Customizing lists
with the
enumitem package

Javier Bezos*

Version 3.5.2
2011-09-28

1 Introduction

When I began to use ITEX several year ago, two particular points annoyed me because I found
customizing them was very complicated —headlines/footlines and lists. A new way to redefine
the former is accomplished in my own titlesec package, but none was available to customize the
latter except:

e enumerate, which just allows to change the label and it does it pretty well.

e mdwlist, which only “provides some vaguely useful list-related commands and
environments,” as its manual states, and not a coherent way of handling lists.

e paralist, which provides lists within a paragraph (the original purpose of this package), a
few other hard-wired specific changes and the optional argument of enumerate.

One of the main drawbacks of the standard 1ist is its weird parameters, whose meaning is
not always obvious. In order to provide a cleaner interface two approaches were possible: either
defining new lists, or introducing a new syntax making the standard lists easier to customize.
For marks I took the first approach in titlesec, just because I did not manage to find a
satisfactory solution with the IXTEX internal macros, but since lists are in some sense more
“complete” than sections and marks, I have taken here the second approach.

In the interface a sort of “inheritance” is used. You can set globally the behaviour of lists
and then override several parameters of, say, enumerate and then in turn override a few
paremeters of a particular instance. The values will be searched in the hierarchy.

2 The package

This package is intended to ease customizing the three basic list environments: enumerate,
itemize and description. It extends their syntax to allow an optional argument where a set
of parameters in the form key=value are available:

e Vertical spacing:

— topsep

partopsep

parsep

— itemsep

*For bug reports, comments and suggestions go to http://www.tex-tipografia.com/enumitem.html. English
is not my strong point, so contact me when you find mistakes in the manual. Other packages by the same author:
gloss (with José Luis Diaz), accents, tensind, esindex, dotlessi, titlesec, titletoc.

http://www.tex-tipografia.com/enumitem.html

e Horizontal spacing:

leftmargin

rightmargin

listparindent

labelwidth

— labelsep

— itemindent
For example:
\begin{itemize} [itemsep=1lex,leftmargin=1cm]

The keys above are equivalent to the well known list parameters—see a KXIEX manual for a
description of them. Next sections explains the extensions provided by enumitem.

3 Keys

This section describes the keys in displayed lists. Most of them are available in inline lists,
where further keys are available (see [4]).

3.1 Label and cross references format

| label=(commands) |

Sets the label to be used in the current level. A set of starred versions of \alph, \Alph,
\arabic, \roman and \Roman, without argument stand for the current counter in enumerate
Thus

\begin{enumerate} [label=\emph{\alph*})]

prints a), b), and so on (this is a standard style in Spanish, and formerly used by Chicago, t00).

It works with \value, too (provided the widest label is not to be computed or widestx* is
used, see below). A fancier example (which looks ugly, but it is intended only to illustrate what
is possible; requires color and pifont):

\begin{enumerate} [label=\protect\fcolorbox{blue}{yellow}{\protect\ding{\value*}},
start=172]

The value of 1abel is a moving argument, and fragile commands must be protected except
the counters. Because of that, use of \value is somewhat tricky, because \the or \ifnum
expects an actual value, which is not the case when label is being processed to replace
internally the * by the form with the counter argument. The best solution is usually
encapsulating the logic inside a new “counter” with the help of \AddEnumerateCounterﬂ

If you prefer setting labels like the enumerate package, use “short labels” (see section @

l label*=(commands) ‘

Like 1abel but its value is appended to the parent label. For example, the follollowing
defines a legal list (1., 1.1., 1.1.1., and so on):

\newlist{legal}{enumerate}{10}
\setlist[legal]l{label*=\arabic*.}

L Actually, the asterisk is currently the argument but things may change. Consider them as starred variants
and follow the corresponding syntax.
2Which is admittedly somewhat convoluted. A better way to accomplish this is on the way.

| ref=(commands) |

By default, label sets also the form of cross references and \the. .. (overriding the
settings in previous hierarchical levels), but you can define a different format with this key. For
example, to remove the right parethesis:

\begin{enumerate} [label=\emph{\alph#*}) ,ref=\emph{\alph*}]
In both label and ref, the counters can be used as usual:
\begin{enumerate} [label=\theenumi.\arabic*.]

or

\begin{enumerate}[label=\arabic{enumi}.\arabicx*.]

(provided the current level is the second one).

Note the labels are not accumulated to form the reference. If you want, say, something
like 1.a from 1) as first level and a) as second level, you must set it with ref. You may use
\ref{levell}.\ref{level2} with appropiate ref settings, but as Robin Fairbairns points out

in the TEX FAQ

[that] would be both tedious and error-prone. What is more, it would be
undesirable, since you would be constructing a visual representation which is
inflexible (you could not change all the references to elements of a list at one fell
SWOOD).

This is sensible and I recommend to follow the advice, but sometimes you might want
something like:

. subitem \ref{level2} of item \ref{levelll} ...

The value of ref is a moving argument, and fragile commands must be protected except
the counters.

| font=(commands) format=(commands) |

Sets the label font. Useful when the label is changed with the optional argument of \item
and in description. The last command in (commands) can take an argument with the item
label. In description class setting are in force, so you may want begin with \normalfont. A
synonymous is format.

| align=left align-right align=parleft [~ewso] |

How the label is aligned (with relation to the label box edges). Three values are possible:
left, the default right and parleft (a parbox of width \labelwidth with flush left text).
The parameters controlling the label spacing should be properly set, either by hand or more
conveniently with the * settings (see below):

\begin{enumerate}[label=\Roman*., align=left, leftmargin=x]

(When the label box is supposed to have its natural width, use left.)

l\SetLabelAlign{(value)}{(commands)} NEW 3.0 ‘

New align types can be defined (or the existing ones redefined) with \SetLabelAlign; the
predefined values are equivalent toﬂ

3Prior to version 3.0 the left alignments was incorrectly defined and the label and the text could overlap.

\SetLabelAlign{right}{\hss\1lap{#1}}
\SetLabelAlign{left}{#1\hfil}
\SetLabelAlign{parleft}{\strut\smash{\parbox[t]\labelwidth{\raggedright##1}}}

If the last thing in the definition is a skip (typically \hfil), it is removed sometimes by
description. If for some reason you want to avoid this, just add \null at the end.

Although primarily intended for the alignment, this commands has other uses (as in the
provided parleft). For example, with the following all labels with align=right are set as
superscripts:

\SetLabelAlign{right}{\hss\llap{#1}}

(A new name is also possible, of course.)
If you want the internal settings for align and font be ignored, you can override the
enumitem definition of \makelabel in before:

\begin{description} [before={\renewcommand\makelabel [1]{\ref{##1}}}]

(Alternatively, define a macro and use \let.)

3.2 Horizontal spacing of labels

labelindent=(length)
\labelindent

This parameter is added in enumitem for the blank space from the margin of the enclosing
list /text to the left edge of the label box. This means there is a redundancy because one of the
parameters depends on the others, i.e., it has to be computed from the other values, as
described below. There is a new counter length \labelindent which defaults to 0 pt. The five
parameteres are related in the following way:

\leftmargin + \itemindent = \labelindent + \labelwidth + \labelsep

leftmargin=! itemindent=! labelsep=! labelwidth=! labelindent=! lNEW’&OI‘

Sets which value is to be computed from the others. This is done after all keys has been
read. Explicit values are not lost, and so with the following hierarchical settings:

leftmargin=2em
labelindent=1em,leftmargin=!
labelindent=!

leftmargin is again 2em and labelindent is the computed parameter. The default is
labelindent=!, but note some keys sets another value (wide and description styles).

With align=right (the default), labelindent=! and labelwidth=! behave similarly in
practice.

l leftmargin=x itemindent=x* labelsep=x labelwidth=x* labelindent=x*

Like before, but labelwidth is set to the width of the current label, using the default
value of 0 in \arabic*, viii in \roman*, m in \alph* and similarly in uppercase forms (these
values can be changed with widest, see below). Examples are:

\begin{itemize} [label=\textbullet, leftmargin=x]
\begin{enumerate}[label=\romanx*), leftmargin=+, widest=iii]
\begin{itemize} [label=\textbullet,
leftmargin=2pc, labelsep=x*]
\begin{enumerate}[label=\arabic*., leftmargin=2\parindent,
labelindent=\parindent, labelsep=%]

The most useful are labelsep=+ and leftmargin=+. With the former the item body
begins at a fixed place (namely, leftmargin), while with the latter begins at a variable place
depending on the label (but always the same within a list, of course). Most of times, what you
would want is leftmargin=x.

Unfortunately, TEX does not define a default 1abelsep to be applied to all lists—simply
the current value is used. With enumitem you can set default values for every list, as described
below, and so, if you want to make sure labelsep is under your control, all you need is
something like:

\setlist{itemsep=.5em}

labelwidth=* and labelwidth=! are synonymous.

| widest=(string) widest*=(integer) [NBw 3.0 widest |

To be used in conjunction with the *-values, if desired. It overrides the default value for
the widest printed counter. Sometimes, if lists are not very long, a value of a for \alph is more
sensible than the default m:

\begin{enumerate}[leftmargin=*,widest=a] % Assume standard 2nd level

With no value, the default is restored. With widest*, the string is built using (integer) as the
value of the counter (e.g., with \roman, widest=viii and widest*=8 are the same).

Since \value does not return a string but a number, widest and the * values cannot be
used with it. However, with widest*, being a number, it is allowed.

3.3 More on horizontal spacing

Since \parindent is not used as such inside lists, but instead is set internally to either
\itemindent or \listparindent, when used as the value of a parameter enumitem returns the
global value, i. e., the value it has outside the outermost list.

The horizontal space in the left margin of the current level is distributed in the following

wayﬁ

labelindent || labelwidth || labelsep — itemintent itemindent

leftmargin

llabelsep*=<length) NEW 3.0 ‘

Remember labelsep spans part of leftmargin and itemindent if the latter is not zero.
This is often somewhat confusing, so a new key is provided—with labelsep* the value is
reckoned from the left margin (it just sets \labelsep and then adds \itemindent to it, but in
addition later changes to itemindent are taken into account):

labelindent || labelwidth || labelsep* itemindent

leftmargin

l labelindent*=(length) [NEw 3.0 ‘

Like labelindent, but it is reckoned from the left margin in the current list and not from
that in the enclosing list/text.

4 Admittedly, these figures are not exactly the clearest possible, and I intend to improve them in a future
release

3.4 Numbering, stopping, and resuming

| start=(integer) |

Sets the number of the first item.

resume
The counter continues from the previous enumerate, instead of being reset to 1.

\begin{enumerate}

\item First item.

\item Second item.
\end{enumerate}

Text.

\begin{enumerate} [resume]
\item Third item
\end{enumerate}

This is done locally. If you want global resuming, see next section on series.

resumex*

Like resume but the options from the previous list are used, too. This option must be
restricted to the optional argument in a environment (this is the only place where it makes
sense). It should be used sparingly—if you are using it often, then very likely you want to
define a new list (see . Further keys are allowed, and in this case the saved options are
overriden by those in the current list (i.e., the position of resume* does not matters). For
example:

\begin{enumerate} [resume*,start=1] % or [start=1,resumex*]

uses the keys in the previuos enumerate, but restarts the counter. If there is a series of a
certain list with resume*, options are taken from the list previous to the first one, except for
start.

3.5 Series
series=(series-name) [NEW 3.0

(series-name) resume*={series-name) resume=(series-name) [NEW 3.0

A new method (3.0) of continuing lists is by means of the key series, so that they behave

like a unit. A list with key series is considered the starting list and its settings are stored

globally, so that they can be used later with resume/resume*. All these keys take a value with

the series name (which must be different from existing keys):
e resume=(series-name) just continue numbering items in the series,
e resumex*=(series) also applies the settings of the starting list,
e (series), i.e., the series name used as a key, is an alternative to resume*={series).
For example:
\begin{enumeratel}[label=\arabic*(a),leftmargin=1cm,series=lafter]
\item A

\item B
\end{enumerate}

You get: 1(a) 2(a). You can continue with:

\begin{enumerate} [label=\arabic*(b) ,resumex=lafter]
% or [label=\arabicx*(b),lafter]

\item A

\item B

\end{enumerate}

You get: 3(b) 4(b). (But you can use start=1, if you like.)

Note you can add further arguments, which are executed after those saved at the starting
list and therefore take precedence over them — in particular, resumex* itself takes precedence
over a start (e.g., start=1) in the the starting list.

Every time a series is started, several commands are defined internally, so to avoid wasting
resources and use the same name for non-overlapping series.

3.6 Penalties

l beginpenalty=(integer) midpenalty=(integer) endpenalty=(integer) ‘

Set the penalty at the beginning of a list, between items and at the end of the list,
respectively. Please, refer to your ATEX or TEX manual about how penalties control page
breaks. Unlike other parameters, when a list starts their values are not reset to the default,
thus they apply to the child lists.

| before=(code) beforex=(code) |

Execute code before the list starts (more precisely, in the second argument of the list
environment used to define them). The unstarred form sets the code to be executed, overriding
any previous value, while the starred one adds the code to the existing one (in the setting
hierarchy, see below, not with relation to the enclosing list/text). It can contain, say, rules and
text, but this has not been extensively tested. All calculations have been finished, and you can
access and manipulate the list parameters. For example, to have both margins (left and right)
set to the widest label:

\setlist{leftmargin=*,before=\setlength{\rightmargin}{\leftmargin}}

| after={code) after*=(code) |

Same, but just before the list ends.

3.7 Description styles

A key available in description.

style=(name)
Sets the description style. (name) can be any of the following;:

e standard: like description in standard classes, although with other classes it could be
somewhat different. The label is boxed. Sets itemindent=!.

e unboxed: much like the standard description, but the label is not boxed to avoid
uneven spacing and unbroken labels if they are long. Sets itemindent=!.

e nextline: if the label does not fit in the margin, the text continues in the next line,
otherwise it is placed in a box of width \leftmargin — \labelsep, i.e., the item body
never sticks into the left margin. Sets labelwidth=!.

e sameline: like nextline but if the label does not fit in the margin the text continues in
the same line. Same as style=unboxed,labelwidth=!.

e multiline: the label is placed in a parbox whose width is leftmargin, with several lines
if necessary. Same as style=standard,align=parleft,labelwidth=!.

Three caveats: (1) mixing boxed and unboxed labels has not a well-defined behaviour, (2)
when nesting list all combinations are allowed but not all make sense, and (3) nesting
nextline lists is not supported (it works, but its behaviour might change in the future,
because the current one is not what one could expect).

3.8 Compact lists

l noitemsep nosep ‘

The key noitemsep kills the space between items and paragraphs (i.e., itemsep=0pt and
parsep=0pt), while nosep kills all vertical Spacing

3.9 “Wide” lists
wide | NEW 3.0

wide=(parindent)

With this convenience key, the leftmargin is null and the label is part of the text—in other
word, the items look like ordinary paragraphsE] Here labelsep sets the separation between the
label and the first word. It is equivalent to

align=left, leftmargin=Opt, labelindent=\parindent,
listparindent=\parindent, labelwidth=Opt, itemindent=!

With wide=(parindent) you may set at once another value instead of \parindent. Of course,
these keys can be overriden after wide, too; for example, remembering that with left-aligned
labels the text is pushed if the they are wider than labelwidth, you can set labelwidth=1.5em
for a minimal width, or instead of itemindent=! you may prefer itemindent=*, which sets the
minimal width to that of widest label. In level 2 you may prefer labelindent=2\parindent,
and so on. You may also want to combine it with noitemsep or nolistsep.

4 Inline lists

NEW 3.0

Inline lists are “horizontal” lists set as ordinary text inside a paragraph. With this package
you can create inline lists, as explained below, with \newlist, which have their own labels and
counters. However, in most cases inline versions of standard lists, with the same labelling
schema, will be enough — the package option inline does that.

inline (package option)
enumerate* itemizex* description* (environments)

With the package option inline, three environments for inline lists are defined:
enumerate*, itemize*, and description*. They emulate the behaviour of paralist and
shortlst in that labels and settings are shared with the displayed (ie, “normal”) lists enumerate,
itemize and description, respectively (however, remember resuming is based on environment
names, not on list types). This applies only to those created with inline — inline lists created
with \newlist as described below are independent and use their own labels and settings. Note
as well inline is not required if you needn’t inline versions of standard lists.

itemjoin=(string) itemjoin*=(string) afterlabel=(string) |

Format is set with keys itemjoin (default is a space), and afterlabel (default is

5The key nolistsep, now deprecated, introduced a thin stretch, which was not the intended behaviour.
6fullwidth is deprecated.

\nobreakspace, ie, 7). An additional key is itemjoin*, which, if set, is used instead of
itemjoin before the last item. So, with

before=\unskip{: }, itemjoin={{; }}, itemjoin*={{, and }}
the following punctuation between items is used:
Blah blah: (a) one; (b) two; (c) three, and (d) four. Blah blah

itemjoin is ignored in vertical mode (i.e., in mode unboxed and just after a quote, a
displayed list and the like).

l mode=unboxed mode=boxed ‘

Ttems are boxed, so floats are lost and nested lists are not allowed (remember many
displayed elements are defined as lists). If using floats or lists inside inline lists is important,
use an alternative “mode”, which you can activate with mode=unboxed (the default is
mode=boxes). With it floats may be used freely, but misplaced \items are not catched and
itemjoin* is ignored (a warning is written to the log about this fact).

5 Global settings

Global changes, to be applied to all of these list, are also possible:

\setlist [enumerate, (levels)]{{format)}
\setlist[itemize, (levels)]1{(format)}
\setlist[description, (levels)]1{{format)}
\setlist [{levels)1{(format)}

Where (level) is the list level (one or more) in 1list, and the corresponding levels in
enumerate and itemizem With no (levels), the format applies to all of them. Here list does
not mean any list but only the three ones handled by this package and those redefined by this
package or defined with \newlist (see below). For example:

\setlist{noitemsep}

\setlist[1]{\labelindent=\parindent} % < Usually a good idea

\setlist[itemize] {leftmargin=*}

\setlist[itemize,1]{label=\triangleleft}

\setlist[enumerate] {labelsep=*, leftmargin=1.5pc}

\setlist[enumerate,1]{label=\arabic*., ref=\arabic*}

\setlist [enumerate, 2] {label=\emph{\alph*}),
ref=\theenumi.\emph{\alph*}}

\setlist [enumerate,3]{label=\roman*), ref=\theenumii.\roman*}

\setlist[description] {font=\sffamily\bfseries}

These setting are read in the following order: list, list at the current level,
enumerate/itemize/description, and enumerate/itemize/description at the current level; if a
key appears several times with different values, the last one, i.e., the most specific one, is
applied. If we are resuming a series or a list with resume*, the saved keys are then applied.
Finally, the optional argument (except resume*), if any, is applied.

ITEX provides a set of macros to change many of these parameters, but setting them with
the package is more consistent and sometimes more flexible at the cost of being more “explicit”
(and verbose).

The list specification can contain variables and counters, provided they are expandable,
and counters are calc-savvy, so that if you load this package you can write things like:

"\setenumerate, \setitemize and \setdescription are deprecated.

\newcount{toplist}

\setcount{toplist}{1}

\newcommand{\mylistname}{enumerate}
\setlist[\mylistname,\value{toplist}+1]{labelsep=\itemindent+2em]

This allows defining lists within loops.
Currently, a way to discriminate the font size is not provided (\normalsize, \small...).

6 enumerate-like labels

| shortlabels (package option) |

With the package option shortlabels you can use an enumerate-like syntax, where A, a, I,
i and 1 stand for \Alph*, \alph*, \Roman*, \roman* and \arabic*. This is intended mainly
as a sort of compatibility mode with the enumerate package, and therefore the following special
rule applies: if the very first option (at any level) is not recognized as a valid key, then it will
be considered a label with the enumerate-like syntax. For example:

\begin{enumerate}[i), labelindent=\parindent]

\end{enumerate}

Although perhaps not so useful, you can omit label= in the itemize environment under similar
conditions, too:

\begin{itemize} [\textbullet]

\end{itemize}

| \SetEnumerateShortLabel{(key)}{(replacement)} |

With this command, you can define new keys (or redefine them), which is particularly
useful for enumerate to be adapted to especific typographical rules or to extend it for non-Latin
scrips. Here (replacement) contains one of the starred versions of counters. For example:

\SetEnumerateShortLabel{i}{\textsc{\roman*}}

redefines i so that items using this key are numbered with small caps roman numerals. The
key has to be a single letter.

7 Cloning the basic lists

\newlist{(name)}X{{type) H {maz-depth)}
\renewlist{(name)H(type)H(max-depth)}

The three lists can be cloned so that you can define “logical” environments behaving like
them. To define a new lists (or redefine a existing one), use \newlist (or \renewlist), where
(type) is enumerate, itemize or description.

If jtype/ is enumerate, a set of counters with names (name)i, (name)ii, (name)iii,
(name)iv, etc. (depending on jmax-depth;) is defined. Don’t use an arbitrarily large number
for jmax-depth;, to avoid creating too many counters. Then you can use those counters in
labels; e. g., if you have defined a list named steps, you can define a label with:

label=\arabic{stepsii}.\arabic{stepsi}

\setlist [(names), (levels)]{({keys/values)}
\setlist*[(names), (levels)]1{{keys/values)}

After creating a list, you can (in fact you must, at least the label) set the new list with
\setlist:

10

\newlist{ingredients}{itemize}{1}
\setlist[ingredients]{label=\textbullet}
\newlist{steps}{enumerate}{2}
\setlist[steps,1,2]{label=(\arabic*)}

Names in the optional argument of \setlist say which lists applies the settings to, and
numbers say the level (it is calc-savvy). Several lists and/or several levels can be given, and all
combinations are set; e.g.:

\setlist[enumerate,itemize,2,3]{...}

sets enumerate/2, enumerate/3, itemize/2 and itemize/3. No number (or 0) means “all levels”
and no name means “all lists”; no optional argument means “all lists at all levels”.

The three inline lists have types enumerate*, itemize*, and description*, which are
available always, even without the package option inline (which just defines three
environments with these names).

The starred form \setlist* adds the settings to previous ones.

l \setlistdepth{(integer) [NEw 3.0 ‘

By default, *TEX has a limit of 5 nesting levels, but when cloning list this value may be
too short, and therefore you may want to set a new value. In levels below the 5th (or the
deepest defined by a class), the settings of the last are used (i.e., \@listvi).

8 More about counters

8.1 New counter representation

l \AddEnumerateCounter{(LaTeX command)}{{internal command)}{(widest label)}

“Registers” a counter representation so that enumitem recognizes it. Intended mainly for
non Latin scripts, but also useful in Latin scripts. For example:

\makeatletter

\def\ctext#1{\expandafter\@ctext\csname c@#1\endcsname}
\def\@ctext#1{\ifcase#1\or First\or Second\or Third\or
Fourth\or Fifth\or Sixth\fi}

\makeatother
\AddEnumerateCounter{\ctext}{\@ctext}{Second}

A starred variant allows to give a number instead of a string as the widest label; for example, if
the widest label is that corresponding to the value 2:

\AddEnumerateCounter*{\ctext}{\@ctmoreext}{2}
This variant is to be preferred if the representation is not a plain string but it is styled, e.g.,

with small caps. (The counter names can contain @ even if not a letter.)

8.2 Restarting enumerates
[\restartlist{(list-name)} [xew a0] |

Currently, with
\setlist [enumerate] {resume}

you can get a continuous numbering through a document. A new command has been added for
restarting the counter in the middle of the document:

\restartlist{(list-name)}

It is based solely in the list name, not the list type, which means enumerate* as defined
with the package option inline is not the same as enumerate, because its name is different.

11

9 Generic keys and values

| \SetEnumi temKey{(key)H (replacement)} [xew s0] |

With this command you can create your own (valueless) keys. For example:
\SetEnunitemKey{midsep}{topsep=3pt,partopsep=0pt}

Keys so defined can then be used like the others. Another example is multicolumn lists,
with multicol:

\SetEnumitemKey{twocol}{
itemsep=1\itemsep,
parsep=1\parsep,
before=\raggedcolumns\begin{multicols}{2},
after=\end{multicols}}

(The settings for itemsep and parsep kill the stretch and shrink parts. Of course, you
may want to define a new list.)

Note the package may introduce new keys in the future, so \SetEnumitemKey is a potential
source of forward incompatibilities. However, it’s safe using a non-letter character other than
hyphen or star in the key name (e.g., :name or 2_col).

| \SetEnumi temValue{(key)}{(string-value) H (replacement)} [~xew s0] |

This commands provides a further abstraction layer for the (key)=(value) pairs. With it
you can define logical names which are translated to the actual value. For example, with:

\SetEnumitemValue{label}{numeric}{\arabic*.}
\SetEnumitemValue{leftmargin}{standard}{\parindent}

you might say:
\begin{enumerate} [label=numeric,leftmargin=standard]

So, you can left to the final design what label=numeric means.

10 Package options

Besides inline, ignoredisplayed, and shortlabels, the following option is available.

loadonly

With this package option the package is loaded but the three lists are not redefined. You
can create your own lists, yet, or even redefine the existing ones.

11 Three patterns

Three list layouts could be considered very frequent. Let us apply the parameters above to
define them. (Below are samples.)

The first pattern aligns the label with the surrounding \parindent while the item body is
indented depending on the label and a fixed labelsep:

labelindent=\parindent,
leftmargin=x*

A fairly frequent variant is aligning the label with the surrounding text (rememeber
labelindent is Opt by default):

leftmargin=x

12

The former looks better in the first level while the latter seems preferable in subsequent ones.
That can be easily set with

\setlist{leftmargin=+}
\setlist[1]{labelindent=\parindent} % Only the level 1

The second pattern aligns the item body with the surrounding \parindent. In this case:
leftmargin=\parindent

A third pattern would be to align the label with \parindent and the item body with
2\parindent:

labelindent=\parindent,
leftmargin=2\parindent,
itemsep=%*

Again, a variant would be to align the label with the surrounding text and the itembody with
\parindent:

leftmargin=\parindent,
itemsep=%*

Note here \parindent means the global value applied to normal paragraphs.

12 The trivlist issue

ETEX uses a simplified version of 1ist named trivlist to set displayed material, like center,
verbatim, tabbing, theorem, etc., even if conceptually they are not lists. Unfortunately,
trivlist uses the current list settings, which has the odd side effect that changing the vertical
spacing of lists also changes sometimes the spacing in these environments.

This package modifies trivlist so that the default settings for the current level (ie, those
set by the corresponding clo files) are set again. In standard IATEX that is usually redundand,
but if we want to fine tune lists, not resetting the default values could be a real issue
(particularly if you use the nolistsep option).

A minimal control of vertical spacing has been made possible Wit}ﬁ

e \setlist[trivlist, (level)]l{(keys/values)}

but trivlist itself, which is not used directly very often, does not accept an optional
argument. This feature is not intended as a full-fledge trivlist formatter.

If for some reason you do not want to change trivlist and preserve the original
definition, you can use the package option ignoredisplayed.

13 Samples

In these samples we set \setlist{noitemsep}

En un lugar de la Mancha, de cuyo nombre no quiero acordarme,
no ha mucho tiempo que viv\’{\i}a un hidalgo de los de
\begin{enumeratel} [labelindent=\parindent,leftmargin=x]

\item lanza en astillero,

\item adarna antigua,

\item roc\’{\i}n flaco, y

\item galgo corredor.
\end{enumerate}
Una olla de algo m\’{al}s vaca que carnero, salpic\’{o}n las m\’{al}s
noches, duelos y quebrantos los s\’{a}bados...

The rule shows labelindent.

8\setdisplayed is deprecated.

13

n un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivia

un Hidalgo de los de

. lanza en astillero,
. adarna antigua,

. rocin flaco, y

. galgo corredor.

Una olla de algo més vaca que carnero, salpicén las méas noches, duelos y quebrantos los sdbados...

With \begin{enumerate}[leftmargin=*] % labelindent=Opt by default.
The rule shows labelindent.

En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivia
un hidalgo de los de

1. lanza en astillero,
2. adarna antigua,
3. rocin flaco, y

4. galgo corredor.

Una olla de algo més vaca que carnero, salpicén las méas noches, duelos y quebrantos los sdbados...

With \begin{enumerate} [leftmargin=\parindent].
The rule shows leftmargin.

En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivia
un Hidalgo de los de

1. [lanza en astillero,
2. ladarna antigua,
3. Jrocin flaco, y

4. lgalgo corredor.

Una olla de algo més vaca que carnero, salpicén las méas noches, duelos y quebrantos los sabados...

With \begin{enumerate}[labelindent=\parindent, leftmargin=+, label=\Romanx.,
widest=IV, align=left].
The rule shows labelindent.

n un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivia
un Hidalgo de los de

lanza en astillero,
I. adarna antigua,
II. rocin flaco, y
V. galgo corredor.

Una olla de algo més vaca que carnero, salpicén las méas noches, duelos y quebrantos los sdbados...

With \begin{enumerate} [label=\fbox{\arabic*}]. A reference to the first item is

En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivia
un hidalgo de los de

lanza en astillero,
adarna antigua,
rocin flaco, y
galgo corredor.

Una olla de algo més vaca que carnero, salpicén las méas noches, duelos y quebrantos los sabados...

With nested lists.

En un lugar de la Mancha, de cuyo nombre no quiero acordarme,
no ha mucho tiempo que viv\’{\i}a un hidalgo de los de
\begin{enumerate}[label=(\alph#*), labelindent=\parindent,

14

leftmargin=*, start=12]
\item lanza en astillero,
\begin{enumerate} [label=(\alph{enumi}.\roman*), leftmargin=*, start=7]
\item adarna antigua,
\end{enumerate}
\item roc\’{\i}n flaco, y
\begin{enumerate}[label=(\alph{enumi}.\roman*), leftmargin=*, resume]
\item galgo corredor.
\end{enumerate}
\end{enumerate}
Una olla de algo m\’{a}s vaca que carnero, salpic\’{o}n las m\’{a}s
noches, duelos y quebrantos los s\’{a}bados...

En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivia
un hidalgo de los de

(1) lanza en astillero,
(1.vii) adarna antigua,
(m) rocin flaco, y
(m.viii) galgo corredor.

Una olla de algo més vaca que carnero, salpicén las méas noches, duelos y quebrantos los sdbados...

En un lugar de la Mancha, de cuyo nombre no quiero acordarme,
no ha mucho tiempo que viv\’{\i}a un hidalgo de los de
\begin{description}[font=\sffamily\bfseries, leftmargin=3cm,
style=nextline]
\item[Lo primero que ten\’{\i}a el Quijote] lanza en astillero,
\item[Lo segundo] adarna antigua,
\item[Lo tercero] roc\’{\i}n flaco, y
\item[Y por \’{u}ltimo, lo cuarto] galgo corredor.
\end{description}
Una olla de algo m\’{a}s vaca que carnero, salpic\’{o}n las m\’{al}s
noches, duelos y quebrantos los s\’{a}bados...

En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivia
un hidalgo de los de

Lo primero que tenia el Quijote

lanza en astillero,
Lo segundo adarna antigua,
Lo tercero rocin flaco, y
Y por ultimo, lo cuarto

galgo corredor.

Una olla de algo més vaca que carnero, salpicén las méas noches, duelos y quebrantos los sdbados...

Same, but with sameline.

En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivia
un hidalgo de los de

Lo primero que tenia el Quijote lanza en astillero,
Lo segundo adarna antigua,

Lo tercero rocin flaco, y

Y por ultimo, lo cuarto galgo corredor.

Una olla de algo més vaca que carnero, salpicén las mas noches, duelos y quebrantos los sdbados...

Same, but with multiline. Note the text overlaps if the item body is too short.

15

En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivia
un hidalgo de los de

Lo primero que lanza en astillero,
tenéeghi@oijote adarna antigua,
Lo tercero rocin flaco, y

Y por ultimo, lo galgo corredor.

EHA olla de algo més vaca que carnero, salpicén las mds noches, duelos y quebrantos los sébados...

14 Afterword
14.1 BETEX lists

As it is well known, BTEX predefines three lists: enumerate, itemize and description. This
is a very frequent classification which can also be found in, say, HTML. However, there is a
more general model based in three fields—namely, label, title, and body—, so that enumerate
and itemize has label (numbered and unnumbered) but no title, while description has title but
no label. In this model, one can have a description with entries marked with labels, as for
example (of course, this simple solution is far from satistactory):

\newcommand\litem[1]{\item{\bfseries #1,\enspace}}

\begin{itemizel} [label=\textbullet]

\litem{Lo primero que ten\’{\i}a el Quijote} lanza en astillero,
. etc.

En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que
vivia un hidalgo de los de

Lo primero que tenia el Quijote, lanza en astillero,
Lo segundo, adarna antigua,

Lo tercero, rocin flaco, y

Y por idltimo, lo cuarto, galgo corredor.

This format in not infrequent at all and a tool for defining them is on the way and at a
very advanced stage. It has not been include in version 3.0 because I'm not sure if the proper
place is this package or titlesec and it is not stable enough yet.

14.2 Known issues

e List resuming is based on environment names, and when a \newenvironment contains a
list you may want to use \begin and \end. Using the corresponding commands, however,
is not an error, but it is your responsability to make sure the result is correct.

e It seems there is no way to catch a misspelled name in \setlist and a meaningless error
“Missing number, treated as zero” is raised.

e The behaviour of mixed boxed labels (including enumerate and itemize) and unboxed
labels is not well-defined. The same applies to boxed and unboxed inline lists (which
could even raise an error). Similarly, resuming a series and a list at the same time is
allowed, too, but again its behaviour is not well-defined.

e (3.5.2) An incompatibility with 2.x has popped up — if you were using the optional
argument to pass a value to a \ref or other macro requiring expandable macros, an error
is raised. A quick fix is letting \makelabel to \descriptionlabel in before.

14.3 What’s new in 3.0

e Inline lists, with keys to set how items are joined (ie, the punctuation between items).
Two modes are provided: boxed and unboxed.

16

e \setlist is calc-savvy (eg, for use in loops), and you can set diferent lists and levels at
once.

e All lengths related to labels can take the value * (and not only labelsep and
leftmargin). Its behaviour has been made consistent and there is new value ! which
does not compute the widest label.

e With \restartlist{(list-name)}, list counters can be restarted (in case you are using
resume).

e resume* can be combined with other keys.

e Lists can be gathered globally using series, so that they are considered a single list. To
start a series just use series=(series-name) and then resume it with
resume=(series-name) or resume*={series-name).

e The “experimental” fullwidth has been replaced by a new key wide.

e \SetLabelAlign defines new align values.

e You can define “abstract” values (eg, label=numeric) and new keys.

(3.2) start and widest* are calc-savvy.

e (3.2) \value can be used with widestx.
(3.2) Some internal restrictions in \arabic and the like has been removed. It is more
flexible at the cost of having a more “relaxed” error checking.

14.4 Bug fixes

e Star values (eg, leftmargin=*) could not be overriden and new values were ignored.

nolistsep as the first of several keys was not always recognized and therefore treated

like a short label (i.e., nol\roman*stsep).

labelwidth did not always work (when there was a prior widest and *)

With align=right the label and the following text could overlap.

description did not get the correct list level.

At some point (2.x7) \value* stopped working.

(3.1) Unfortunately, xkeyval “kills” keyval, so the lattest has been replicated in enumitem.

(3.3) Fixes a serious bug — with * neither itemize nor description worked.

(3.4) Fixes bad spacing in mode boxed (misplaced \unskip before the first item and

wrong spacefactor between items).

e (3.4) nolistsep did not work as intended, but since the error has been there for several
years, a new key nosep is provided.

e (3.4) The issue with nolistsep with shortlabels (see above) was not fixed in all cases.

Hopefully now it is.

(3.5.0) Fixed the fix related to the spacefactor between items.

(3.5.0) Fixed a problem with nested boxed inline lists.

(3.5.1) resume* only worked once, and subsequent ones bahaved like resume.

(3.5.2) Fixed \setlist*, which didn’t work.

14.5 Acknowledgements

I wish to thank particularly the comments and suggestions from Lars Madsen, who has found
some bugs, too.

17

	Introduction
	The package
	Keys
	Label and cross references format
	Horizontal spacing of labels
	More on horizontal spacing
	Numbering, stopping, and resuming
	Series
	Penalties
	Description styles
	Compact lists
	``Wide'' lists

	Inline lists
	Global settings
	enumerate-like labels
	Cloning the basic lists
	More about counters
	New counter representation
	Restarting enumerates

	Generic keys and values
	Package options
	Three patterns
	The trivlist issue
	Samples
	Afterword
	LaTeX lists
	Known issues
	What's new in 3.0
	Bug fixes
	Acknowledgements

