// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // math.cpp -- // // Author : Andrew Beach // Created On : Mon Nov 25 16:20:00 2024 // Last Modified By : Andrew Beach // Created On : Mon Nov 27 15:11:00 2024 // Update Count : 0 // #include "math.hfa" #include #pragma GCC visibility push(default) unsigned long long log2_u32_32( unsigned long long val ) { enum { TABLE_BITS = 6, TABLE_SIZE = (1 << TABLE_BITS) + 2, }; // for(i; TABLE_SIZE) { // table[i] = (unsigned long long)(log2(1.0 + i / pow(2, TABLE_BITS)) * pow(2, 32))); // } static const unsigned long long table[] = { 0x0000000000, 0x0005b9e5a1, 0x000b5d69ba, 0x0010eb389f, 0x001663f6fa, 0x001bc84240, 0x002118b119, 0x002655d3c4, 0x002b803473, 0x00309857a0, 0x00359ebc5b, 0x003a93dc98, 0x003f782d72, 0x00444c1f6b, 0x0049101eac, 0x004dc4933a, 0x005269e12f, 0x00570068e7, 0x005b888736, 0x006002958c, 0x00646eea24, 0x0068cdd829, 0x006d1fafdc, 0x007164beb4, 0x00759d4f80, 0x0079c9aa87, 0x007dea15a3, 0x0081fed45c, 0x0086082806, 0x008a064fd5, 0x008df988f4, 0x0091e20ea1, 0x0095c01a39, 0x009993e355, 0x009d5d9fd5, 0x00a11d83f4, 0x00a4d3c25e, 0x00a8808c38, 0x00ac241134, 0x00afbe7fa0, 0x00b3500472, 0x00b6d8cb53, 0x00ba58feb2, 0x00bdd0c7c9, 0x00c1404ead, 0x00c4a7ba58, 0x00c80730b0, 0x00cb5ed695, 0x00ceaecfea, 0x00d1f73f9c, 0x00d53847ac, 0x00d8720935, 0x00dba4a47a, 0x00ded038e6, 0x00e1f4e517, 0x00e512c6e5, 0x00e829fb69, 0x00eb3a9f01, 0x00ee44cd59, 0x00f148a170, 0x00f446359b, 0x00f73da38d, 0x00fa2f045e, 0x00fd1a708b, 0x0100000000, 0x0102dfca16, }; _Static_assert((sizeof(table) / sizeof(table[0])) == TABLE_SIZE, "TABLE_SIZE should be accurate"); // starting from val = (2 ** i)*(1 + f) where 0 <= f < 1 // log identities mean log2(val) = log2((2 ** i)*(1 + f)) = log2(2**i) + log2(1+f) // // getting i is easy to do using builtin_clz (count leading zero) // // we want to calculate log2(1+f) independently to have a many bits of precision as possible. // val = (2 ** i)*(1 + f) = 2 ** i + f * 2 ** i // isolating f we get // val - 2 ** i = f * 2 ** i // (val - 2 ** i) / 2 ** i = f // // we want to interpolate from the table to get the values // and compromise by doing quadratic interpolation (rather than higher degree interpolation) // // for the interpolation we want to shift everything the fist sample point // so our parabola becomes x = 0 // this further simplifies the equations // // the consequence is that we need f in 2 forms: // - finding the index of x0 // - finding the distance between f and x0 // // since sample points are equidistant we can significantly simplify the equations // get i const unsigned long long bits = sizeof(val) * __CHAR_BIT__; const unsigned long long lz = __builtin_clzl(val); const unsigned long long i = bits - 1 - lz; // get the fractinal part as a u32.32 const unsigned long long frac = (val << (lz + 1)) >> 32; // get high order bits for the index into the table const unsigned long long idx0 = frac >> (32 - TABLE_BITS); // get the x offset, i.e., the difference between the first sample point and the actual fractional part const long long udx = frac - (idx0 << (32 - TABLE_BITS)); /* paranoid */ verify((idx0 + 2) < TABLE_SIZE); const long long y0 = table[idx0 + 0]; const long long y1 = table[idx0 + 1]; const long long y2 = table[idx0 + 2]; // from there we can quadraticly interpolate to get the data, using the lagrange polynomial // normally it would look like: // double r0 = y0 * ((x - x1) / (x0 - x1)) * ((x - x2) / (x0 - x2)); // double r1 = y1 * ((x - x0) / (x1 - x0)) * ((x - x2) / (x1 - x2)); // double r2 = y2 * ((x - x0) / (x2 - x0)) * ((x - x1) / (x2 - x1)); // but since the spacing between sample points is fixed, we can simplify itand extract common expressions const long long f1 = (y1 - y0); const long long f2 = (y2 - y0); const long long a = f2 - (f1 * 2l); const long long b = (f1 * 2l) - a; // Now we can compute it in the form (ax + b)x + c (which avoid repeating steps) long long sum = ((a*udx) >> (32 - TABLE_BITS)) + b; sum = (sum*udx) >> (32 - TABLE_BITS + 1); sum = y0 + sum; return (i << 32) + (sum); } // log2_u32_32 // Implementation of power functions (from the prelude): #define __CFA_EXP__() \ if ( y == 0 ) return 1; /* convention */ \ __CFA_EXP_INT__( /* special cases for integral types */ \ if ( x == 1 ) return 1; /* base case */ \ if ( x == 2 ) return x << (y - 1); /* positive shifting */ \ if ( y >= sizeof(y) * CHAR_BIT ) return 0; /* immediate overflow, negative exponent > 2^size-1 */ \ ) \ typeof(x) op = 1; /* accumulate odd product */ \ typeof(x) w = x; /* FIX-ME: possible bug in the box pass changing value argument through parameter */ \ for ( ; y > 1; y >>= 1 ) { /* squaring exponentiation, O(log2 y) */ \ if ( (y & 1) == 1 ) op = op * w; /* odd ? */ \ w = w * w; \ } \ return w * op #define __CFA_EXP_INT__(...) __VA_ARGS__ int ?\?( int x, unsigned int y ) { __CFA_EXP__(); } long int ?\?( long int x, unsigned long int y ) { __CFA_EXP__(); } long long int ?\?( long long int x, unsigned long long int y ) { __CFA_EXP__(); } unsigned int ?\?( unsigned int x, unsigned int y ) { __CFA_EXP__(); } unsigned long int ?\?( unsigned long int x, unsigned long int y ) { __CFA_EXP__(); } unsigned long long int ?\?( unsigned long long int x, unsigned long long int y ) { __CFA_EXP__(); } #undef __CFA_EXP_INT__ #define __CFA_EXP_INT__(...) forall( OT | { void ?{}( OT & this, one_t ); OT ?*?( OT, OT ); } ) { OT ?\?( OT x, unsigned int y ) { __CFA_EXP__(); } OT ?\?( OT x, unsigned long int y ) { __CFA_EXP__(); } OT ?\?( OT x, unsigned long long int y ) { __CFA_EXP__(); } } // distribution #undef __CFA_EXP_INT__ #undef __CFA_EXP__