// // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // limits.c -- // // Author : Peter A. Buhr // Created On : Wed Apr 6 18:06:52 2016 // Last Modified By : Peter A. Buhr // Last Modified On : Wed Sep 30 22:56:32 2020 // Update Count : 76 // #include #include #define __USE_GNU // get M_* constants #include #include #include "limits.hfa" // Integral Constants signed char MIN = SCHAR_MIN; unsigned char MIN = 0; short int MIN = SHRT_MIN; unsigned short int MIN = 0; int MIN = INT_MIN; unsigned int MIN = 0; long int MIN = LONG_MIN; unsigned long int MIN = 0; long long int MIN = LLONG_MIN; unsigned long long int MIN = 0; signed char MAX = SCHAR_MAX; unsigned char MAX = UCHAR_MAX; short int MAX = SHRT_MAX; unsigned short int MAX = USHRT_MAX; int MAX = INT_MAX; unsigned int MAX = UINT_MAX; long int MAX = LONG_MAX; unsigned long int MAX = ULONG_MAX; long long int MAX = LLONG_MAX; unsigned long long int MAX = ULLONG_MAX; // Floating-Point Constants float MIN = FLT_MIN; double MIN = DBL_MIN; long double MIN = LDBL_MIN; float _Complex MIN = __FLT_MIN__ + __FLT_MIN__ * I; double _Complex MIN = DBL_MIN + DBL_MIN * I; long double _Complex MIN = LDBL_MIN + LDBL_MIN * I; float MAX = FLT_MAX; double MAX = DBL_MAX; long double MAX = LDBL_MAX; float _Complex MAX = FLT_MAX + FLT_MAX * I; double _Complex MAX = DBL_MAX + DBL_MAX * I; long double _Complex MAX = LDBL_MAX + LDBL_MAX * I; float PI = (float)M_PI; // pi float PI_2 = (float)M_PI_2; // pi / 2 float PI_4 = (float)M_PI_4; // pi / 4 float _1_PI = (float)M_1_PI; // 1 / pi float _2_PI = (float)M_2_PI; // 2 / pi float _2_SQRT_PI = (float)M_2_SQRTPI; // 2 / sqrt(pi) double PI = M_PI; // pi double PI_2 = M_PI_2; // pi / 2 double PI_4 = M_PI_4; // pi / 4 double _1_PI = M_1_PI; // 1 / pi double _2_PI = M_2_PI; // 2 / pi double _2_SQRT_PI = M_2_SQRTPI; // 2 / sqrt(pi) long double PI = M_PIl; // pi long double PI_2 = M_PI_2l; // pi / 2 long double PI_4 = M_PI_4l; // pi / 4 long double _1_PI = M_1_PIl; // 1 / pi long double _2_PI = M_2_PIl; // 2 / pi long double _2_SQRT_PI = M_2_SQRTPIl; // 2 / sqrt(pi) float _Complex PI = (float)M_PI + 0.0_iF; // pi float _Complex PI_2 = (float)M_PI_2 + 0.0_iF; // pi / 2 float _Complex PI_4 = (float)M_PI_4 + 0.0_iF; // pi / 4 float _Complex _1_PI = (float)M_1_PI + 0.0_iF; // 1 / pi float _Complex _2_PI = (float)M_2_PI + 0.0_iF; // 2 / pi float _Complex _2_SQRT_PI = (float)M_2_SQRTPI + 0.0_iF; // 2 / sqrt(pi) double _Complex PI = M_PI + 0.0_iD; // pi double _Complex PI_2 = M_PI_2 + 0.0_iD; // pi / 2 double _Complex PI_4 = M_PI_4 + 0.0_iD; // pi / 4 double _Complex _1_PI = M_1_PI + 0.0_iD; // 1 / pi double _Complex _2_PI = M_2_PI + 0.0_iD; // 2 / pi double _Complex _2_SQRT_PI = M_2_SQRTPI + 0.0_iD; // 2 / sqrt(pi) long double _Complex PI = M_PIl + 0.0_iL; // pi long double _Complex PI_2 = M_PI_2l + 0.0_iL; // pi / 2 long double _Complex PI_4 = M_PI_4l + 0.0_iL; // pi / 4 long double _Complex _1_PI = M_1_PIl + 0.0_iL; // 1 / pi long double _Complex _2_PI = M_2_PIl + 0.0_iL; // 2 / pi long double _Complex _2_SQRT_PI = M_2_SQRTPIl + 0.0_iL; // 2 / sqrt(pi) float E = (float)M_E; // e float LOG2_E = (float)M_LOG2E; // log_2(e) float LOG10_E = (float)M_LOG10E; // log_10(e) float LN_2 = (float)M_LN2; // log_e(2) float LN_10 = (float)M_LN10; // log_e(10) float SQRT_2 = (float)M_SQRT2; // sqrt(2) float _1_SQRT_2 = (float)M_SQRT1_2; // 1 / sqrt(2) double E = M_E; // e double LOG2_E = M_LOG2E; // log_2(e) double LOG10_E = M_LOG10E; // log_10(e) double LN_2 = M_LN2; // log_e(2) double LN_10 = M_LN10; // log_e(10) double SQRT_2 = M_SQRT2; // sqrt(2) double _1_SQRT_2 = M_SQRT1_2; // 1 / sqrt(2) long double E = M_El; // e long double LOG2_E = M_LOG2El; // log_2(e) long double LOG10_E = M_LOG10El; // log_10(e) long double LN_2 = M_LN2l; // log_e(2) long double LN_10 = M_LN10l; // log_e(10) long double SQRT_2 = M_SQRT2l; // sqrt(2) long double _1_SQRT_2 = M_SQRT1_2l; // 1 / sqrt(2) float _Complex E = M_E + 0.0_iF; // e float _Complex LOG2_E = M_LOG2E + 0.0_iF; // log_2(e) float _Complex LOG10_E = M_LOG10E + 0.0_iF; // log_10(e) float _Complex LN_2 = M_LN2 + 0.0_iF; // log_e(2) float _Complex LN_10 = M_LN10 + 0.0_iF; // log_e(10) float _Complex SQRT_2 = M_SQRT2 + 0.0_iF; // sqrt(2) float _Complex _1_SQRT_2 = M_SQRT1_2 + 0.0_iF; // 1 / sqrt(2) double _Complex E = M_E + 0.0_iD; // e double _Complex LOG2_E = M_LOG2E + 0.0_iD; // log_2(e) double _Complex LOG10_E = M_LOG10E + 0.0_iD; // log_10(e) double _Complex LN_2 = M_LN2 + 0.0_iD; // log_e(2) double _Complex LN_10 = M_LN10 + 0.0_iD; // log_e(10) double _Complex SQRT_2 = M_SQRT2 + 0.0_iD; // sqrt(2) double _Complex _1_SQRT_2 = M_SQRT1_2 + 0.0_iD; // 1 / sqrt(2) long double _Complex E = M_El + 0.0_iL; // e long double _Complex LOG2_E = M_LOG2El + 0.0_iL; // log_2(e) long double _Complex LOG10_E = M_LOG10El + 0.0_iL; // log_10(e) long double _Complex LN_2 = M_LN2l + 0.0_iL; // log_e(2) long double _Complex LN_10 = M_LN10l + 0.0_iL; // log_e(10) long double _Complex SQRT_2 = M_SQRT2l + 0.0_iL; // sqrt(2) long double _Complex _1_SQRT_2 = M_SQRT1_2l + 0.0_iL; // 1 / sqrt(2) // Local Variables: // // mode: c // // tab-width: 4 // // End: //