unambiguous, s.m = 5.016

m = 1; // unambiguous, t.m = 117

int a = m; // unambiguous, a = t.m18

double b = m; // unambiguous, b = s.m19

int c = s.i + t.i; // unambiguous, qualification20

(double)m; // unambiguous, cast s.m21

}22

For parallel semantics, both s.i and t.i are visible with the same type, so only i is ambiguous without qualification.23

2.4 Operators24

Overloading also extends to operators. Operator-overloading syntax creates a routine name with an operator symbol and question25

marks for the operands:26

int ++?(int op);
int ?++(int op);
int ?+?(int op1, int op2);
int ?<=?(int op1, int op2);
int ?=? (int & op1, int op2);
int ?+=?(int & op1, int op2);

// unary prefix increment
// unary postfix increment
// binary plus
// binary less than
// binary assignment
// binary plus assignment

struct S { int i, j; };
S ?+?(S op1, S op2) { // add two structures

return (S){op1.i + op2.i, op1.j + op2.j};
}
S s1 = {1, 2}, s2 = {2, 3}, s3;
s3 = s1 + s2; // compute sum: s3 == {2, 5}

27

2.5 Constructors / Destructors28

Object lifetime is a challenge in non-managed programming languages. C

A

responds with C++-like constructors and destructors,29

using a different operator-overloading syntax.30

struct VLA { int len, ∗ data; }; // variable length array of integers31

void ?{}(VLA & vla) with (vla) { len = 10; data = alloc(len); } // default constructor32

void ?{}(VLA & vla, int size, char fill) with (vla) { len = size; data = alloc(len, fill); } // initialization33

void ?{}(VLA & vla, VLA other) { vla.len = other.len; vla.data = other.data; } // copy, shallow34

void ∧?{}(VLA & vla) with (vla) { free(data); } // destructor35

{36

VLA x, y = { 20, 0x01 }, z = y; // z points to y37

// x{}; y{ 20, 0x01 }; z{ z, y }; implicit calls38

∧x{}; // deallocate x39

4 DELISLE ET AL.

x{}; // reallocate x1

z{ 5, 0xff }; // reallocate z, not pointing to y2

∧y{}; // deallocate y3

y{ x }; // reallocate y, points to x4

x{}; // reallocate x, not pointing to y5

} // ˆz{}; ˆy{}; ˆx{}; implicit calls6

Like C++, construction is implicit on allocation (stack/heap) and destruction is implicit on deallocation. The object and all their7

fields are constructed/destructed. C

A

also provides new and delete as library routines, which behave like malloc and free, in8

addition to constructing and destructing objects:9

{10

... struct S s = {10}; ... // allocation, call constructor11

} // deallocation, call destructor12

struct S ∗ s = new(); // allocation, call constructor13

...14

delete(s); // deallocation, call destructor15

C

A

concurrency uses object lifetime as a means of mutual exclusion and/or synchronization.16

2.6 Parametric Polymorphism17

The signature feature of C

A

is parametric-polymorphic routines10 with routines generalized using a forall clause (giving the18

language its name), which allow separately compiled routines to support generic usage over multiple types. For example, the19

following sum routine works for any type that supports construction from 0 and addition:20

forall(otype T | { void ?{}(T ∗, zero t); T ?+?(T, T); }) // constraint type, 0 and +21

T sum(T a[], size t size) {22

T total = { 0 }; // initialize by 0 constructor23

for (size t i = 0; i < size; i += 1)24

total = total + a[i]; // select appropriate +25

return total;26

}27

S sa[5];28

int i = sum(sa, 5); // use S’s 0 construction and +29

Type variables can be otype or dtype. otype refers to a complete type, ie, a type with size, alignment, default constructor, copy30

constructor, destructor, and assignment operator. dtype refers to an incomplete type, eg, void or a forward-declared type. The31

builtin types zero t and one t overload constant 0 and 1 for a new types, where both 0 and 1 have special meaning in C.32

C

A

provides traits to name a group of type assertions, where the trait name allows specifying the same set of assertions in33

multiple locations, preventing repetition mistakes at each routine declaration:34

trait sumable(otype T) {35

void ?{}(T &, zero t); // 0 literal constructor36

T ?+?(T, T); // assortment of additions37

T ?+=?(T &, T);38

T ++?(T &);39

T ?++(T &);40

};41

forall(otype T | sumable(T)) // use trait42

T sum(T a[], size t size);43

Using the return type for overload discrimination, it is possible to write a type-safe alloc based on the C malloc:44

forall(dtype T | sized(T)) T ∗ alloc(void) { return (T ∗)malloc(sizeof(T)); }45

int ∗ ip = alloc(); // select type and size from left-hand side46

double ∗ dp = alloc();47

struct S {...} ∗ sp = alloc();48

where the return type supplies the type/size of the allocation, which is impossible in most type systems.49

DELISLE ET AL. 5

3 CONCURRENCY1

At its core, concurrency is based on multiple call-stacks and scheduling threads executing on these stacks. Multiple call stacks2

(or contexts) and a single thread of execution, called coroutining15,16, does not imply concurrency9, § 2. In coroutining, the single3

thread is self-scheduling across the stacks, so execution is deterministic, ie, the execution path from input to output is fixed and4

predictable. A stackless coroutine executes on the caller’s stack17 but this approach is restrictive, eg, preventing modularization5

and supporting only iterator/generator-style programming; a stackful coroutine executes on its own stack, allowing full generality.6

Only stackful coroutines are a stepping stone to concurrency.7

The transition to concurrency, even for execution with a single thread and multiple stacks, occurs when coroutines also8

context switch to a scheduling oracle, introducing non-determinism from the coroutine perspective9, § 3. Therefore, a minimal9

concurrency system is possible using coroutines (see Section 3.1) in conjunction with a scheduler to decide where to context10

switch next. The resulting execution system now follows a cooperative threading-model, called non-preemptive scheduling.11

Because the scheduler is special, it can either be a stackless or stackful coroutine. For stackless, the scheduler performs12

scheduling on the stack of the current coroutine and switches directly to the next coroutine, so there is one context switch. For13

stackful, the current coroutine switches to the scheduler, which performs scheduling, and it then switches to the next coroutine,14

so there are two context switches. A stackful scheduler is often used for simplicity and security.15

Regardless of the approach used, a subset of concurrency related challenges start to appear. For the complete set of concurrency16

challenges to occur, the missing feature is preemption, where context switching occurs randomly between any two instructions,17

often based on a timer interrupt, called preemptive scheduling. While a scheduler introduces uncertainty in the order of execution,18

preemption introduces uncertainty about where context switches occur. Interestingly, uncertainty is necessary for the runtime19

(operating) system to give the illusion of parallelism on a single processor and increase performance on multiple processors. The20

reason is that only the runtime has complete knowledge about resources and how to best utilized them. However, the introduction21

of unrestricted non-determinism results in the need for mutual exclusion and synchronization to restrict non-determinism for22

correctness; otherwise, it is impossible to write meaningful programs. Optimal performance in concurrent applications is often23

obtained by having as much non-determinism as correctness allows.24

An important missing feature in C is threadingA. In modern programming languages, a lack of threading is unacceptable18,19,25

and therefore existing and new programming languages must have tools for writing efficient concurrent programs to take advan-26

tage of parallelism. As an extension of C, C

A

needs to express these concepts in a way that is as natural as possible to programmers27

familiar with imperative languages. Furthermore, because C is a system-level language, programmers expect to choose precisely28

which features they need and which cost they are willing to pay. Hence, concurrent programs should be written using high-level29

mechanisms, and only step down to lower-level mechanisms when performance bottlenecks are encountered.30

3.1 Coroutines: A Stepping Stone31

While the focus of this discussion is concurrency and parallelism, it is important to address coroutines, which are a significant32

building block of a concurrency system (but not concurrent among themselves). Coroutines are generalized routines allowing33

execution to be temporarily suspended and later resumed. Hence, unlike a normal routine, a coroutine may not terminate when34

it returns to its caller, allowing it to be restarted with the values and execution location present at the point of suspension. This35

capability is accomplished via the coroutine’s stack, where suspend/resume context switch among stacks. Because threading36

design-challenges are present in coroutines, their design effort is relevant, and this effort can be easily exposed to programmers37

giving them a useful new programming paradigm because a coroutine handles the class of problems that need to retain state38

between calls, eg, plugins, device drivers, and finite-state machines. Therefore, the two fundamental features of the core C

A

39

coroutine-API are independent call-stacks and suspend/resume operations.40

For example, a problem made easier with coroutines is unbounded generators, eg, generating an infinite sequence of Fibonacci
numbers

f ib(n) =

⎧
⎪
⎨
⎪
⎩

0 n = 0

1 n = 1

f ib(n − 1) + f ib(n − 2) n ≥ 2

AWhile the C11 standard defines a threads.h header, it is minimal and defined as optional. As such, library support for threading is far from widespread. At the time
of writing the paper, neither gcc nor clang support threads.h in their standard libraries.

6 DELISLE ET AL.

int f1, f2, state = 1; // single global variables
int fib() {

int fn;
switch (state) { // explicit execution state
case 1: fn = 0; f1 = fn; state = 2; break;
case 2: fn = 1; f2 = f1; f1 = fn; state = 3; break;
case 3: fn = f1 + f2; f2 = f1; f1 = fn; break;

}
return fn;

}
int main() {

for (int i = 0; i < 10; i += 1) {
printf("%d\n", fib());

}
}

(A) 3 States: global variables

#define FIB INIT { 0, 1 }
typedef struct { int f2, f1; } Fib;
int fib(Fib ∗ f) {

int ret = f >f2;
int fn = f >f1 + f >f2;
f >f2 = f >f1; f >f1 = fn;

return ret;
}
int main() {

Fib f1 = FIB INIT, f2 = FIB INIT;
for (int i = 0; i < 10; i += 1) {

printf("%d %d\n", fib(&f1), fib(&f2));
}

}

(B) 1 State: external variables

FIGURE 1 C Fibonacci Implementations

coroutine Fib { int fn; };
void main(Fib & fib) with(fib) {

int f1, f2;
fn = 0; f1 = fn; suspend();
fn = 1; f2 = f1; f1 = fn; suspend();
for (;;) {

fn = f1 + f2; f2 = f1; f1 = fn; suspend();
}

}
int next(Fib & fib) with(fib) {

resume(fib);
return fn;

}
int main() {

Fib f1, f2;
for (int i = 1; i <= 10; i += 1) {

sout | next(f1) | next(f2);
}

}

(A) 3 States, internal variables

coroutine Fib { int ret; };
void main(Fib & f) with(fib) {

int fn, f1 = 1, f2 = 0;
for (;;) {

ret = f2;

fn = f1 + f2; f2 = f1; f1 = fn; suspend();
}

}
int next(Fib & fib) with(fib) {

resume(fib);
return ret;

}

(B) 1 State, internal variables

FIGURE 2 C

A

Coroutine Fibonacci Implementations

where Figure 1 shows conventional approaches for writing a Fibonacci generator in C. Figure 1 (A) illustrates the following1

problems: unique unencapsulated global variables necessary to retain state between calls, only one Fibonacci generator, and2

execution state must be explicitly retained via explicit state variables. Figure 1 (B) addresses these issues: unencapsulated3

program global variables become encapsulated structure variables, unique global variables are replaced by multiple Fibonacci4

objects, and explicit execution state is removed by precomputing the first two Fibonacci numbers and returning f ib(n − 2).5

Using a coroutine, it is possible to express the Fibonacci formula directly without any of the C problems. Figure 2 (A) creates6

a coroutine type, coroutine Fib { int fn; }, which provides communication, fn, for the coroutine main, main, which runs on7

the coroutine stack, and possibly multiple interface routines, eg, next. Like the structure in Figure 1 (B), the coroutine type8

allows multiple instances, where instances of this type are passed to the (overloaded) coroutine main. The coroutine main’s stack9

holds the state for the next generation, f1 and f2, and the code represents the three states in the Fibonacci formula via the three10

suspend points, to context switch back to the caller’s resume. The interface routine next, takes a Fibonacci instance and context11

DELISLE ET AL. 7

coroutine Format {
char ch; // used for communication
int g, b; // global because used in destructor

};
void main(Format & fmt) with(fmt) {

for (;;) {
for (g = 0; g < 5; g += 1) { // group

for (b = 0; b < 4; b += 1) { // block
suspend();
sout | ch; // separator

}
sout | " "; // separator

}
sout | nl;

}
}
void ?{}(Format & fmt) { resume(fmt); }
void ∧?{}(Format & fmt) with(fmt) {

if (g != 0 || b != 0) sout | nl;
}
void format(Format & fmt) {

resume(fmt);
}
int main() {

Format fmt;
eof: for (;;) {

sin | fmt.ch;
if (eof(sin)) break eof;

format(fmt);
}

}

(A) C

A

Coroutine

struct Format {
char ch;
int g, b;

};
void format(struct Format ∗ fmt) {

if (fmt >ch != 1) { // not EOF ?
printf("%c", fmt >ch);
fmt >b += 1;
if (fmt >b == 4) { // block

printf(" "); // separator
fmt >b = 0;
fmt >g += 1;

}
if (fmt >g == 5) { // group

printf("\n"); // separator
fmt >g = 0;

}
} else {

if (fmt >g != 0 || fmt >b != 0) printf("\n");
}

}
int main() {

struct Format fmt = { 0, 0, 0 };
for (;;) {

scanf("%c", &fmt.ch);
if (feof(stdin)) break;

format(&fmt);
}
fmt.ch = 1;
format(&fmt);

}

(B) C Linearized

FIGURE 3 Formatting text into lines of 5 blocks of 4 characters.

switches to it using resume; on restart, the Fibonacci field, fn, contains the next value in the sequence, which is returned. The first1

resume is special because it allocates the coroutine stack and cocalls its coroutine main on that stack; when the coroutine main2

returns, its stack is deallocated. Hence, Fib is an object at creation, transitions to a coroutine on its first resume, and transitions3

back to an object when the coroutine main finishes. Figure 2 (B) shows the coroutine version of the C version in Figure 1 (B).4

Coroutine generators are called output coroutines because values are only returned.5

Figure 3 (A) shows an input coroutine, Format, for restructuring text into groups of characters of fixed-size blocks. For6

example, the input of the left is reformatted into the output on the right.7

input output

abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz abcd efgh ijkl mnop qrst

uvwx yzab cdef ghij klmn

opqr stuv wxyz

8

The example takes advantage of resuming a coroutine in the constructor to prime the loops so the first character sent for for-9

matting appears inside the nested loops. The destructor provides a newline, if formatted text ends with a full line. Figure 3 (B)10

shows the C equivalent formatter, where the loops of the coroutine are flattened (linearized) and rechecked on each call because11

execution location is not retained between calls. (Linearized code is the bane of device drivers.)12

The previous examples are asymmetric (semi) coroutines because one coroutine always calls a resuming routine for another13

coroutine, and the resumed coroutine always suspends back to its last resumer, similar to call/return for normal routines. However,14

8 DELISLE ET AL.

coroutine Prod {
Cons & c;
int N, money, receipt;

};
void main(Prod & prod) with(prod) {

// 1st resume starts here
for (int i = 0; i < N; i += 1) {

int p1 = random(100), p2 = random(100);
sout | p1 | " " | p2;
int status = delivery(c, p1, p2);
sout | " $" | money | nl | status;
receipt += 1;

}
stop(c);
sout | "prod stops";

}
int payment(Prod & prod, int money) {

prod.money = money;
resume(prod);
return prod.receipt;

}
void start(Prod & prod, int N, Cons &c) {

&prod.c = &c;
prod.[N, receipt] = [N, 0];
resume(prod);

}
int main() {

Prod prod;
Cons cons = { prod };
start(prod, 5, cons);

}

coroutine Cons {
Prod & p;
int p1, p2, status;
Bool done;

};
void ?{}(Cons & cons, Prod & p) {

&cons.p = &p;
cons.[status, done] = [0, false];

}
void ∧?{}(Cons & cons) {}
void main(Cons & cons) with(cons) {

// 1st resume starts here
int money = 1, receipt;
for (; ! done;) {

sout | p1 | " " | p2 | nl | " $" | money;
status += 1;
receipt = payment(p, money);
sout | " #" | receipt;
money += 1;

}
sout | "cons stops";

}
int delivery(Cons & cons, int p1, int p2) {

cons.[p1, p2] = [p1, p2];
resume(cons);
return cons.status;

}
void stop(Cons & cons) {

cons.done = true;
resume(cons);

}

FIGURE 4 Producer / consumer: resume-resume cycle, bi-directional communication

resume and suspend context switch among existing stack-frames, rather than create new ones so there is no stack growth.1

Symmetric (full) coroutines have a coroutine call to a resuming routine for another coroutine, and its coroutine main calls another2

resuming routine, which eventually forms a resuming-call cycle. (The trivial cycle is a coroutine resuming itself.) This control3

flow is similar to recursion for normal routines, but again there is no stack growth from the context switch.4

Figure 4 shows a producer/consumer symmetric-coroutine performing bi-directional communication. Since the solution5

involves a full-coroutining cycle, the program main creates one coroutine in isolation, passes this coroutine to its partner, and6

closes the cycle at the call to start. The start routine communicates both the number of elements to be produced and the consumer7

into the producer’s coroutine-structure. Then the resume to prod creates prod’s stack with a frame for prod’s coroutine main8

at the top, and context switches to it. prod’s coroutine main starts, creates local variables that are retained between coroutine9

activations, and executes N iterations, each generating two random values, calling the consumer to deliver the values, and10

printing the status returned from the consumer.11

The producer call to delivery transfers values into the consumer’s communication variables, resumes the consumer, and returns12

the consumer status. For the first resume, cons’s stack is initialized, creating local variables retained between subsequent acti-13

vations of the coroutine. The consumer iterates until the done flag is set, prints the values delivered by the producer, increments14

status, and calls back to the producer via payment, and on return from payment, prints the receipt from the producer and incre-15

ments money (inflation). The call from the consumer to payment introduces the cycle between producer and consumer. When16

payment is called, the consumer copies values into the producer’s communication variable and a resume is executed. The context17

switch restarts the producer at the point where it last context switched, so it continues in delivery after the resume.18

DELISLE ET AL. 9

delivery returns the status value in prod’s coroutine main, where the status is printed. The loop then repeats calling delivery,1

where each call resumes the consumer coroutine. The context switch to the consumer continues in payment. The consumer2

increments and returns the receipt to the call in cons’s coroutine main. The loop then repeats calling payment, where each call3

resumes the producer coroutine.4

After iteratingN times, the producer calls stop. The done flag is set to stop the consumer’s execution and a resume is executed.5

The context switch restarts cons in payment and it returns with the last receipt. The consumer terminates its loops because done6

is true, its main terminates, so cons transitions from a coroutine back to an object, and prod reactivates after the resume in stop.7

stop returns and prod’s coroutine main terminates. The program main restarts after the resume in start. start returns and the8

program main terminates.9

3.2 Coroutine Implementation10

A significant implementation challenge for coroutines (and threads, see Section 3.3) is adding extra fields and executing code11

after/before the coroutine constructor/destructor and coroutine main to create/initialize/de-initialize/destroy extra fields and the12

stack. There are several solutions to this problem and the chosen option forced the C

A

coroutine design.13

Object-oriented inheritance provides extra fields and code in a restricted context, but it requires programmers to explicitly14

perform the inheritance:15

class mycoroutine inherits baseCoroutine { ... }16

and the programming language (and possibly its tool set, eg, debugger) may need to understand baseCoroutine because of17

the stack. Furthermore, the execution of constructors/destructors is in the wrong order for certain operations. For example, for18

threads if the thread is implicitly started, it must start after all constructors, because the thread relies on a completely initialized19

object, but the inherited constructor runs before the derived.20

An alternative is composition:21

struct mycoroutine {22

... // declarations23

baseCoroutine dummy; // composition, last declaration24

}25

which also requires an explicit declaration that must be the last one to ensure correct initialization order. However, there is26

nothing preventing wrong placement or multiple declarations.27

For coroutines as for threads, many implementations are based on routine pointers or routine objects20,21,22,23. For example,28

Boost implements coroutines in terms of four functor object-types:29

asymmetric coroutine<>::pull type30

asymmetric coroutine<>::push type31

symmetric coroutine<>::call type32

symmetric coroutine<>::yield type33

Similarly, the canonical threading paradigm is often based on routine pointers, eg, pthreads20, C♯ 24, Go6, and Scala25. However,34

the generic thread-handle (identifier) is limited (few operations), unless it is wrapped in a custom type.35

void mycor(coroutine t cid, void ∗ arg) {36

int ∗ value = (int ∗)arg; // type unsafe, pointer-size only37

// Coroutine body38

}39

int main() {40

int input = 0, output;41

coroutine t cid = coroutine create(&mycor, (void ∗)&input); // type unsafe, pointer-size only42

coroutine resume(cid, (void ∗)input, (void ∗∗)&output); // type unsafe, pointer-size only43

}44

Since the custom type is simple to write in C

A

and solves several issues, added support for routine/lambda-based coroutines45

adds very little.46

Note, the type coroutine t must be an abstract handle to the coroutine, because the coroutine descriptor and its stack are non-47

copyable. Copying the coroutine descriptor results in copies being out of date with the current state of the stack. Correspondingly,48

10 DELISLE ET AL.

copying the stack results is copies being out of date with the coroutine descriptor, and pointers in the stack being out of date to1

data on the stack. (There is no mechanism in C to find all stack-specific pointers and update them as part of a copy.)2

The selected approach is to use language support by introducing a new kind of aggregate (structure):3

coroutine Fibonacci {4

int fn; // communication variables5

};6

The coroutine keyword means the compiler (and tool set) can find and inject code where needed. The downside of this approach7

is that it makes coroutine a special case in the language. Users wanting to extend coroutines or build their own for various8

reasons can only do so in ways offered by the language. Furthermore, implementing coroutines without language supports also9

displays the power of a programming language. While this is ultimately the option used for idiomatic C

A

code, coroutines and10

threads can still be constructed without language support. The reserved keyword simply eases use for the common case.11

Part of the mechanism to generalize coroutines is using a C

A

trait, which defines a coroutine as anything satisfying the trait12

is coroutine, and this trait restricts the available set of coroutine-manipulation routines:13

trait is coroutine(dtype T) {14

void main(T &);15

coroutine desc ∗ get coroutine(T &);16

};17

forall(dtype T | is coroutine(T)) void suspend(T &);18

forall(dtype T | is coroutine(T)) void resume(T &);19

The dtype property provides no implicit copying operations and the is coroutine trait provides no explicit copying operations,20

so all coroutines must be passed by reference (pointer). The routine definitions ensures there is a statically-typed main routine21

that is the starting point (first stack frame) of a coroutine, and a mechanism to get (read) the currently executing coroutine handle.22

The main routine has no return value or additional parameters because the coroutine type allows an arbitrary number of interface23

routines with corresponding arbitrary typed input/output values versus fixed ones. The advantage of this approach is that users24

can easily create different types of coroutines, eg, changing the memory layout of a coroutine is trivial when implementing25

the get coroutine routine, and possibly redefining suspend and resume. The C
A

keyword coroutine implicitly implements the26

getter and forward declarations required for implementing the coroutine main:27

coroutine MyCor {
int value;

};

⇒

struct MyCor {
int value;
coroutine desc cor;

};

static inline coroutine desc ∗
get coroutine(MyCor & this) {

return &this.cor;
}

void main(MyCor ∗ this);

28

The combination of these two approaches allows an easy and concise specification to coroutining (and concurrency) for normal29

users, while more advanced users have tighter control on memory layout and initialization.30

3.3 Thread Interface31

Both user and kernel threads are supported, where user threads provide concurrency and kernel threads provide parallelism.32

Like coroutines and for the same design reasons, the selected approach for user threads is to use language support by introducing33

a new kind of aggregate (structure) and a C

A

trait:34

thread myThread {
// communication variables

};

trait is thread(dtype T) {
void main(T &);
thread desc ∗ get thread(T &);
void ∧?{}(T & mutex);

};

35

(The qualifier mutex for the destructor parameter is discussed in Section 5.) Like a coroutine, the statically-typed main routine36

is the starting point (first stack frame) of a user thread. The difference is that a coroutine borrows a thread from its caller, so the37

first thread resuming a coroutine creates an instance of main; whereas, a user thread receives its own thread from the runtime38

system, which starts in main as some point after the thread constructor is run.B No return value or additional parameters are39

BThe main routine is already a special routine in C, ie, where the program’s initial thread begins, so it is a natural extension of this semantics to use overloading to
declare mains for user coroutines and threads.

DELISLE ET AL. 11

necessary for this routine because the task type allows an arbitrary number of interface routines with corresponding arbitrary1

typed input/output values.2

For user threads to be useful, it must be possible to start and stop the underlying thread, and wait for it to complete execution.3

While using an API such as fork and join is relatively common, such an interface is awkward and unnecessary. A simple approach4

is to use allocation/deallocation principles, and have threads implicitly fork after construction and join before destruction.5

thread World {};6

void main(World & this) {7

sout | "World!";8

}9

int main() {10

World w[10]; // implicit forks after creation11

sout | "Hello "; // "Hello " and 10 "World!" printed concurrently12

} // implicit joins before destruction13

This semantics ensures a thread is started and stopped exactly once, eliminating some programming error, and scales to multiple14

threads for basic (termination) synchronization. This tree-structure (lattice) create/delete from C block-structure is generalized15

by using dynamic allocation, so threads can outlive the scope in which they are created, much like dynamically allocating16

memory lets objects outlive the scope in which they are created.17

int main() {18

MyThread ∗ heapLive;19

{20

MyThread blockLive; // fork block-based thread21

heapLive = new(MyThread); // fork heap-based thread22

...23

} // join block-based thread24

...25

delete(heapLive); // join heap-based thread26

}27

The heap-based approach allows arbitrary thread-creation topologies, with respect to fork/join-style concurrency.28

Figure 5 shows concurrently adding the rows of a matrix and then totalling the subtotals sequentially, after all the row threads29

have terminated. The program uses heap-based threads because each thread needs different constructor values. (Python provides30

a simple iteration mechanism to initialize array elements to different values allowing stack allocation.) The allocation/dealloca-31

tion pattern appears unusual because allocated objects are immediately deallocated without any intervening code. However, for32

threads, the deletion provides implicit synchronization, which is the intervening code. While the subtotals are added in linear33

order rather than completion order, which slightly inhibits concurrency, the computation is restricted by the critical-path thread34

(ie, the thread that takes the longest), and so any inhibited concurrency is very small as totalling the subtotals is trivial.35

4 MUTUAL EXCLUSION / SYNCHRONIZATION36

Uncontrolled non-deterministic execution is meaningless. To reestablish meaningful execution requires mechanisms to rein-37

troduce determinism, ie, restrict non-determinism, called mutual exclusion and synchronization, where mutual exclusion is38

an access-control mechanism on data shared by threads, and synchronization is a timing relationship among threads9, § 4.39

Since many deterministic challenges appear with the use of mutable shared state, some languages/libraries disallow it, eg,40

Erlang7, Haskell26, Akka27 (Scala). In these paradigms, interaction among concurrent objects is performed by stateless41

message-passing28,29,30 or other paradigms closely related to networking concepts, eg, channels5,6. However, in call/return-based42

languages, these approaches force a clear distinction, ie, introduce a new programming paradigm between regular and concurrent43

computation, eg, routine call versus message passing. Hence, a programmer must learn and manipulate two sets of design pat-44

terns. While this distinction can be hidden away in library code, effective use of the library still has to take both paradigms into45

account. In contrast, approaches based on stateful models more closely resemble the standard call/return programming-model,46

resulting in a single programming paradigm.47

At the lowest level, concurrent control is implemented by atomic operations, upon which different kinds of locking mecha-48

nisms are constructed, eg, semaphores31, barriers, and path expressions32. However, for productivity it is always desirable to49

12 DELISLE ET AL.

thread Adder { int ∗ row, cols, & subtotal; } // communication variables
void ?{}(Adder & adder, int row[], int cols, int & subtotal) {

adder.[row, cols, &subtotal] = [row, cols, &subtotal];
}
void main(Adder & adder) with(adder) {

subtotal = 0;
for (int c = 0; c < cols; c += 1) { subtotal += row[c]; }

}
int main() {

const int rows = 10, cols = 1000;
int matrix[rows][cols], subtotals[rows], total = 0;
// read matrix
Adder ∗ adders[rows];
for (int r = 0; r < rows; r += 1) { // start threads to sum rows

adders[r] = new(matrix[r], cols, &subtotals[r]);
}
for (int r = 0; r < rows; r += 1) { // wait for threads to finish

delete(adders[r]); // termination join
total += subtotals[r]; // total subtotal

}
sout | total;

}

FIGURE 5 Concurrent Matrix Summation

use the highest-level construct that provides the necessary efficiency1. A newer approach for restricting non-determinism is1

transactional memory33. While this approach is pursued in hardware34 and system languages, like C++35, the performance and2

feature set is still too restrictive to be the main concurrency paradigm for system languages, which is why it is rejected as the3

core paradigm for concurrency in C

A

.4

One of the most natural, elegant, and efficient mechanisms for mutual exclusion and synchronization for shared-memory sys-5

tems is the monitor. First proposed by Brinch Hansen36 and later described and extended by C.A.R. Hoare37, many concurrent6

programming-languages provide monitors as an explicit language construct: eg, Concurrent Pascal38, Mesa39, Modula40, Tur-7

ing41, Modula-342, NeWS43, Emerald44, �C++ 45 and Java4. In addition, operating-system kernels and device drivers have a8

monitor-like structure, although they often use lower-level primitives such as mutex locks or semaphores to simulate monitors.9

For these reasons, C

A

selected monitors as the core high-level concurrency-construct, upon which higher-level approaches can10

be easily constructed.11

4.1 Mutual Exclusion12

A group of instructions manipulating a specific instance of shared data that must be performed atomically is called an (individual)13

critical-section46. The generalization is called a group critical-section47, where multiple tasks with the same session may use14

the resource simultaneously, but different sessions may not use the resource simultaneously. The readers/writer problem48 is an15

instance of a group critical-section, where readers have the same session and all writers have a unique session. Mutual exclusion16

enforces that the correct kind and number of threads are using a critical section.17

However, many solutions exist for mutual exclusion, which vary in terms of performance, flexibility and ease of use. Meth-18

ods range from low-level locks, which are fast and flexible but require significant attention for correctness, to higher-level19

concurrency techniques, which sacrifice some performance to improve ease of use. Ease of use comes by either guarantee-20

ing some problems cannot occur, eg, deadlock free, or by offering a more explicit coupling between shared data and critical21

section. For example, the C++ std::atomic<T> offers an easy way to express mutual-exclusion on a restricted set of operations,22

eg, reading/writing, for numerical types. However, a significant challenge with locks is composability because it takes care-23

ful organization for multiple locks to be used while preventing deadlock. Easing composability is another feature higher-level24

mutual-exclusion mechanisms can offer.25

DELISLE ET AL. 13

4.2 Synchronization1

Synchronization enforces relative ordering of execution, and synchronization tools provide numerous mechanisms to establish2

these timing relationships. Low-level synchronization primitives offer good performance and flexibility at the cost of ease of3

use; higher-level mechanisms often simplify usage by adding better coupling between synchronization and data, eg, message4

passing, or offering a simpler solution to otherwise involved challenges, eg, barrier lock. Often synchronization is used to order5

access to a critical section, eg, ensuring a reader thread is the next kind of thread to enter a critical section. If a writer thread is6

scheduled for next access, but another reader thread acquires the critical section first, that reader barged. Barging can result in7

staleness/freshness problems, where a reader barges ahead of a writer and reads temporally stale data, or a writer barges ahead8

of another writer overwriting data with a fresh value preventing the previous value from ever being read (lost computation).9

Preventing or detecting barging is an involved challenge with low-level locks, which can be made much easier by higher-level10

constructs. This challenge is often split into two different approaches: barging avoidance and barging prevention. Algorithms that11

allow a barger, but divert it until later using current synchronization state (flags), are avoiding the barger; algorithms that preclude12

a barger from entering during synchronization in the critical section prevent barging completely. Techniques like baton-passing13

locks49 between threads instead of unconditionally releasing locks is an example of barging prevention.14

5 MONITOR15

A monitor is a set of routines that ensure mutual exclusion when accessing shared state. More precisely, a monitor is a pro-16

gramming technique that binds mutual exclusion to routine scope, as opposed to locks, where mutual-exclusion is defined by17

acquire/release calls, independent of lexical context (analogous to block and heap storage allocation). The strong association18

with the call/return paradigm eases programmability, readability and maintainability, at a slight cost in flexibility and efficiency.19

Note, like coroutines/threads, both locks and monitors require an abstract handle to reference them, because at their core, both20

mechanisms are manipulating non-copyable shared-state. Copying a lock is insecure because it is possible to copy an open lock21

and then use the open copy when the original lock is closed to simultaneously access the shared data. Copying a monitor is secure22

because both the lock and shared data are copies, but copying the shared data is meaningless because it no longer represents23

a unique entity. As for coroutines/tasks, the dtype property provides no implicit copying operations and the is monitor trait24

provides no explicit copying operations, so all locks/monitors must be passed by reference (pointer).25

trait is monitor(dtype T) {26

monitor desc ∗ get monitor(T &);27

void ∧?{}(T & mutex);28

};29

5.1 Mutex Acquisition30

While correctness implies a monitor’s mutual exclusion is acquired and released, there are implementation options about when31

and where the locking/unlocking occurs. (Much of this discussion also applies to basic locks.) For example, a monitor may need32

to be passed through multiple helper routines before it becomes necessary to acquire the monitor mutual-exclusion.33

monitor Aint { int cnt; }; // atomic integer counter34

void ?{}(Aint & nomutex this) with(this) { cnt = 0; } // constructor35

int ?=?(Aint & mutexopt lhs, int rhs) with(lhs) { cnt = rhs; } // conversions36

void ?{}(int & this, Aint & mutexopt v) { this = v.cnt; }37

int ?=?(int & lhs, Aint & mutexopt rhs) with(rhs) { lhs = cnt; }38

int ++?(Aint & mutexopt this) with(this) { return ++cnt; } // increment39

The Aint constructor, ?{}, uses the nomutex qualifier indicating mutual exclusion is unnecessary during construction because40

an object is inaccessible (private) until after it is initialized. (While a constructor may publish its address into a global variable,41

doing so generates a race-condition.) The conversion operators for initializing and assigning with a normal integer only need42

mutex, if reading/writing the implementation type is not atomic. Finally, the prefix increment operato, ++?, is normally mutex43

to protect the incrementing from race conditions, unless there is an atomic increment instruction for the implementation type.44

The atomic counter is used without any explicit mutual-exclusion and provides thread-safe semantics, which is similar to the45

C++ template std::atomic.46

14 DELISLE ET AL.

Aint x, y, z;1

++x; ++y; ++z; // safe increment by multiple threads2

x = 2; y = 2; z = 2; // conversions3

int i = x, j = y, k = z;4

i = x; j = y; k = z;5

For maximum usability, monitors have multi-acquire semantics allowing a thread to acquire it multiple times without6

deadlock.7

monitor M { ... } m;8

void foo(M & mutex m) { ... } // acquire mutual exclusion9

void bar(M & mutex m) { // acquire mutual exclusion10

... foo(m); ... // reacquire mutual exclusion11

}12

bar(m); // nested monitor call13

The benefit of mandatory monitor qualifiers is self-documentation, but requiring both mutex and nomutex for all monitor14

parameters is redundant. Instead, the semantics have one qualifier as the default, and the other required. For example, make the15

safe mutex qualifier the default because assuming nomutex may cause subtle errors. Alternatively, make the unsafe nomutex16

qualifier the default because it is the normal parameter semantics while mutex parameters are rare. Providing a default qualifier17

implies knowing whether a parameter is a monitor. Since C

A

relies heavily on traits as an abstraction mechanism, the distinc-18

tion between a type that is a monitor and a type that looks like a monitor can become blurred. For this reason, C

A

requires19

programmers to identify the kind of parameter with the mutex keyword and uses no keyword to mean nomutex.20

The next semantic decision is establishing which parameter types may be qualified with mutex. Given:21

monitor M { ... }22

int f1(M & mutex m);23

int f2(M ∗ mutex m);24

int f3(M ∗ mutex m[]);25

int f4(stack(M ∗) & mutex m);26

the issue is that some of these parameter types are composed of multiple objects. For f1, there is only a single parameter object.27

Adding indirection in f2 still identifies a single object. However, the matrix in f3 introduces multiple objects. While shown28

shortly, multiple acquisition is possible; however array lengths are often unknown in C. This issue is exacerbated in f4, where29

the data structure must be safely traversed to acquire all of its elements.30

To make the issue tractable, C

A

only acquires one monitor per parameter with at most one level of indirection. However, there31

is an ambiguity in the C type-system with respects to arrays. Is the argument for f2 a single object or an array of objects? If it is32

an array, only the first element of the array is acquired, which seems unsafe; hence, mutex is disallowed for array parameters.33

int f1(M & mutex m); // allowed: recommended case34

int f2(M ∗ mutex m); // disallowed: could be an array35

int f3(M mutex m[]); // disallowed: array length unknown36

int f4(M ∗∗ mutex m); // disallowed: could be an array37

int f5(M ∗ mutex m[]); // disallowed: array length unknown38

For object-oriented monitors, calling a mutex member implicitly acquires mutual exclusion of the receiver object, rec.foo(...).39

C

A

has no receiver, and hence, must use an explicit mechanism to specify which object acquires mutual exclusion. A positive40

consequence of this design decision is the ability to support multi-monitor routines.41

int f(M & mutex x, M & mutex y); // multiple monitor parameter of any type42

M m1, m2;43

f(m1, m2);44

(While object-oriented monitors can be extended with a mutex qualifier for multiple-monitor members, no prior example of this45

feature could be found.) In practice, writing multi-locking routines that do not deadlock is tricky. Having language support for46

such a feature is therefore a significant asset for C

A

.47

The capability to acquire multiple locks before entering a critical section is called bulk acquire (see Section 9 for implementa-48

tion details). In the previous example, C

A

guarantees the order of acquisition is consistent across calls to different routines using49

the same monitors as arguments. This consistent ordering means acquiring multiple monitors is safe from deadlock. However,50

users can force the acquiring order. For example, notice the use of mutex/nomutex and how this affects the acquiring order:51

DELISLE ET AL. 15

void foo(M & mutex m1, M & mutex m2); // acquire m1 and m21

void bar(M & mutex m1, M & /∗ nomutex ∗/ m2) { // acquire m12

... foo(m1, m2); ... // acquire m23

}4

void baz(M & /∗ nomutex ∗/ m1, M & mutex m2) { // acquire m25

... foo(m1, m2); ... // acquire m16

}7

The multi-acquire semantics allows bar or baz to acquire a monitor lock and reacquire it in foo. In the calls to bar and baz, the8

monitors are acquired in opposite order.9

However, such use leads to lock acquiring order problems resulting in deadlock50, where detecting it requires dynamic tracking10

of monitor calls, and dealing with it requires rollback semantics51. In C

A

, a safety aid is provided by using bulk acquire of all11

monitors to shared objects, whereas other monitor systems provide no aid. While C

A

provides only a partial solution, it handles12

many useful cases, eg:13

monitor BankAccount { ... };14

void deposit(BankAccount & mutex b, int deposit);15

void transfer(BankAccount & mutex my, BankAccount & mutex your, int me2you) {16

deposit(my, me2you); // debit17

deposit(your, me2you); // credit18

}19

This example shows a trivial solution to the bank-account transfer problem. Without multi- and bulk acquire, the solution to this20

problem requires careful engineering.21

5.2 mutex statement22

The monitor call-semantics associate all locking semantics to routines. Like Java, C

A

offers an alternative mutex statement to23

reduce refactoring and naming.24

monitor M { ... };
void foo(M & mutex m1, M & mutex m2) {

// critical section
}
void bar(M & m1, M & m2) {

foo(m1, m2);
}

void bar(M & m1, M & m2) {
mutex(m1, m2) { // remove refactoring and naming

// critical section
}

}

routine call mutex statement

25

6 SCHEDULING26

While monitor mutual-exclusion provides safe access to shared data, the monitor data may indicate that a thread accessing it27

cannot proceed. For example, Figure 6 shows a bounded buffer that may be full/empty so produce/consumer threads must28

block. Leaving the monitor and trying again (busy waiting) is impractical for high-level programming. Monitors eliminate29

busy waiting by providing synchronization to schedule threads needing access to the shared data, where threads block versus30

spinning. Synchronization is generally achieved with internal37 or external52, § 2.9.2 scheduling, where scheduling defines which31

thread acquires the critical section next. Internal scheduling is characterized by each thread entering the monitor and making32

an individual decision about proceeding or blocking, while external scheduling is characterized by an entering thread making a33

decision about proceeding for itself and on behalf of other threads attempting entry.34

Figure 6 (A) shows a C

A

generic bounded-buffer with internal scheduling, where producers/consumers enter the monitor, see35

the buffer is full/empty, and block on an appropriate condition lock, full/empty. The wait routine atomically blocks the calling36

thread and implicitly releases the monitor lock(s) for all monitors in the routine’s parameter list. The appropriate condition lock is37

signalled to unblock an opposite kind of thread after an element is inserted/removed from the buffer. Signalling is unconditional,38

because signalling an empty condition lock does nothing.39

Signalling semantics cannot have the signaller and signalled thread in the monitor simultaneously, which means:40

16 DELISLE ET AL.

forall(otype T) { // distribute forall
monitor Buffer {

condition full, empty;
int front, back, count;
T elements[10];

};
void ?{}(Buffer(T) & buffer) with(buffer) {

[front, back, count] = 0;
}

void insert(Buffer(T) & mutex buffer, T elem)
with(buffer) {

if (count == 10) wait(empty);
// insert elem into buffer
signal(full);

}
T remove(Buffer(T) & mutex buffer) with(buffer) {

if (count == 0) wait(full);
// remove elem from buffer
signal(empty);
return elem;

}
}

(A) Internal Scheduling

forall(otype T) { // distribute forall
monitor Buffer {

int front, back, count;
T elements[10];

};
void ?{}(Buffer(T) & buffer) with(buffer) {

[front, back, count] = 0;
}
T remove(Buffer(T) & mutex buffer); // forward
void insert(Buffer(T) & mutex buffer, T elem)

with(buffer) {
if (count == 10) waitfor(remove, buffer);
// insert elem into buffer

}
T remove(Buffer(T) & mutex buffer) with(buffer) {

if (count == 0) waitfor(insert, buffer);
// remove elem from buffer

return elem;
}

}

(B) External Scheduling

FIGURE 6 Generic Bounded-Buffer

1. The signalling thread returns immediately, and the signalled thread continues.1

2. The signalling thread continues and the signalled thread is marked for urgent unblocking at the next scheduling point2

(exit/wait).3

3. The signalling thread blocks but is marked for urgrent unblocking at the next scheduling point and the signalled thread4

continues.5

The first approach is too restrictive, as it precludes solving a reasonable class of problems, eg, dating service (see Figure 7).6

C

A

supports the next two semantics as both are useful. Finally, while it is common to store a condition as a field of the monitor,7

in C

A

, a condition variable can be created/stored independently. Furthermore, a condition variable is tied to a group of monitors8

on first use, called branding, which means that using internal scheduling with distinct sets of monitors requires one condition9

variable per set of monitors.10

Figure 6 (B) shows a C

A

generic bounded-buffer with external scheduling, where producers/consumers detecting a full/empty11

buffer block and prevent more producers/consumers from entering the monitor until there is a free/empty slot in the buffer.12

External scheduling is controlled by the waitfor statement, which atomically blocks the calling thread, releases the monitor13

lock, and restricts the routine calls that can next acquire mutual exclusion. If the buffer is full, only calls to remove can acquire14

the buffer, and if the buffer is empty, only calls to insert can acquire the buffer. Threads making calls to routines that are15

currently excluded, block outside of (external to) the monitor on a calling queue, versus blocking on condition queues inside of16

(internal to) the monitor. External scheduling allows users to wait for events from other threads without concern of unrelated17

events occurring. The mechnaism can be done in terms of control flow, eg, Ada accept or �C++ Accept, or in terms of data,18

eg, Go channels. While both mechanisms have strengths and weaknesses, this project uses a control-flow mechanism to stay19

consistent with other language semantics. Two challenges specific to C

A

for external scheduling are loose object-definitions (see20

Section 6.2) and multiple-monitor routines (see Section 6.3).21

For internal scheduling, non-blocking signalling (as in the producer/consumer example) is used when the signaller is providing22

the cooperation for a waiting thread; the signaller enters the monitor and changes state, detects a waiting threads that can use the23

state, performs a non-blocking signal on the condition queue for the waiting thread, and exits the monitor to run concurrently.24

DELISLE ET AL. 17

enum { CCodes = 20 };
monitor DS {

int GirlPhNo, BoyPhNo;
condition Girls[CCodes], Boys[CCodes];
condition exchange;

};
int girl(DS & mutex ds, int phNo, int ccode) {

if (is empty(Boys[ccode])) {
wait(Girls[ccode]);
GirlPhNo = phNo;
signal(exchange);

} else {
GirlPhNo = phNo;
signal(Boys[ccode]);
wait(exchange);

} // if
return BoyPhNo;

}
int boy(DS & mutex ds, int phNo, int ccode) {

// as above with boy/girl interchanged
}

(A) signal

monitor DS {
int GirlPhNo, BoyPhNo;
condition Girls[CCodes], Boys[CCodes];

};
int girl(DS & mutex ds, int phNo, int ccode) {

if (is empty(Boys[ccode])) { // no compatible
wait(Girls[ccode]); // wait for boy
GirlPhNo = phNo; // make phone number available

} else {
GirlPhNo = phNo; // make phone number available
signal block(Boys[ccode]); // restart boy

} // if
return BoyPhNo;

}
int boy(DS & mutex ds, int phNo, int ccode) {

// as above with boy/girl interchanged
}

(B) signal block

FIGURE 7 Dating service.

The waiter unblocks next from the urgent queue, uses/takes the state, and exits the monitor. Blocking signalling is the reverse,1

where the waiter is providing the cooperation for the signalling thread; the signaller enters the monitor, detects a waiting thread2

providing the necessary state, performs a blocking signal to place it on the urgent queue and unblock the waiter. The waiter3

changes state and exits the monitor, and the signaller unblocks next from the urgent queue to use/take the state.4

Figure 7 shows a dating service demonstrating non-blocking and blocking signalling. The dating service matches girl and boy5

threads with matching compatibility codes so they can exchange phone numbers. A thread blocks until an appropriate partner6

arrives. The complexity is exchanging phone numbers in the monitor because of the mutual-exclusion property. For signal7

scheduling, the exchange condition is necessary to block the thread finding the match, while the matcher unblocks to take the8

opposite number, post its phone number, and unblock the partner. For signal-block scheduling, the implicit urgent-queue replaces9

the explict exchange-condition and signal block puts the finding thread on the urgent condition and unblocks the matcher.10

The dating service is an example of a monitor that cannot be written using external scheduling because it requires knowledge11

of calling parameters to make scheduling decisions, and parameters of waiting threads are unavailable; as well, an arriving thread12

may not find a partner and must wait, which requires a condition variable, and condition variables imply internal scheduling.13

Both internal and external scheduling extend to multiple monitors in a natural way.14

monitor M { condition e; ... };
void foo(M & mutex m1, M & mutex m2) {

... wait(e); ... // wait(e, m1, m2)

... wait(e, m1); ...

... wait(e, m2); ...
}

void rtn1(M & mutex m1, M & mutex m2);
void rtn2(M & mutex m1);
void bar(M & mutex m1, M & mutex m2) {

... waitfor(rtn); ... // waitfor(rtn1, m1, m2)

... waitfor(rtn, m1); ... // waitfor(rtn2, m1)
}

15

For wait(e), the default semantics is to atomically block the signaller and release all acquired mutex types in the parame-16

ter list, ie, wait(e, m1, m2). To override the implicit multi-monitor wait, specific mutex parameter(s) can be specified, eg,17

wait(e, m1). Wait statically verifies the released monitors are the acquired mutex-parameters so unconditional release is safe.18

Finally, a signaller,19

void baz(M & mutex m1, M & mutex m2) {20

... signal(e); ...21

}22

18 DELISLE ET AL.

must have acquired at least the same locks as the waiting thread signalled from the condition queue.1

Similarly, for waitfor(rtn), the default semantics is to atomically block the acceptor and release all acquired mutex types in2

the parameter list, ie, waitfor(rtn, m1, m2). To override the implicit multi-monitor wait, specific mutex parameter(s) can be3

specified, eg, waitfor(rtn, m1). waitfor statically verifies the released monitors are the same as the acquired mutex-parameters4

of the given routine or routine pointer. To statically verify the released monitors match with the accepted routine’s mutex5

parameters, the routine (pointer) prototype must be accessible. Overloaded routines can be disambiguated using a cast:6

void rtn(M & mutex m);7

int rtn(M & mutex m);8

waitfor((int (∗)(M & mutex))rtn, m);9

The ability to release a subset of acquired monitors can result in a nested monitor 50 deadlock.10

void foo(M & mutex m1, M & mutex m2) {11

... wait(e, m1); ... // release m1, keeping m2 acquired)12

void bar(M & mutex m1, M & mutex m2) { // must acquire m1 and m2)13

... signal(e); ...14

The wait only releases m1 so the signalling thread cannot acquire both m1 and m2 to enter bar to get to the signal. While deadlock15

issues can occur with multiple/nesting acquisition, this issue results from the fact that locks, and by extension monitors, are not16

perfectly composable.17

Finally, an important aspect of monitor implementation is barging, ie, can calling threads barge ahead of signalled threads? If18

barging is allowed, synchronization between a signaller and signallee is difficult, often requiring multiple unblock/block cycles19

(looping around a wait rechecking if a condition is met). In fact, signals-as-hints is completely opposite from that proposed by20

Hoare in the seminal paper on monitors:21

However, we decree that a signal operation be followed immediately by resumption of a waiting program, without possibility22

of an intervening procedure call from yet a third program. It is only in this way that a waiting program has an absolute23

guarantee that it can acquire the resource just released by the signalling program without any danger that a third program24

will interpose a monitor entry and seize the resource instead.37, p. 550
25

C

A

scheduling precludes barging, which simplifies synchronization among threads in the monitor and increases correctness.26

Furthermore, C

A

concurrency has no spurious wakeup9, § 9, which eliminates an implict form of barging. For example, there are27

no loops in either bounded buffer solution in Figure 6 . Supporting barging prevention as well as extending internal scheduling28

to multiple monitors is the main source of complexity in the design and implementation of C

A

concurrency.29

6.1 Barging Prevention30

Figure 8 shows C

A

code where bulk acquire adds complexity to the internal-signalling semantics. The complexity begins at31

the end of the inner mutex statement, where the semantics of internal scheduling need to be extended for multiple monitors.32

The problem is that bulk acquire is used in the inner mutex statement where one of the monitors is already acquired. When33

the signalling thread reaches the end of the inner mutex statement, it should transfer ownership of m1 and m2 to the waiting34

threads to prevent barging into the outer mutex statement by another thread. However, both the signalling and waiting thread35

W1 still need monitor m1.36

One scheduling solution is for the signaller to keep ownership of all locks until the last lock is ready to be transferred, because37

this semantics fits most closely to the behaviour of single-monitor scheduling. However, Figure 8 (C) shows this solution is38

complex depending on other waiters, resulting in options when the signaller finishes the inner mutex-statement. The signaller39

can retain m2 until completion of the outer mutex statement and pass the locks to waiter W1, or it can pass m2 to waiter W240

after completing the inner mutex-statement, while continuing to hold m1. In the latter case, waiter W2 must eventually pass41

m2 to waiter W1, which is complex because W1 may have waited before W2, so W2 is unaware of it. Furthermore, there is an42

execution sequence where the signaller always finds waiter W2, and hence, waiter W1 starves.43

While a number of approaches were examined53, § 4.3, the solution chosen for C

A

is a novel techique called partial signalling.44

Signalled threads are moved to the urgent queue and the waiter at the front defines the set of monitors necessary for it to unblock.45

Partial signalling transfers ownership of monitors to the front waiter. When the signaller thread exits or waits in the monitor, the46

DELISLE ET AL. 19

monitor M m1, m2;
condition c;
mutex(m1) { // outer

...
mutex(m1, m2) { // inner

... signal(c); ...
// m1, m2 acquired

} // release m2
// m1 acquired

} // release m1

(A) Signalling Thread

mutex(m1) {
...
mutex(m1, m2) {

... wait(c); // block and release m1, m2
// m1, m2 acquired

} // release m2
// m1 acquired

} // release m1

(B) Waiting Thread (W1)

mutex(m2) {
... wait(c); ...
// m2 acquired

} // release m2

(C) Waiting Thread (W2)

FIGURE 8 Barging Prevention

front waiter is unblocked if all its monitors are released. The benefit is encapsulating complexity into only two actions: passing1

monitors to the next owner when they should be released and conditionally waking threads if all conditions are met.2

6.2 Loose Object Definitions3

In an object-oriented programming-language, a class includes an exhaustive list of operations. However, new members can be4

added via static inheritance or dynamic members, eg, JavaScript54. Similarly, monitor routines can be added at any time in C

A

,5

making it less clear for programmers and more difficult to implement.6

monitor M { ... };7

void f(M & mutex m);8

void g(M & mutex m) { waitfor(f); } // clear which f9

void f(M & mutex m, int); // different f10

void h(M & mutex m) { waitfor(f); } // unclear which f11

Hence, the cfa-code for entering a monitor looks like:12

if (monitor is free) // enter13

else if (already own monitor) // continue14

else if (monitor accepts me) // enter15

else // block16

For the first two conditions, it is easy to implement a check that can evaluate the condition in a few instructions. However, a17

fast check for monitor accepts me is much harder to implement depending on the constraints put on the monitors. Figure 9 (A)18

shows monitors are often expressed as an entry (calling) queue, some acceptor queues, and an urgent stack/queue.19

For a fixed (small) number of mutex routines (eg, 128), the accept check reduces to a bitmask of allowed callers, which can be20

checked with a single instruction. This approach requires a unique dense ordering of routines with a small upper-bound and the21

ordering must be consistent across translation units. For object-oriented languages these constraints are common, but C

A

mutex22

routines can be added in any scope and are only visible in certain translation unit, precluding program-wide dense-ordering23

among mutex routines.24

Figure 9 (B) shows the C

A

monitor implementation. The mutex routine called is associated with each thread on the entry25

queue, while a list of acceptable routines is kept separately. The accepted list is a variable-sized array of accepted routine pointers,26

so the single instruction bitmask comparison is replaced by dereferencing a pointer followed by a (usually short) linear search.27

6.3 Multi-Monitor Scheduling28

External scheduling, like internal scheduling, becomes significantly more complex for multi-monitor semantics. Even in the29

simplest case, new semantics needs to be established.30

20 DELISLE ET AL.

d

b

b

a

d

duplicateblocked taskactive task

a

c

exit

A

condition
B

stack

acceptor/
signalled

condition

X Y

entry
queue

arrival
order of

shared

variables

mutex

c

queues

urgent

(A) Classical monitor

X

Y

Y

X

accepted

d

b

blocked taskactive task routine mask

Y

X

a

c

exit

A

condition
B

stack

acceptor/
signalled

condition

entry
queue

arrival
order of

shared

variables

urgent

(B) Bulk acquire monitor

FIGURE 9 Monitor Implementation

monitor M { ... };1

void f(M & mutex m1);2

void g(M & mutex m1, M & mutex m2) {3

waitfor(f); // pass m1 or m2 to f?4

}5

The solution is for the programmer to disambiguate:6

waitfor(f, m2); // wait for call to f with argument m27

Both locks are acquired by routine g, so when routine f is called, the lock for monitor m2 is passed from g to f, while g still holds8

lock m1. This behaviour can be extended to the multi-monitor waitfor statement.9

monitor M { ... };10

void f(M & mutex m1, M & mutex m2);11

void g(M & mutex m1, M & mutex m2) {12

waitfor(f, m1, m2); // wait for call to f with arguments m1 and m213

}14

Again, the set of monitors passed to the waitfor statement must be entirely contained in the set of monitors already acquired by15

the accepting routine. Also, the order of the monitors in a waitfor statement is unimportant.16

Figure 10 shows an example where, for internal and external scheduling with multiple monitors, a signalling or accepting17

thread must match exactly, ie, partial matching results in waiting. For both examples, the set of monitors is disjoint so unblocking18

is impossible.19

6.4 Extended waitfor20

Figure 11 show the extended form of the waitfor statement to conditionally accept one of a group of mutex routines, with a21

specific action to be performed after the mutex routine finishes. For a waitfor clause to be executed, its when must be true and22

an outstanding call to its corresponding member(s) must exist. The conditional-expression of a when may call a routine, but the23

routine must not block or context switch. If there are multiple acceptable mutex calls, selection occurs top-to-bottom (prioritized)24

in the waitfor clauses, whereas some programming languages with similar mechanisms accept non-deterministically for this25

case, eg, Go select. If some accept guards are true and there are no outstanding calls to these members, the acceptor is accept-26

blocked until a call to one of these members is made. If all the accept guards are false, the statement does nothing, unless there27

DELISLE ET AL. 21

monitor M1 {} m11, m12;
monitor M2 {} m2;
condition c;
void f(M1 & mutex m1, M2 & mutex m2) {

signal(c);
}
void g(M1 & mutex m1, M2 & mutex m2) {

wait(c);
}
g(m11, m2); // block on wait
f(m12, m2); // cannot fulfil

monitor M1 {} m11, m12;
monitor M2 {} m2;

void f(M1 & mutex m1, M2 & mutex m2) {

}
void g(M1 & mutex m1, M2 & mutex m2) {

waitfor(f, m1, m2);
}
g(m11, m2); // block on accept
f(m12, m2); // cannot fulfil

FIGURE 10 Unmatched mutex sets

when (conditional-expression) // optional guard
waitfor(mutex-member-name)

statement // action after call
or when (conditional-expression) // optional guard

waitfor(mutex-member-name)
statement // action after call

or ... // list of waitfor clauses
when (conditional-expression) // optional guard

timeout // optional terminating timeout clause
statement // action after timeout

when (conditional-expression) // optional guard
else // optional terminating clause

statement // action when no immediate calls

FIGURE 11 Extended waitfor

is a terminating else clause with a true guard, which is executed instead. Hence, the terminating else clause allows a conditional1

attempt to accept a call without blocking. If there is a timeout clause, it provides an upper bound on waiting. If both a timeout2

clause and an else clause are present, the else must be conditional, or the timeout is never triggered. In all cases, the statement3

following is executed after a clause is executed to know which of the clauses executed.4

Note, a group of conditional waitfor clauses is not the same as a group of if statements, e.g.:5

if (C1) waitfor(mem1); when (C1) waitfor(mem1);6

else if (C2) waitfor(mem2); or when (C2) waitfor(mem2);7

The left example accepts only mem1 if C1 is true or only mem2 if C2 is true. The right example accepts either mem1 or mem28

if C1 and C2 are true.9

An interesting use of waitfor is accepting the mutex destructor to know when an object is deallocated.10

void insert(Buffer(T) & mutex buffer, T elem) with(buffer) {11

if (count == 10)12

waitfor(remove, buffer) {13

// insert elem into buffer14

} or waitfor(∧?{}, buffer) throw insertFail;15

}16

When the buffer is deallocated, the current waiter is unblocked and informed, so it can perform an appropriate action. However,17

the basic waitfor semantics do not support this functionality, since using an object after its destructor is called is undefined.18

Therefore, to make this useful capability work, the semantics for accepting the destructor is the same as signal, ie, the call to19

the destructor is placed on the urgent queue and the acceptor continues execution, which throws an exception to the acceptor20

22 DELISLE ET AL.

and then the caller is unblocked from the urgent queue to deallocate the object. Accepting the destructor is an idiomatic way to1

terminate a thread in C

A

.2

6.5 mutex Threads3

Threads in C

A

are monitors to allow direct communication among threads, ie, threads can have mutex routines that are called4

by other threads. Hence, all monitor features are available when using threads. The following shows an example of two threads5

directly calling each other and accepting calls from each other in a cycle.6

thread Ping {} pi;7

thread Pong {} po;8

void ping(Ping & mutex) {}9

void pong(Pong & mutex) {}10

int main() {}11

void main(Ping & pi) {
for (int i = 0; i < 10; i += 1) {

waitfor(ping, pi);
pong(po);

}
}

void main(Pong & po) {
for (int i = 0; i < 10; i += 1) {

ping(pi);
waitfor(pong, po);

}
}

12

Note, the ping/pong threads are globally declared, pi/po, and hence, start (and possibly complete) before the program main starts.13

6.6 Low-level Locks14

For completeness and efficiency, C

A

provides a standard set of low-level locks: recursive mutex, condition, semaphore, barrier,15

etc., and atomic instructions: fetchAssign, fetchAdd, testSet, compareSet, etc.16

7 PARALLELISM17

Historically, computer performance was about processor speeds. However, with heat dissipation being a direct consequence of18

speed increase, parallelism is the new source for increased performance18,19. Now, high-performance applications must care19

about parallelism, which requires concurrency. The lowest-level approach of parallelism is to use kernel threads in combination20

with semantics like fork, join, etc. However, kernel threads are better as an implementation tool because of complexity and21

higher cost. Therefore, different abstractions are often layered onto kernel threads to simplify them, eg, pthreads.22

7.1 User Threads with Preemption23

A direct improvement on kernel threads is user threads, eg, Erlang7 and�C++ 55. This approach provides an interface that matches24

the language paradigms, more control over concurrency by the language runtime, and an abstract (and portable) interface to the25

underlying kernel threads across operating systems. In many cases, user threads can be used on a much larger scale (100,00026

threads). Like kernel threads, user threads support preemption, which maximizes nondeterminism, but introduces the same27

concurrency errors: race, livelock, starvation, and deadlock. C

A

adopts user-threads as they represent the truest realization of28

concurrency and can build any other concurrency approach, eg, thread pools and actors56.29

7.2 User Threads without Preemption (Fiber)30

A variant of user thread is fibers, which removes preemption, eg, Go6 goroutines. Like functional programming, which removes31

mutation and its associated problems, removing preemption from concurrency reduces nondeterminism, making race and dead-32

lock errors more difficult to generate. However, preemption is necessary for concurrency that relies on spinning, so there are a33

class of problems that cannot be programmed without preemption.34

DELISLE ET AL. 23

clusterprocessormonitortaskcoroutine

Processors

Blocked Tasks

Ready Tasks

Other Cluster(s)User Cluster

Manager
Discrete-event

preemption

FIGURE 12 C

A

Runtime Structure

7.3 Thread Pools1

In contrast to direct threading is indirect thread pools, where small jobs (work units) are inserted into a work pool for execution.2

If the jobs are dependent, ie, interact, there is an implicit/explicit dependency graph that ties them together. While removing3

direct concurrency, and hence the amount of context switching, thread pools significantly limit the interaction that can occur4

among jobs. Indeed, jobs should not block because that also blocks the underlying thread, which effectively means the CPU5

utilization, and therefore throughput, suffers. While it is possible to tune the thread pool with sufficient threads, it becomes6

difficult to obtain high throughput and good core utilization as job interaction increases. As well, concurrency errors return,7

which threads pools are suppose to mitigate.8

8 C

A

RUNTIME STRUCTURE9

Figure 12 illustrates the runtime structure of a C

A

program. In addition to the new kinds of objects introduced by C

A

, there are10

two more runtime entities used to control parallel execution: cluster and (virtual) processor. An executing thread is illustrated11

by its containment in a processor.12

8.1 Cluster13

A cluster is a collection of threads and virtual processors (abstract kernel-thread) that execute the threads (like a virtual machine).14

The purpose of a cluster is to control the amount of parallelism that is possible among threads, plus scheduling and other exe-15

cution defaults. The default cluster-scheduler is single-queue multi-server, which provides automatic load-balancing of threads16

on processors. However, the scheduler is pluggable, supporting alternative schedulers. If several clusters exist, both threads17

and virtual processors, can be explicitly migrated from one cluster to another. No automatic load balancing among clusters is18

performed by C

A

.19

When a C

A

program begins execution, it creates a user cluster with a single processor and a special processor to handle20

preemption that does not execute user threads. The user cluster is created to contain the application user-threads. Having all21

threads execute on the one cluster often maximizes utilization of processors, which minimizes runtime. However, because of22

limitations of the underlying operating system, heterogeneous hardware, or scheduling requirements (real-time), multiple clusters23

are sometimes necessary.24

24 DELISLE ET AL.

8.2 Virtual Processor1

A virtual processor is implemented by a kernel thread (eg, UNIX process), which is subsequently scheduled for execution on a2

hardware processor by the underlying operating system. Programs may use more virtual processors than hardware processors.3

On a multiprocessor, kernel threads are distributed across the hardware processors resulting in virtual processors executing in4

parallel. (It is possible to use affinity to lock a virtual processor onto a particular hardware processor57,58,59,60,61, which is used5

when caching issues occur or for heterogeneous hardware processors.) The C

A

runtime attempts to block unused processors6

and unblock processors as the system load increases; balancing the workload with processors is difficult. Preemption occurs on7

virtual processors rather than user threads, via operating-system interrupts. Thus virtual processors execute user threads, where8

preemption frequency applies to a virtual processor, so preemption occurs randomly across the executed user threads. Turning9

off preemption transforms user threads into fibers.10

8.3 Debug Kernel11

There are two versions of the C

A

runtime kernel: debug and non-debug. The debugging version has many runtime checks and12

internal assertions, eg, stack (non-writable) guard page, and checks for stack overflow whenever context switches occur among13

coroutines and threads, which catches most stack overflows. After a program is debugged, the non-debugging version can be14

used to decrease space and increase performance.15

9 IMPLEMENTATION16

Currently, C

A

has fixed-sized stacks, where the stack size can be set at coroutine/thread creation but with no subsequent growth.17

Schemes exist for dynamic stack-growth, such as stack copying and chained stacks. However, stack copying requires pointer18

adjustment to items on the stack, which is impossible without some form of garbage collection. As well, chained stacks require19

all modules be recompiled to use this feature, which breaks backward compatibility with existing C libraries. In the long term,20

it is likely C libraries will migrate to stack chaining to support concurrency, at only a minimal cost to sequential programs.21

Nevertheless, experience teaching �C++ 62 shows fixed-sized stacks are rarely an issue in most concurrent programs.22

A primary implementation challenge is avoiding contention from dynamically allocating memory because of bulk acquire, eg,23

the internal-scheduling design is (almost) free of allocations. All blocking operations are made by parking threads onto queues,24

therefore all queues are designed with intrusive nodes, where each node has preallocated link fields for chaining. Furthermore,25

several bulk-acquire operations need a variable amount of memory. This storage is allocated at the base of a thread’s stack before26

blocking, which means programmers must add a small amount of extra space for stacks.27

In C

A

, ordering of monitor acquisition relies on memory ordering to prevent deadlock63, because all objects have distinct28

non-overlapping memory layouts, and mutual-exclusion for a monitor is only defined for its lifetime. When a mutex call is29

made, pointers to the concerned monitors are aggregated into a variable-length array and sorted. This array persists for the entire30

duration of the mutual exclusion and is used extensively for synchronization operations.31

To improve performance and simplicity, context switching occurs inside a routine call, so only callee-saved registers are32

copied onto the stack and then the stack register is switched; the corresponding registers are then restored for the other context.33

Note, the instruction pointer is untouched since the context switch is always inside the same routine. Unlike coroutines, threads34

do not context switch among each other; they context switch to the cluster scheduler. This method is a 2-step context-switch35

and provides a clear distinction between user and kernel code, where scheduling and other system operations happen. The36

alternative 1-step context-switch uses the from thread’s stack to schedule and then context-switches directly to the to thread’s37

stack. Experimental results (not presented) show the performance of these two approaches is virtually equivalent, because both38

approaches are dominated by locking to prevent a race condition.39

All kernel threads (pthreads) created a stack. Each C

A

virtual processor is implemented as a coroutine and these coroutines40

run directly on the kernel-thread stack, effectively stealing this stack. The exception to this rule is the program main, ie, the41

initial kernel thread that is given to any program. In order to respect C expectations, the stack of the initial kernel thread is used42

by program main rather than the main processor, allowing it to grow dynamically as in a normal C program.43

Finally, an important aspect for a complete threading system is preemption, which introduces extra non-determinism via44

transparent interleaving, rather than cooperation among threads for proper scheduling and processor fairness from long-running45

threads. Because preemption frequency is usually long (1 millisecond) performance cost is negligible. Preemption is normally46

DELISLE ET AL. 25

TABLE 1 Experiment environment

Architecture x86 64 NUMA node(s) 8
CPU op-mode(s) 32-bit, 64-bit Model name AMD Opteron™ Processor 6380
Byte Order Little Endian CPU Freq 2.5 GHz
CPU(s) 64 L1d cache 16 KiB
Thread(s) per core 2 L1i cache 64 KiB
Core(s) per socket 8 L2 cache 2048 KiB
Socket(s) 4 L3 cache 6144 KiB

Operating system Ubuntu 16.04.3 LTS Kernel Linux 4.4-97-generic
gcc 6.3 C

A

1.0.0
Java OpenJDK-9 Go 1.9.2

handled by setting a count-down timer on each virtual processor. When the timer expires, an interrupt is delivered, and the1

interrupt handler resets the count-down timer, and if the virtual processor is executing in user code, the signal handler performs2

a user-level context-switch, or if executing in the language runtime-kernel, the preemption is ignored or rolled forward to the3

point where the runtime kernel context switches back to user code. Multiple signal handlers may be pending. When control4

eventually switches back to the signal handler, it returns normally, and execution continues in the interrupted user thread, even5

though the return from the signal handler may be on a different kernel thread than the one where the signal is delivered. The6

only issue with this approach is that signal masks from one kernel thread may be restored on another as part of returning from7

the signal handler; therefore, the same signal mask is required for all virtual processors in a cluster.8

However, on current UNIX systems:9

A process-directed signal may be delivered to any one of the threads that does not currently have the signal blocked. If10

more than one of the threads has the signal unblocked, then the kernel chooses an arbitrary thread to which to deliver the11

signal. SIGNAL(7) - Linux Programmer’s Manual12

Hence, the timer-expiry signal, which is generated externally by the UNIX kernel to the UNIX process, is delivered to any13

of its UNIX subprocesses (kernel threads). To ensure each virtual processor receives its own preemption signals, a discrete-14

event simulation is run on a special virtual processor, and only it sets and receives timer events. Virtual processors register an15

expiration time with the discrete-event simulator, which is inserted in sorted order. The simulation sets the count-down timer to16

the value at the head of the event list, and when the timer expires, all events less than or equal to the current time are processed.17

Processing a preemption event sends an internal SIGUSR1 signal to the registered virtual processor, which is always delivered18

to that processor.19

10 PERFORMANCE20

To verify the implementation of the C

A

runtime, a series of microbenchmarks are performed comparing C

A

with other widely21

used programming languages with concurrency. Table 1 shows the specifications of the computer used to run the benchmarks,22

and the versions of the software used in the comparison.23

All benchmarks are run using the following harness:24

unsigned int N = 10 000 000;25

#define BENCH(run) Time before = getTimeNsec(); run; Duration result = (getTimeNsec() before) / N;26

The method used to get time is clock gettime(CLOCK REALTIME). Each benchmark is performed N times, where N varies27

depending on the benchmark; the total time is divided by N to obtain the average time for a benchmark. All omitted tests for28

other languages are functionally identical to the shown C

A

test.29

26 DELISLE ET AL.

Context-Switching1

In procedural programming, the cost of a routine call is important as modularization (refactoring) increases. (In many cases, a2

compiler inlines routine calls to eliminate this cost.) Similarly, when modularization extends to coroutines/tasks, the time for3

a context switch becomes a relevant factor. The coroutine context-switch is 2-step using resume/suspend, ie, from resumer to4

suspender and from suspender to resumer. The thread context switch is 2-step using yield, ie, enter and return from the runtime5

kernel. Figure 13 shows the code for coroutines/threads with all results in Table 2 . The difference in performance between6

coroutine and thread context-switch is the cost of scheduling for threads, whereas coroutines are self-scheduling.7

Mutual-Exclusion8

Mutual exclusion is measured by entering/leaving a critical section. For monitors, entering and leaving a monitor routine is9

measured. Figure 14 shows the code for C

A

with all results in Table 3 . To put the results in context, the cost of entering a10

non-inline routine and the cost of acquiring and releasing a pthread mutex lock is also measured. Note, the incremental cost of11

bulk acquire for C

A

, which is largely a fixed cost for small numbers of mutex objects.12

Internal Scheduling13

Internal scheduling is measured by waiting on and signalling a condition variable. Figure 15 shows the code for C

A

, with14

results in Table 4 . Note, the incremental cost of bulk acquire for C

A

, which is largely a fixed cost for small numbers of mutex15

objects. Java scheduling is significantly greater because the benchmark explicitly creates multiple thread in order to prevent the16

JIT from making the program sequential, ie, removing all locking.17

External Scheduling18

External scheduling is measured by accepting a call using the waitfor statement (Accept in �C++). Figure 16 shows the code19

for C

A

, with results in Table 5 . Note, the incremental cost of bulk acquire for C

A

, which is largely a fixed cost for small numbers20

of mutex objects.21

Object Creation22

Object creation is measured by creating/deleting the specific kind of concurrent object. Figure 17 shows the code for C
A

, with23

results in Table 6 . The only note here is that the call stacks of C

A

coroutines are lazily created, therefore without priming the24

coroutine to force stack creation, the creation cost is artificially low.25

11 CONCLUSION26

This paper demonstrates a concurrency API that is simple, efficient, and able to build higher-level concurrency features. The27

approach provides concurrency based on a preemptive M:N user-level threading-system, executing in clusters, which encapsu-28

late scheduling of work on multiple kernel threads providing parallelism. The M:N model is judged to be efficient and provide29

greater flexibility than a 1:1 threading model. High-level objects (monitor/task) are the core mechanism for mutual exclusion30

and synchronization. A novel aspect is allowing multiple mutex-objects to be accessed simultaneously reducing the potential for31

deadlock for this complex scenario. These concepts and the entire C

A

runtime-system are written in the C

A

language, demon-32

strating the expressiveness of the C

A

language. Performance comparisons with other concurrent systems/languages show the33

C

A

approach is competitive across all low-level operations, which translates directly into good performance in well-written con-34

current applications. C programmers should feel comfortable using these mechanisms for developing concurrent applications,35

with the ability to obtain maximum available performance by mechanisms at the appropriate level.36

12 FUTURE WORK37

While concurrency in C

A

has a strong start, development is still underway and there are missing features.38

Flexible Scheduling39

An important part of concurrency is scheduling. Different scheduling algorithms can affect performance (both in terms of average40

and variation). However, no single scheduler is optimal for all workloads and therefore there is value in being able to change41

DELISLE ET AL. 27

coroutine C {} c;
void main(C &) { for (;;) { suspend(); } }
int main() {

BENCH(
for (size t i = 0; i < N; i += 1) { resume(c); })

sout | result`ns;
}

(A) Coroutine

int main() {
BENCH(

for (size t i = 0; i < N; i += 1) { yield(); })
sout | result`ns;

}

(B) Thread

FIGURE 13 C

A

context-switch benchmark

TABLE 2 Context switch comparison (nanoseconds)

Median Average Std Dev
Kernel Thread 333.5 332.96 4.1

C

A

Coroutine 49 48.68 0.47

C

A

Thread 105 105.57 1.37

�C++ Coroutine 44 44 0

�C++ Thread 100 99.29 0.96

Goroutine 145 147.25 4.15

Java Thread 373.5 375.14 8.72

monitor M { ... } m1/∗, m2, m3, m4∗/;
void attribute ((noinline)) do call(M & mutex m/∗, m2, m3, m4∗/) {}
int main() {

BENCH(for(size t i = 0; i < N; i += 1) { do call(m1/∗, m2, m3, m4∗/); })
sout | result`ns;

}

FIGURE 14 C

A

acquire/release mutex benchmark

TABLE 3 Mutex comparison (nanoseconds)

Median Average Std Dev
C routine 2 2 0

FetchAdd + FetchSub 26 26 0

Pthreads Mutex Lock 31 31.71 0.97

�C++ monitor member routine 31 31 0

C

A

mutex routine, 1 argument 46 46.68 0.93

C

A

mutex routine, 2 argument 84 85.36 1.99

C

A

mutex routine, 4 argument 158 161 4.22

Java synchronized routine 27.5 29.79 2.93

28 DELISLE ET AL.

volatile int go = 0;
condition c;
monitor M { ... } m;
void attribute ((noinline)) do call(M & mutex a1) { signal(c); }
thread T {};
void main(T & this) {

while (go == 0) { yield(); } // wait for other thread to start
while (go == 1) { do call(m); }

}
int attribute ((noinline)) do wait(M & mutex m) {

go = 1; // continue other thread
BENCH(for (size t i = 0; i < N; i += 1) { wait(c); });
go = 0; // stop other thread
sout | result`ns;

}
int main() {

T t;
do wait(m);

}

FIGURE 15 C

A

Internal-scheduling benchmark

TABLE 4 Internal-scheduling comparison (nanoseconds)

Median Average Std Dev
Pthreads Condition Variable 6005 5681.43 835.45

�C++ signal 324 325.54 3, 02

C
A

signal, 1 monitor 368.5 370.61 4.77

C

A

signal, 2 monitor 467 470.5 6.79

C

A

signal, 4 monitor 700.5 702.46 7.23

Java notify 15471 172511 5689

the scheduler for given programs. One solution is to offer various tweaking options, allowing the scheduler to be adjusted to the1

requirements of the workload. However, to be truly flexible, a pluggable scheduler is necessary. Currently, the C

A

pluggable2

scheduler is too simple to handle complex scheduling, eg, quality of service and real-time, where the scheduler must interact3

with mutex objects to deal with issues like priority inversion.4

Non-Blocking I/O5

Many modern workloads are not bound by computation but IO operations, a common case being web servers and XaaS64 (any-6

thing as a service). These types of workloads require significant engineering to amortizing costs of blocking IO-operations. At7

its core, non-blocking I/O is an operating-system level feature queuing IO operations, eg, network operations, and registering for8

notifications instead of waiting for requests to complete. Current trends use asynchronous programming like callbacks, futures,9

and/or promises, eg, Node.js65 for JavaScript, Spring MVC66 for Java, and Django67 for Python. However, these solutions lead10

to code that is hard to create, read and maintain. A better approach is to tie non-blocking I/O into the concurrency system to11

provide ease of use with low overhead, eg, thread-per-connection web-services. A non-blocking I/O library is currently under12

development for C

A

.13

Other Concurrency Tools14

While monitors offer flexible and powerful concurrency for C

A

, other concurrency tools are also necessary for a complete15

multi-paradigm concurrency package. Examples of such tools can include futures and promises68, executors and actors. These16

additional features are useful when monitors offer a level of abstraction that is inadequate for certain tasks. As well, new C

A

17

extensions should make it possible to create a uniform interface for virtually all mutual exclusion, including monitors and18

low-level locks.19

DELISLE ET AL. 29

volatile int go = 0;
monitor M { ... } m;
thread T {};
void attribute ((noinline)) do call(M & mutex) {}
void main(T &) {

while (go == 0) { yield(); } // wait for other thread to start
while (go == 1) { do call(m); }

}
int attribute ((noinline)) do wait(M & mutex m) {

go = 1; // continue other thread
BENCH(for (size t i = 0; i < N; i += 1) { waitfor(do call, m); })
go = 0; // stop other thread
sout | result`ns;

}
int main() {

T t;
do wait(m);

}

FIGURE 16 C

A

external-scheduling benchmark

TABLE 5 External-scheduling comparison (nanoseconds)

Median Average Std Dev
�C++ Accept 358 359.11 2.53

C
A

waitfor, 1 monitor 359 360.93 4.07

C

A

waitfor, 2 monitor 450 449.39 6.62

C

A

waitfor, 4 monitor 652 655.64 7.73

thread MyThread {};
void main(MyThread &) {}
int main() {

BENCH(for (size t i = 0; i < N; i += 1) { MyThread m; })
sout | result`ns;

}

FIGURE 17 C

A

object-creation benchmark

TABLE 6 Creation comparison (nanoseconds)

Median Average Std Dev
Pthreads 28091 28073.39 163.1

C

A

Coroutine Lazy 6 6.07 0.26

C

A

Coroutine Eager 520 520.61 2.04

C

A

Thread 2032 2016.29 112.07

�C++ Coroutine 106 107.36 1.47

�C++ Thread 536.5 537.07 4.64

Goroutine 3103 3086.29 90.25

Java Thread 103416.5 103732.29 1137

30 DELISLE ET AL.

Implicit Threading1

Basic concurrent (embarrassingly parallel) applications can benefit greatly from implicit concurrency, where sequential pro-2

grams are converted to concurrent, possibly with some help from pragmas to guide the conversion. This type of concurrency3

can be achieved both at the language level and at the library level. The canonical example of implicit concurrency is concurrent4

nested for loops, which are amenable to divide and conquer algorithms55. The C

A

language features should make it possible5

to develop a reasonable number of implicit concurrency mechanism to solve basic HPC data-concurrency problems. However,6

implicit concurrency is a restrictive solution with significant limitations, so it can never replace explicit concurrent programming.7

13 ACKNOWLEDGEMENTS8

The authors would like to recognize the design assistance of Aaron Moss, Rob Schluntz and Andrew Beach on the features9

described in this paper. Funding for this project has been provided by Huawei Ltd. (http://www.huawei.com), and Peter Buhr is10

partially funded by the Natural Sciences and Engineering Research Council of Canada.11

References12

1. Hochstein Lorin, Carver Jeff, Shull Forrest, et al. Parallel Programmer Productivity: A Case Study of Novice Parallel Programmers. In:13

Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference :35-35. IEEE; 2005.14

2. Thread Building Blocks Intel, https://www.threadingbuildingblocks.org.15

3. OpenMP Application Program Interface, Version 4.5 . 2015. https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf.16

4. Gosling James, Joy Bill, Steele Guy, Bracha Gilad. The Java Language Specification. Reading: Addison-Wesley; 2nd ed. 2000.17

5. Hoare C. A. R.. Communicating Sequential Processes. Communications ACM. 1978; 21(8):666-677.18

6. Griesemer Robert, Pike Rob, Thompson Ken. Go Programming Language. Google . 2009. http://golang.org/ref/spec.19

7. Erlang AB. Erlang/OTP System Documentation 8.1 . 2016. http://erlang.org/doc/pdf/otp-system-documentation.pdf.20

8. Message Passing Interface Forum. University of Tennessee, Knoxville, TennesseeMPI: A Message-Passing Interface Standard, Version21

3.1 . 2015. http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.22

9. Buhr Peter A., Harji Ashif S.. Concurrent Urban Legends. Concurrency Comput.: Pract. Exper.. 2005; 17(9):1133-1172.23

10. C∀ Features . . https://plg.uwaterloo.ca/∼cforall/features.24

11. Moss Aaron, Schluntz Robert, Buhr Peter A.. C∀ : Adding Modern Programming Language Features to C. Softw. Pract. Exper.. 2018;25

48(12):2111-2146. http://dx.doi.org/10.1002/spe.2624.26

12. C Programming Language ISO/IEC 9889:2011-12. https://www.iso.org/standard/57853.html. 3rd ed. . 2012.27

13. Jensen Kathleen, Wirth Niklaus. Pascal User Manual and Report, ISO Pascal Standard. Springer–Verlag; 4th ed. 1991. Revised by28

Andrew B. Mickel and James F. Miner.29

14. Ada . The Programming Language Ada: Reference Manual. United States Department of Defense. ANSI/MIL-STD-1815A-1983 ed. .30

1983. Springer, New York.31

15. Conway Melvin E.. Design of a Separable Transition-Diagram Compiler. Communications ACM. 1963; 6(7):396-408.32

16. Marlin Christopher D.. Coroutines: A Programming Methodology, a Language Design and an Implementation Lecture Notes in Computer33

Science, Ed. by G. Goos and J. Hartmanis, vol. 95: . New York: Springer; 1980.34

17. Python . Python Language Reference, Release 3.7.2. Python Software Foundation. https://docs.python.org/3/reference/index.html . 2018.35

18. Sutter Herb. A Fundamental Turn Toward Concurrency in Software. Dr. Dobb’s Journal : Software Tools for the Professional Programmer.36

2005; 30(3):16-22.37

19. Sutter Herb, Larus James. Software and the Concurrency Revolution. Queue. 2005; 3(7):54-62.38

20. Butenhof David R.. Programming with POSIX Threads. Professional ComputingBoston: Addison-Wesley; 1997.39

21. C++ Programming Language ISO/IEC 14882:2014. https://www.iso.org/standard/64029.html. 4th ed. . 2014.40

22. Microsoft Corporation. Microsoft Visual C++ .NET Language Reference . 2002. Microsoft Press, Redmond, Washington, U.S.A.41

http://www.huawei.com
https://www.threadingbuildingblocks.org
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://golang.org/ref/spec
http://erlang.org/doc/pdf/otp-system-documentation.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://plg.uwaterloo.ca/~cforall/features
http://dx.doi.org/10.1002/spe.2624
https://www.iso.org/standard/57853.html
https://docs.python.org/3/reference/index.html
https://www.iso.org/standard/64029.html

DELISLE ET AL. 31

23. Kowalke Oliver. Boost Coroutine Library http://www.boost.org/doc/libs/1 61 0/libs/coroutine/doc/html/index.html . 2015.1

24. ECMA International Standardizing Information and Communication Systems. C# Language Specification, Standard ECMA-334. 4th ed.2

. 2006.3

25. Scala Language Specification, Version 2.11. École Polytechnique Fédérale de Lausanne . 2016. http://www.scala-lang.org/files/archive/-4

spec/2.11.5

26. Hudak Paul, Fasel Joseph H.. A Gentle Introduction to Haskell. SIGPLAN Not.. 1992; 27(5):T1-53.6

27. Lightbend Inc. Akka Scala Documentation, Release 2.4.11 . 2016. http://doc.akka.io/docs/akka/2.4/AkkaScala.pdf.7

28. Cheriton D. R.. The Thoth System: Multi-Process Structuring and Portability. American Elsevier; 1982.8

29. Gentleman W. Morven. Using the Harmony Operating System. 24685: National Research Council of Canada, Ottawa, Canada; 1985.9

30. Cheriton David R.. The V Distributed System. Communications ACM. 1988; 31(3):314-333.10

31. Dijkstra E. W.. The Structure of the “THE”–Multiprogramming System. Communications ACM. 1968; 11(5):341-346.11

32. Campbell R. H., Habermann A. N.. The Specification of Process Synchronization by Path Expressions Lecture Notes in Computer Science,12

vol. 16: . Springer; 1974.13

33. Herlihy Maurice, Moss J. Eliot B.. Transactional memory: architectural support for lock-free data structures. SIGARCH Comput. Archit.14

News. 1993; 21(2):289–300.15

34. Nakaike Takuya, Odaira Rei, Gaudet Matthew, Michael Maged M., Tomari Hisanobu. Quantitative Comparison of Hardware Transac-16

tional Memory for Blue Gene/Q, zEnterprise EC12, Intel Core, and POWER8. SIGARCH Comput. Archit. News. 2015; 43(3):144–157.17

35. International Standard ISO/IEC TS 19841:2015. http://www.iso.orgTechnical Specification for C++ Extensions for Transactional18

Memory . 2015.19

36. Brinch Hansen Per. Operating System Principles. Englewood Cliffs: Prentice-Hall; 1973.20

37. Hoare C. A. R.. Monitors: An Operating System Structuring Concept. Communications ACM. 1974; 17(10):549-557.21

38. Brinch Hansen Per. The Programming Language Concurrent Pascal. IEEE Trans. Softw. Eng.. 1975; 2:199-206.22

39. Mitchell James G., Maybury William, Sweet Richard. Mesa Language Manual. CSL–79–3: Xerox Palo Alto Research Center; 1979.23

40. Wirth Niklaus. Programming in Modula-2. Texts and Monographs in Computer ScienceNew York: Springer; 4th ed. 1988.24

41. Holt R. C., Cordy J. R.. The Turing Programming Language. Communications ACM. 1988; 31(12):1410-1423.25

42. Birrell Andrew, Brown Mark R., Cardelli Luca, et al. Systems Programming with Modula-3. Prentice-Hall Series in Innovative26

TechnologyEnglewood Cliffs: Prentice-Hall; 1991.27

43. Gosling James, Rosenthal David S. H., Arden Richelle J.. The NeWS Book. Springer-Verlag; 1989.28

44. Raj Rajendra K., Tempero Ewan, Levy Henry M., Black Andrew P., Hutchinson Norman C., Jul Eric. Emerald: A General-Purpose29

Programming Language. Softw. Pract. Exper.. 1991; 21(1):91-118.30

45. Buhr P. A., Ditchfield Glen, Stroobosscher R. A., Younger B. M., Zarnke C. R.. �C++: Concurrency in the Object-Oriented Language31

C++. Softw. Pract. Exper.. 1992; 22(2):137-172.32

46. Dijkstra Edsger W.. Cooperating Sequential Processes. : Technological UniversityEindhoven, Netherlands; 1965. Reprinted in? pp.33

43–112.34

47. Joung Yuh-Jzer. Asynchronous group mutual exclusion. Dist. Comput.. 2000; 13(4):189–206.35

48. Courtois P. J., Heymans F., Parnas D. L.. Concurrent Control with Readers and Writers. Communications ACM. 1971; 14(10):667-668.36

49. Andrews Gregory R.. A Method for Solving Synronization Problems. Science of Computer Programming. 1989; 13(4):1-21.37

50. Lister Andrew. The Problem of Nested Monitor Calls. Operating Systems Review. 1977; 11(3):5-7.38

51. Dice Dave, Lev Yossi, Marathe Virendra J., Moir Mark, Nussbaum Dan, Olszewski Marek. Simplifying Concurrent Algorithms by39

Exploiting Hardware Transactional Memory. In: Proceedings of the Twenty-second Annual ACM Symposium on Parallelism in Algorithms40

and Architectures SPAA’10. :325-334. ACM; 2010; New York, NY, USA.41

52. Buhr Peter A.. �C++ Annotated Reference Manual, Version 7.0.0. University of Waterloo . 2018. https://plg.uwaterloo.ca/∼usystem/-42

pub/uSystem/uC++.pdf.43

53. Delisle Thierry. Concurrency in C∀. Master’s thesis. School of Computer Science, University of Waterloo . 2018. https://-44

uwspace.uwaterloo.ca/handle/10012/12888.45

http://www.boost.org/doc/libs/1_61_0/libs/coroutine/doc/html/index.html
http://www.scala-lang.org/files/archive/spec/2.11
http://doc.akka.io/docs/akka/2.4/AkkaScala.pdf
https://plg.uwaterloo.ca/~usystem/pub/uSystem/uC++.pdf
https://uwspace.uwaterloo.ca/handle/10012/12888

32 DELISLE ET AL.

54. ECAM International. Rue du Rhone 114, CH-1204 Geneva, SwitzerlandECMAScript 2015 Language Specification JavaScript . 2015.1

6th Edition.2

55. Buhr Peter A.. Understanding Control Flow: Concurrent Programming using �C++. Switzerland: Springer; 2016.3

56. Agha Gul A.. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge; 1986.4

57. Linux man page - sched setaffinity(2).5

58. Windows (vs.85) - SetThreadAffinityMask function.6

59. FreeBSD General Commands Manual - CPUSET(1).7

60. NetBSD Library Functions Manual - AFFINITY(3).8

61. Affinity API Release Notes for OS X v10.5.9

62. CS343 https://www.student.cs.uwaterloo.ca/∼cs343 . 2018.10

63. Havender J. W.. Avoiding Deadlock in Multitasking Systems. IBM Systems J.. 1968; 7(2):74-84.11

64. Duan Yucong, Fu Guohua, Zhou Nianjun, Sun Xiaobing, Narendra Nanjangud C., Hu Bo. Everything As a Service (XaaS) on the Cloud:12

Origins, Current and Future Trends. In: Proceedings of the 2015 IEEE 8th International Conference on Cloud Computing CLOUD’15.13

:621–628. IEEE Computer Society; 2015; Washington, DC, USA.14

65. Node.js https://nodejs.org/en/.15

66. Spring Web MVC https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html.16

67. Django https://www.djangoproject.com/.17

68. Liskov Barbara, Shrira Liuba. Promises: Linguistic Support for Efficient Asynchronous Procedure Calls in Distributed Systems. SIGPLAN18

Not.. 1988; 23(7):260-267. Proceedings of the SIGPLAN ’88 Conference on Programming Language Design and Implementation.19

69. Genuys F., ed.Programming Languages. London, New York: Academic Press; 1968. NATO Advanced Study Institute, Villard-de-Lans,1000

1966.1001

https://www.student.cs.uwaterloo.ca/~cs343
https://nodejs.org/en/
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html
https://www.djangoproject.com/

	Concurrency in Cforall
	Abstract
	Introduction
	C180A Overview
	References
	with Statement
	Overloading
	Operators
	Constructors / Destructors
	Parametric Polymorphism

	Concurrency
	Coroutines: A Stepping Stone
	Coroutine Implementation
	Thread Interface

	Mutual Exclusion / Synchronization
	Mutual Exclusion
	Synchronization

	Monitor
	Mutex Acquisition
	[]@mutex[]@ statement

	Scheduling
	Barging Prevention
	Loose Object Definitions
	Multi-Monitor Scheduling
	Extended []@waitfor[]@
	[]@mutex[]@ Threads
	Low-level Locks

	Parallelism
	User Threads with Preemption
	User Threads without Preemption (Fiber)
	Thread Pools

	C180A Runtime Structure
	Cluster
	Virtual Processor
	Debug Kernel

	Implementation
	Performance
	Conclusion
	Future Work
	Acknowledgements
	References

