// // Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // list -- lets a user-defined stuct form intrusive linked lists // // Author : Michael Brooks // Created On : Wed Apr 22 18:00:00 2020 // Last Modified By : Peter A. Buhr // Last Modified On : Sat Apr 19 16:24:09 2025 // Update Count : 27 // #pragma once #include forall( Decorator &, T & ) struct tytagref { inline T &; }; forall( tOuter &, tMid &, tInner & ) trait embedded { tytagref( tMid, tInner ) ?`inner( tOuter & ); }; // embedded is reflexive, with no info (void) as the type tag forall( T & ) static inline tytagref(void, T) ?`inner ( T & this ) { tytagref( void, T ) ret = {this}; return ret; } // // P9_EMBEDDED: Use on every case of plan-9 inheritance, to make "implements embedded" be a closure of plan-9 inheritance. // // struct foo { // int a, b, c; // inline (bar); // }; // P9_EMBEDDED( foo, bar ) // // usual version, for structs that are top-level declarations #define P9_EMBEDDED( derived, immedBase ) P9_EMBEDDED_DECL_( derived, immedBase, static ) P9_EMBEDDED_BDY_( immedBase ) // special version, for structs that are declared in functions #define P9_EMBEDDED_INFUNC( derived, immedBase ) P9_EMBEDDED_DECL_( derived, immedBase, ) P9_EMBEDDED_BDY_( immedBase ) // forward declarations of both the above; generally not needed // may help you control where the P9_EMBEEDED cruft goes, in case "right after the stuct" isn't where you want it #define P9_EMBEDDED_FWD( derived, immedBase ) P9_EMBEDDED_DECL_( derived, immedBase, static ) ; #define P9_EMBEDDED_FWD_INFUNC( derived, immedBase ) auto P9_EMBEDDED_DECL_( derived, immedBase, ) ; // private helpers #define P9_EMBEDDED_DECL_( derived, immedBase, STORAGE ) \ forall( Tbase &, TdiscardPath & | { tytagref( TdiscardPath, Tbase ) ?`inner( immedBase & ); } ) \ STORAGE inline tytagref(immedBase, Tbase) ?`inner( derived & this ) #define P9_EMBEDDED_BDY_( immedBase ) { \ immedBase & ib = this; \ Tbase & b = ib`inner; \ tytagref(immedBase, Tbase) result = { b }; \ return result; \ } #define EMBEDDED_VIA( OUTER, MID, INNER ) (struct { tytagref(MID, INNER) ( * ?`inner ) ( OUTER & ); }){ ?`inner } #define DLINK_VIA( TE, TLINK ) EMBEDDED_VIA( TE, TLINK, dlink(TE) ) // The origin is the position encountered at the start of iteration, signifying, "need to advance to the first element," // and at the end of iteration, signifying, "no more elements." Normal comsumption of an iterator runs ?`moveNext as // the first step, and uses the return of ?`moveNext as a guard, before dereferencing the iterator. So normal // consumption of an iterator does not dereference an iterator in origin position. The value of a pointer (underlying a // refence) that is exposed publicly as an iteraor, and also a pointer stored internally in a link field, is tagged, to // indicate "is the origin" (internally, is the list-head sentinel node), or untagged, to indicate "is a regular node." // Intent is to help a user who dereferences an iterator in origin position (which would be an API-use error on their // part), by failing fast. #if defined( __x86_64 ) // Preferred case: tag in the most-significant bit. Dereference has been shown to segfault consistently. // Maintenance should list more architectures as "ok" here, to let them use the preferred case, when valid. #define ORIGIN_TAG_BITNO ( 8 * sizeof( size_t ) - 1 ) #else // Fallback case: tag in the least-significant bit. Dereference will often give an alignment error, but may not, // e.g. if accessing a char-typed member. 32-bit x86 uses the most- significant bit for real room on the heap. #define ORIGIN_TAG_BITNO 0 #endif #define ORIGIN_TAG_MASK (((size_t)1) << ORIGIN_TAG_BITNO) #define ORIGIN_TAG_SET(p) ((p) | ORIGIN_TAG_MASK) #define ORIGIN_TAG_CLEAR(p) ((p) & ~ORIGIN_TAG_MASK) #define ORIGIN_TAG_QUERY(p) ((p) & ORIGIN_TAG_MASK) forall( tE & ) { struct dlink{ tE * next; tE * prev; }; static inline void ?{}( dlink(tE) & this ) { this.next = this.prev = 0p; } forall( tLinks & = dlink(tE) ) struct dlist { inline dlink(tE); }; forall( tLinks & | embedded( tE, tLinks, dlink(tE) ) ) { static inline tE * $get_list_origin_addr( dlist(tE, tLinks) & lst ) { dlink(tE) & link_from_null = ( * (tE *) 0p )`inner; ptrdiff_t link_offset = (ptrdiff_t) & link_from_null; size_t origin_addr = ((size_t) & lst) - link_offset; size_t preResult = ORIGIN_TAG_SET( origin_addr ); return (tE *)preResult; } static inline void ?{}( dlist(tE, tLinks) & this ) { tE * listOrigin = $get_list_origin_addr( this ); ((dlink(tE) &)this){ listOrigin, listOrigin }; } } } static inline forall( tE &, tLinks & | embedded( tE, tLinks, dlink(tE) ) ) { void insert_after( tE & list_pos, tE & to_insert ) { verify( &list_pos != 0p ); verify( &to_insert != 0p ); dlink(tE) & linkToInsert = to_insert`inner; verify( linkToInsert.prev == 0p ); verify( linkToInsert.next == 0p ); tE & list_pos_elem = *(tE *)ORIGIN_TAG_CLEAR( (size_t)&list_pos ); dlink(tE) & list_pos_links = list_pos_elem`inner; asm( "" : : : "memory" ); tE & after_raw = *list_pos_links.next; tE & after_elem = *(tE *)ORIGIN_TAG_CLEAR( (size_t)&after_raw ); linkToInsert.prev = &list_pos; linkToInsert.next = &after_raw; dlink(tE) & afterLinks = after_elem`inner; afterLinks.prev = &to_insert; list_pos_links.next = &to_insert; asm( "" : : : "memory" ); } void insert( tE & list_pos, tE & to_insert ) { // alternate name insert_after( list_pos, to_insert ); } void insert_before( tE & list_pos, tE &to_insert ) { verify( &list_pos != 0p ); verify( &to_insert != 0p ); dlink(tE) & linkToInsert = to_insert`inner; verify( linkToInsert.next == 0p ); verify( linkToInsert.prev == 0p ); tE & list_pos_elem = *(tE *)ORIGIN_TAG_CLEAR( (size_t)&list_pos ); dlink(tE) & list_pos_links = list_pos_elem`inner; asm( "" : : : "memory" ); tE & before_raw = *(list_pos_links).prev; tE & before_elem = *(tE *) ORIGIN_TAG_CLEAR( (size_t)&before_raw ); linkToInsert.next = & list_pos; linkToInsert.prev = & before_raw; dlink(tE) & beforeLinks = before_elem`inner; beforeLinks.next = &to_insert; list_pos_links.prev = &to_insert; asm( "" : : : "memory" ); } tE & remove( tE & list_pos ) { verify( &list_pos != 0p ); verify( ! ORIGIN_TAG_QUERY( (size_t)&list_pos) ); dlink(tE) & list_pos_links = list_pos`inner; tE & before_raw = * list_pos_links.prev; tE & before_elem = * (tE *) ORIGIN_TAG_CLEAR( (size_t)&before_raw ); dlink(tE) & before_links = before_elem`inner; tE & after_raw = * list_pos_links.next; tE & after_elem = * (tE *) ORIGIN_TAG_CLEAR( (size_t)&after_raw ); dlink(tE) & after_links = after_elem`inner; before_links.next = &after_raw; after_links.prev = &before_raw; asm( "" : : : "memory" ); list_pos_links.prev = 0p; list_pos_links.next = 0p; asm( "" : : : "memory" ); return list_pos; } // forall( T &, List ... | { tE & remove( tE & ); } ) // void remove( tE & list_pos, List rest ) { // remove( list_pos ); // remove( rest ); // } tE & ?`first( dlist(tE, tLinks) &lst ) { tE * firstPtr = lst.next; if (ORIGIN_TAG_QUERY((size_t)firstPtr)) firstPtr = 0p; return *firstPtr; } tE & ?`last( dlist(tE, tLinks) &lst ) { tE * lastPtr = lst.prev; if (ORIGIN_TAG_QUERY((size_t)lastPtr)) lastPtr = 0p; return *lastPtr; } bool ?`isEmpty( dlist(tE, tLinks) & lst ) { tE * firstPtr = lst.next; if (ORIGIN_TAG_QUERY((size_t)firstPtr)) firstPtr = 0p; return firstPtr == 0p; } bool ?`isListed( tE & e ) { verify( &e != 0p); dlink(tE) & e_links = e`inner; return (e_links.prev != 0p) || (e_links.next != 0p); } tE & ?`elems( dlist(tE, tLinks) & lst ) { tE * origin = $get_list_origin_addr( lst ); return *origin; } tE & ?`head( dlist(tE, tLinks) & lst ) { return lst`elems; } bool ?`moveNext( tE && refx ) { tE && ref_inner = refx; tE & oldReferent = * (tE*) ORIGIN_TAG_CLEAR( (size_t) & ref_inner ); &ref_inner = oldReferent`inner.next; return &ref_inner != 0p && ! ORIGIN_TAG_QUERY( (size_t) & ref_inner ); } bool ?`next( tE && refx ) { // alternate name return refx`moveNext; } bool ?`movePrev( tE && refx ) { tE && ref_inner = refx; tE & oldReferent = * (tE*) ORIGIN_TAG_CLEAR( (size_t) & ref_inner ); &ref_inner = oldReferent`inner.prev; return &ref_inner != 0p && ! ORIGIN_TAG_QUERY( (size_t) & ref_inner ); } bool ?`prev( tE && refx ) { // alternate name return refx`movePrev; } bool ?`hasNext( tE & e ) { return e`moveNext; } bool ?`hasPrev( tE & e ) { return e`movePrev; } tE & ?`next( tE & e ) { if ( e`moveNext ) return e; return *0p; } tE & ?`prev( tE & e ) { if ( e`movePrev ) return e; return *0p; } void insert_first( dlist(tE, tLinks) &lst, tE & e ) { insert_after( lst`elems, e ); } void insert_last( dlist(tE, tLinks) &lst, tE & e ) { insert_before( lst`elems, e ); } void insert( dlist(tE, tLinks) &lst, tE & e ) { // alternate name insert_last( lst, e ); } tE & try_pop_front( dlist(tE, tLinks) &lst ) { tE & first_inlist = lst`first; tE & first_item = first_inlist; if ( &first_item) remove( first_inlist ); return first_item; } tE & try_pop_back( dlist(tE, tLinks) &lst ) { tE & last_inlist = lst`last; tE & last_item = last_inlist; if ( &last_item) remove( last_inlist ); return last_item; } #if ! defined(NDEBUG) && (defined(__CFA_DEBUG__) || defined(__CFA_VERIFY__)) bool $validate_fwd( dlist(tE, tLinks) & this ) { if ( ! & this`first ) return ( (&this`last) == 0p); tE & lagElem = *0p; while ( tE & it = this`elems; it`moveNext ) { if ( & lagElem == 0p && &it != & this`first ) return false; &lagElem = ⁢ } if ( &lagElem != &this`last ) return false; // TODO: verify that it is back at this`elems; return true; } bool $validate_rev( dlist(tE, tLinks) & this ) { if ( ! & this`last ) return ( (&this`first) == 0p); tE & lagElem = *0p; while ( tE & it = this`elems; it`movePrev ) { if ( &lagElem == 0p && &it != & this`last ) return false; &lagElem = ⁢ } if ( &lagElem != &this`first) return false; // TODO: verify that it is back at this`elems; return true; } bool validate( dlist(tE, tLinks) & this ) { return $validate_fwd(this) && $validate_rev(this); } #endif } // TEMPORARY, until foreach statement created. #define FOREACH( list, index ) for ( typeof((list)`head) & (index) = (list)`head; (index)`next; ) #define FOREACH_COND( list, index, expr ) for ( typeof((list)`head) & (index) = (list)`head; (index)`next && (expr); ) #define FOREACH_REV( list, index ) for ( typeof((list)`head) & (index) = (list)`head; (index)`prev; ) #define FOREACH_REV_COND( list, index, expr ) for ( typeof((list)`head) & (index) = (list)`head; (index)`prev && (expr); )