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Funding information in more modern languages safer and more productive. The goal of the CV project
Natural Sciences and Engineering (pronounced “C for all”) is to create an extension of C that provides modern
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bility with C and its programmers. Prior projects have attempted similar goals
but failed to honor the C programming style; for instance, adding object-oriented
or functional programming with garbage collection is a nonstarter for many C
developers. Specifically, CV is designed to have an orthogonal feature set based
closely on the C programming paradigm, so that CV features can be added incre-
mentally to existing C code bases, and C programmers can learn CV extensions
on an as-needed basis, preserving investment in existing code and programmers.
This paper presents a quick tour of CV features, showing how their design avoids
shortcomings of similar features in C and other C-like languages. Experimental
results are presented to validate several of the new features.
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1 | INTRODUCTION

The C programming language is a foundational technology for modern computing with millions of lines of code imple-
menting everything from hobby projects to commercial operating systems. This installation base and the programmers
producing it represent a massive software engineering investment spanning decades and likely to continue for decades
more. The TIOBE index' ranks the top five most popular programming languages as Java 15%, C 12%, C++ 5.5%, and
Python 5%, Cff 4.5% = 42%, where the next 50 languages are less than 4% each with a long tail. The top three rankings
over the past 30 years are as follows.

2018 2013 2008 2003 1998 1993 1988

Java 1 2 1 1 18 - -
C 2 1 2 2 1 1 1
C+ 3 4 3 3 2 2 5
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Love it or hate it, C is extremely popular, highly used, and one of the few systems languages. In many cases, C++ is
often used solely as a better C. Nevertheless, C, which was first standardized almost 30 years ago,” lacks many features
that make programming in more modern languages safer and more productive.

CV (pronounced “C for all” and written CV or Cforall) is an evolutionary extension of the C programming language that
adds modern language features to C, while maintaining source and runtime compatibility in the familiar C programming
model. The four key design goals for CV* are as follows: (1) the behavior of the standard C code must remain the same
when translated by a CV compiler as when translated by a C compiler; (2) the standard C code must be as fast and as
small when translated by a CV compiler as when translated by a C compiler; (3) the CV code must be at least as portable
as the standard C code; (4) extensions introduced by CV must be translated in the most efficient way possible. These goals
ensure that the existing C code bases can be converted into CV incrementally with minimal effort, and C programmers
can productively generate the CV code without training beyond the features being used. C++ is used similarly but has
the disadvantages of multiple legacy design choices that cannot be updated and active divergence of the language model
from C, requiring significant effort and training to incrementally add C++ to a C-based project.

All language features discussed in this paper are working, except for some advanced exception-handling features. Not
discussed in this paper are the integrated concurrency constructs and user-level threading library.* CV is an open-source
project implemented as a source-to-source translator from CV to the gcc-dialect of C,* allowing it to leverage the porta-
bility and code optimizations provided by gcc, meeting goals (1)-(3). The CV translator is 200+ files and 46 000+ lines of
code written in C/C++. A translator versus a compiler makes it easier and faster to generate and debug the C object code
rather than the intermediate, assembler, or machine code; ultimately, a compiler is necessary for advanced features and
optimal performance. Two key translator components are expression analysis, determining expression validity and what
operations are required for its implementation, and code generation, dealing with multiple forms of overloading, poly-
morphism, and multiple return values by converting them into the C code for a C compiler that supports none of these
features. Details of these components are available in chapters 2 and 3 in the work of Bilson? and form the base for the
current CV translator. The CV runtime system is 100+ files and 11 000+ lines of code, written in CV. Currently, the CV
runtime is the largest user of CV, providing a vehicle to test the language features and implementation.

Finally, it is impossible to describe a programming language without usage before definition. Therefore, syntax and
semantics appear before explanations; hence, patience is necessary until sufficient details are presented and discussed.
Similarly, a detailed comparison with other programming languages is postponed until Section 10.

2 | POLYMORPHIC FUNCTIONS

CV introduces both ad hoc and parametric polymorphism to C, with a design originally formalized by Ditchfield® and
first implemented by Bilson.® Shortcomings are identified in the existing approaches to generic and variadic data types
in C-like languages and how these shortcomings are avoided in CV. Specifically, the solution is both reusable and type
checked, as well as conforming to the design goals of CV with ergonomic use of existing C abstractions. The new constructs
are empirically compared with C and C++ approaches via performance experiments in Section 9.

2.1 | Name overloading

“There are only two hard things in Computer Science: cache invalidation and naming things.”—Phil Karlton

C already has a limited form of ad hoc polymorphism in its basic arithmetic operators, which apply to a variety of different
types using identical syntax. CV extends the built-in operator overloading by allowing users to define overloads for any
function, not just operators, and even any variable; Section 8 includes a number of examples of how this overloading
simplifies CV programming relative to C. Code generation for these overloaded functions and variables is implemented
by the usual approach of mangling the identifier names to include a representation of their type, while CV decides which
overload to apply based on the same “usual arithmetic conversions” used in C to disambiguate operator overloads.
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int max = 2147483647; // (1)
double max = 1.7976931348623157E+308; // (2)
int max(inta,intb) {retumma<b?b:a;} // (3)
double max( double a, double b ) { returna <b ?b: a; } // (4)
max( 7, -max ); // uses (3) and (1), by matching int from constant 7
max( max, 3.14 ); // uses (4) and (2), by matching double from constant 3.14
max( max, -max ); // ERROR, ambiguous
int m = max( max, -max ); // uses (3) and (1) twice, by matching return type

CV maximizes the ability to reuse names to aggressively address the naming problem. In some cases, hundreds of names
can be reduced to tens, resulting in a significant cognitive reduction. In the above, the name max has a consistent meaning,
and a programmer only needs to remember the single concept: maximum. To prevent significant ambiguities, CV uses
the return type in selecting overloads, eg, in the assignment to m, the compiler uses m's type to unambiguously select the
most appropriate call to function max (as does Ada). As is shown later, there are a number of situations where CV takes
advantage of available type information to disambiguate, where other programming languages generate ambiguities.

C11 added _Generic expressions (see section 6.5.1.1 of the ISO/IEC 98997), which is used with preprocessor macros to
provide ad hoc polymorphism; however, this polymorphism is both functionally and ergonomically inferior to CY name
overloading. The macro wrapping the generic expression imposes some limitations, for instance, it cannot implement the
example above, because the variables max are ambiguous with the functions max. Ergonomic limitations of _Generic
include the necessity to put a fixed list of supported types in a single place and manually dispatch to appropriate overloads,
as well as possible namespace pollution from the dispatch functions, which must all have distinct names. CV supports
_Generic expressions for backward compatibility, but it is an unnecessary mechanism.

2.2 | forall functions

The signature feature of CV is parametric-polymorphic functions®!® with functions generalized using a forall clause
(giving the language its name).

forall( otype T ) T identity( T val ) { return val; }
int forty_two = identity( 42 ); // T is bound to int, forty_two == 42

This identity function can be applied to any complete object type (or otype). The type variable T is transformed into a set of
additional implicit parameters encoding sufficient information about T to create and return a variable of that type. The CV
implementation passes the size and alignment of the type represented by an otype parameter, as well as an assignment
operator, constructor, copy constructor, and destructor. If this extra information is not needed, for instance, for a pointer,
the type parameter can be declared as a data type (or dtype).

In CV, the polymorphic runtime cost is spread over each polymorphic call, because more arguments are passed to
polymorphic functions; the experiments in Section 9 show this overhead is similar to C++ virtual function calls. A design
advantage is that, unlike C++ template functions, CV polymorphic functions are compatible with C separate compilation,
preventing compilation and code bloat.

Since bare polymorphic types provide a restricted set of available operations, CV provides a type assertion'*°P"-#*) mech-
anism to provide further type information, where type assertions may be variable or function declarations that depend on
a polymorphic type variable. For example, the function twice can be defined using the CV syntax for operator overloading.

forall( otype T | { T 7+7(T, T); } ) T twice( T x ) { return x + x; } // 7 denotes operands
int val = twice( twice( 3.7 ) ); // val == 14

This works for any type T with a matching addition operator. The polymorphism is achieved by creating a wrapper func-
tion for calling + with the T bound to double and then passing this function to the first call of twice. There is now the
option of using the same twice and converting the result into int on assignment or creating another twice with the type
parameter T bound to int because CV uses the return type'*** in its type analysis. The first approach has a late conversion
from double to int on the final assignment, whereas the second has an early conversion to int. CV¥ minimizes the num-
ber of conversions and their potential to lose information; hence, it selects the first approach, which corresponds with C
programmer intuition.
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Crucial to the design of a new programming language are the libraries to access thousands of external software features.
Like C++, CV inherits a massive compatible library base, where other programming languages must rewrite or provide
fragile interlanguage communication with C. A simple example is leveraging the existing type-unsafe (void :) C bsearch
to binary search a sorted float array.

void x bsearch( const void * key, const void * base, size_t nmemb, size_t size,
int (* compar)( const void *, const void * ));
int comp( const void * t1, const void * t2 ) {
return x(double x)tl < x(double x)t2 7 -1 : %(double *)t2 < x(double *)t1 7 1 : 0;
}

double key = 5.0, vals[10] = { /* 10 sorted float values %/ };
double * val = (double x)bsearch( &key, vals, 10, sizeof(vals[0]), comp ); // search sorted array

This can be augmented simply with generalized, type-safe, CV-overloaded wrappers.

forall( otype T | {int 7<?( T, T ); } ) T « bsearch( T key, const T x arr, size_t size ) {
int comp( const void * t1, const void * t2 ) { /* as above with double changed to T */ }
return (T *)bsearch( &key, arr, size, sizeof(T), comp );

forall( otype T | { int 7<?( T, T ); } ) unsigned int bsearch( T key, const T x arr, size_t size ) {

T * result = bsearch( key, arr, size ); // call first version

return result 7 result - arr : size; // pointer subtraction includes sizeof(T)
by
double * val = bsearch( 5.0, vals, 10 ); // selection based on return type

int posn = bsearch( 5.0, vals, 10 );

The nested function comp provides the hidden interface from typed CV to untyped (void ) C, plus the cast of the result.
Providing a hidden comp function in C++ is awkward as lambdas do not use C calling conventions and template decla-
rations cannot appear at a block scope. In addition, an alternate kind of return is made available: position versus pointer
to found element. C++'s type system cannot disambiguate between the two versions of bsearch because it does not use
the return type in overload resolution, nor can C++ separately compile a template bsearch.

CV has replacement libraries condensing hundreds of existing C functions into tens of CV overloaded functions, all
without rewriting the actual computations (see Section 8). For example, it is possible to write a type-safe CV wrapper
malloc based on the C malloc, where the return type supplies the type/size of the allocation, which is impossible in most
type systems.

forall( dtype T | sized(T) ) T * malloc( void ) { return (T *)malloc( sizeof(T) ); }

// select type and size from left-hand side
int x ip = malloc(); double x dp = malloc(); struct S {...} * sp = malloc();

Call site inferencing and nested functions provide a localized form of inheritance. For example, the CV gsort only sorts
in ascending order using <. However, it is trivial to locally change this behavior.

forall( otype T | { int ?7<?( T, T ); } ) void gsort( const T * arr, size_t size ) { /* use C gsort *x/ }

int main() {
int 7<?( double x, double y ) { return x > y; } // locally override behaviour
gsort( vals, 10 ); // descending sort

The local version of ?<? performs ?>7? overriding the built-in ?<?; hence, it is passed to gsort. Therefore, programmers
can easily form local environments, adding and modifying appropriate functions, to maximize the reuse of other existing
functions and types.

To reduce duplication, it is possible to distribute a group of forall (and storage-class qualifiers) over functions/types,
such that each block declaration is prefixed by the group (see the example in Appendix A.2).

forall( otype T ) { // distribution block, add forall qualifier to declarations
struct stack { stack_node(T) * head; }; // generic type
inline { // nested distribution block, add forall/inline to declarations
void push( stack(T) & s, T value ) ... // generic operations

}
}
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2.3 | Traits

CV provides traits to name a group of type assertions, where the trait name allows specifying the same set of assertions in
multiple locations, preventing repetition mistakes at each function declaration.

trait sumable( otype T ) { forall( otype T | sumable( T ) ) // use trait
void ?{}( T &, zero_t ); // 0 literal constructor T sum( T a[], size_t size ) {
TMH2(T, T), // assortment of additions T total = { 0 }; // initialize by O constructor
T74+=1(T&T) for (size_ti=0;i<size;i+=1)
T++7(T&); total += a[i]; // select appropriate +
THHH(T&); return total;

b }

Note that the sumable trait does not include a copy constructor needed for the right side of ?+=? and return; it is
provided by otype, which is syntactic sugar for the following trait.

trait otype( dtype T | sized(T) ) { // sized is a pseudo-trait for types with known size and alignment

void 2{}( T & ); // default constructor
void 2{}( T &, T); // copy constructor
void 7=7( T &, T ); // assignment operator
void "7{}( T &); // destructor

H

Given the information provided for an otype, variables of polymorphic type can be treated as if they were a complete
type: stack allocatable, default or copy initialized, assigned, and deleted.

In summation, the CV type system uses nominal typing for concrete types, matching with the C type system, and struc-
tural typing for polymorphic types. Hence, trait names play no part in type equivalence; the names are simply macros for a
list of polymorphic assertions, which are expanded at usage sites. Nevertheless, trait names form a logical subtype hierar-
chy with dtype at the top, where traits often contain overlapping assertions, eg, operator +. Traits are used like interfaces
in Java or abstract base classes in C4++, but without the nominal inheritance relationships. Instead, each polymorphic
function (or generic type) defines the structural type needed for its execution (polymorphic type key), and this key is ful-
filled at each call site from the lexical environment, which is similar to the Go'* interfaces. Hence, new lexical scopes
and nested functions are used extensively to create local subtypes, as in the qsort example, without having to manage a
nominal inheritance hierarchy.

3 | GENERICTYPES

A significant shortcoming of standard C is the lack of reusable type-safe abstractions for generic data structures and algo-
rithms. Broadly speaking, there are three approaches to implement abstract data structures in C. One approach is to write
bespoke data structures for each context in which they are needed. While this approach is flexible and supports integra-
tion with the C type checker and tooling, it is also tedious and error prone, especially for more complex data structures.
A second approach is to use void x-based polymorphism, eg, the C standard library functions bsearch and gsort, which
allow for the reuse of code with common functionality. However, basing all polymorphism on void * eliminates the type
checker's ability to ensure that argument types are properly matched, often requiring a number of extra function param-
eters, pointer indirection, and dynamic allocation that is otherwise not needed. A third approach to generic code is to
use preprocessor macros, which does allow the generated code to be both generic and type checked, but errors may be
difficult to interpret. Furthermore, writing and using preprocessor macros is unnatural and inflexible.

C++, Java, and other languages use generic types to produce type-safe abstract data types. CV generic types integrate
efficiently and naturally with the existing polymorphic functions, while retaining backward compatibility with C and
providing separate compilation. However, for known concrete parameters, the generic-type definition can be inlined, like
C++ templates.

A generic type can be declared by placing a forall specifier on a struct or union declaration and instantiated using a
parenthesized list of types after the type name.
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forall( otype R, otype S ) struct pair { pair(const char %, int) p = {"magic", 42}; // concrete
R first; S second; int i = value( p );
; pair(void x, int x) q = { 0, &p.second }; // concrete
forall( otype T ) // dynamic i = value( q );
T value( pair(const char %, T) p ) { return p.second; } | double d = 1.0;
forall( dtype F, otype T ) // dtype-static (concrete) pair(double %, double ) r = { &d, &d }; // concrete
T value( pair(F *, T x ) p) { return *p.second; } d = value( r);

CYV classifies generic types as either concrete or dynamic. Concrete types have a fixed memory layout regardless of type
parameters, whereas dynamic types vary in memory layout depending on their type parameters. A dtype-static type has
polymorphic parameters but is still concrete. Polymorphic pointers are an example of dtype-static types; given some type
variable T, T is a polymorphic type, asis T %, but T * has a fixed size and can, therefore, be represented by void * in code
generation.

CV generic types also allow checked argument constraints. For example, the following declaration of a sorted set type
ensures that the set key supports equality and relational comparison.

forall( otype Key | { _Bool 7==7(Key, Key); _Bool 7<7(Key, Key); } ) struct sorted_set;

3.1 | Concrete generic types

The CV translator template expands concrete generic types into new structure types, affording maximal inlining. To enable
interoperation among equivalent instantiations of a generic type, the translator saves the set of instantiations currently in
scope and reuses the generated structure declarations where appropriate. A function declaration that accepts or returns a
concrete generic type produces a declaration for the instantiated structure in the same scope, which all callers may reuse.
For example, the concrete instantiation for pair(const char , int) is

struct _pair_conc0 {
const char * first; int second;

A concrete generic type with dtype-static parameters is also expanded to a structure type, but this type is used for all
matching instantiations. In the above example, the pair( F %, T = ) parameter to value is such a type; its expansion is
below, and it is used as the type of the variables q and r as well, with casts for member access where appropriate.

struct _pair_concl {
void * first, *x second;
H

3.2 | Dynamic generic types

Though CV implements concrete generic types efficiently, it also has a fully general system for dynamic generic types.
As mentioned in Section 2.2, otype function parameters (in fact, all sized polymorphic parameters) come with implicit
size and alignment parameters provided by the caller. Dynamic generic types also have an offset array containing
structure-member offsets. A dynamic generic union needs no such offset array, as all members are at offset 0, but size
and alignment are still necessary. Access to members of a dynamic structure is provided at runtime via base displacement
addressing the structure pointer and the member offset (similar to the offsetof macro), moving a compile-time offset
calculation to runtime.

The offset arrays are statically generated where possible. If a dynamic generic type is declared to be passed or returned
by value from a polymorphic function, the translator can safely assume that the generic type is complete (ie, has a known
layout) at any call site, and the offset array is passed from the caller; if the generic type is concrete at the call site, the
elements of this offset array can even be statically generated using the C offsetof macro. As an example, the body of the
second value function is implemented as

assign_T( _retval, p + _offsetof_pair[1] ); // return *p.second
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Here, _assign_T is passed in as an implicit parameter from otype T and takes two T # (void = in the generated code), a
destination and a source, and _retval is the pointer to a caller-allocated buffer for the return value, the usual CV method
to handle dynamically sized return types. _offsetof_pair is the offset array passed into value; this array is generated at the
call site as

size_t _offsetof_pair[] = { offsetof( _pair_conc0, first ), offsetof( _pair_conc0, second ) }

In some cases, the offset arrays cannot be statically generated. For instance, modularity is generally provided in C by
including an opaque forward declaration of a structure and associated accessor and mutator functions in a header file,
with the actual implementations in a separately compiled .c file. CV supports this pattern for generic types, but the caller
does not know the actual layout or size of the dynamic generic type and only holds it by a pointer. The CV translator
automatically generates layout functions for cases where the size, alignment, and offset array of a generic struct cannot be
passed into a function from that function’s caller. These layout functions take as arguments pointers to size and alignment
variables and a caller-allocated array of member offsets, as well as the size and alignment of all sized parameters to the
generic structure (unsized parameters are forbidden from being used in a context that affects layout). Results of these
layout functions are cached so that they are only computed once per type per function. Layout functions also allow generic
types to be used in a function definition without reflecting them in the function signature. For instance, a function that
strips duplicate values from an unsorted vector(T) likely has a pointer to the vector as its only explicit parameter, but uses
some sort of set(T) internally to test for duplicate values. This function could acquire the layout for set(T) by calling its
layout function with the layout of T implicitly passed into the function.

Whether a type is concrete, dtype-static, or dynamic is decided solely on the forall's type parameters. This design allows
opaque forward declarations of generic types, eg, forall(otype T)struct Box; like in C, all uses of Box(T) can be separately
compiled, and callers from other translation units know the proper calling conventions to use. If the definition of a struc-
ture type is included in deciding whether a generic type is dynamic or concrete, some further types may be recognized as
dtype-static (eg, forall(otype T)struct unique_ptr { T = p } does not depend on T for its layout, but the existence of an
otype parameter means that it could.); however, preserving separate compilation (and the associated C compatibility) in
the existing design is judged to be an appropriate trade-off.

3.3 | Applications

The reuse of dtype-static structure instantiations enables useful programming patterns at zero runtime cost. The most
important such pattern is using forall(dtype T) T = as a type-checked replacement for void #, eg, creating a lexicographic
comparison for pairs of pointers used by bsearch or gsort.

forall( dtype T ) int lexcmp( pair( T *, T * ) x a, pair( T *, T x ) x b, int (x cmp)( T %, T %) ) {
return cmp( a->first, b->first ) 7 : cmp( a—>second, b->second );
}

Since pair( T %, T ) is a concrete type, there are no implicit parameters passed to lexcmp; hence, the generated code is
identical to a function written in standard C using void =, yet the CV version is type checked to ensure members of both
pairs and arguments to the comparison function match in type.

Another useful pattern enabled by reused dtype-static type instantiations is zero-cost tag structures. Sometimes,
information is only used for type checking and can be omitted at runtime.

forall( dtype Unit ) struct scalar { unsigned long value; }; scalar(metres) half_marathon = { 21_098 };
struct metres {}; scalar(litres) pool = { 2_500_000 };
struct litres {}; scalar(metres) marathon = half_marathon +
forall( dtype U ) scalar(U) 7+7( scalar(U) a, scalar(U) b ') { half_marathon;

return (scalar(U)){ a.value + b.value }; scalar(litres) two_pools = pool + pool;
} marathon + pool;  // ERROR, mismatched types

Here, scalar is a dtype-static type; hence, all uses have a single structure definition, containing unsigned long and
can share the same implementations of common functions like ?+?. These implementations may even be separately
compiled, unlike C++ template functions. However, the CV type checker ensures matching types are used by all calls to
?+7?, preventing nonsensical computations like adding a length to a volume.
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4 | TUPLES

In many languages, functions can return, at most, one value; however, many operations have multiple outcomes, some
exceptional. Consider C's div and remquo functions, which return the quotient and remainder for a division of integer
and float values, respectively.

typedef struct { int quo, rem; } div_t; // from include stdlib.h

div_t div( int num, int den );
double remquo( double num, double den, int * quo );

div_t qr = div( 13,5 ); // return quotient/remainder aggregate
int q;
double r = remquo( 13.5, 5.2, &q ); // return remainder, alias quotient

Here, div aggregates the quotient/remainder in a structure, whereas remquo aliases a parameter to an argument. Both
approaches are awkward. Alternatively, a programming language can directly support returning multiple values, eg, CV
provides the following

[ int, int ] div( int num, int den ); // return two integers

[ double, double ] div( double num, double den ); // return two doubles

intq, r; // overloaded variable names
double q, r;

[q,r] =div(13,5); // select appropriate div and q, r
[q,r] =div(135,52); // assign into tuple

This approach is straightforward to understand and use; therefore, why do few programming languages support this obvi-
ous feature or provide it awkwardly? To answer, there are complex consequences that cascade through multiple aspects
of the language, especially the type system. This section shows these consequences and how CV handles them.

4.1 | Tuple expressions

The addition of multiple-return-value functions (MRVFs) is useless without a syntax for accepting multiple values at the
call site. The simplest mechanism for capturing the return values is variable assignment, allowing the values to be retrieved
directly. As such, CV allows assigning multiple values from a function into multiple variables, using a square-bracketed
list of lvalue expressions (as above), called a tuple.

However, functions also use composition (nested calls), with the direct consequence that MRVFs must also support
composition to be orthogonal with single-returning-value functions (SRVFs). CV provides the following.

printf( "%d %d\n", div( 13,5) ); // return values seperated into arguments

Here, the values returned by div are composed with the call to printf by flattening the tuple into separate arguments.
However, the CV type system must support significantly more complex composition.

[int, int ] foo,( int ); // overloaded foo functions
[ double ] foo,( int );

void bar( int, double, double );

bar( foo( 3), foo( 3) );

The type resolver only has the tuple return types to resolve the call to bar as the foo parameters are identical, which
involves unifying the possible foo functions with bar's parameter list. No combination of foo's is an exact match with
bar's parameters; thus, the resolver applies C conversions. The minimal cost is bar( foo;( 3 ) foo,( 3 ) ), giving (int, int,
double) to (int, double, double) with one safe (widening) conversion from int to double versus (double, int, int) to
(int, double, double) with one unsafe (narrowing) conversion from double to int and two safe conversions.

4.2 | Tuple variables

An important observation from function composition is that new variable names are not required to initialize parameters
from an MRVF. CV also allows declaration of tuple variables that can be initialized from an MRVF, since it can be awkward
to declare multiple variables of different types.
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[int, int | qr = div( 13,5 );
[ double, double | qr = div( 13.5, 5.2 );

// tuple-variable declaration and initialization

Here, the tuple variable name serves the same purpose as the parameter name(s). Tuple variables can be composed of any
types, except for array types, since array sizes are generally unknown in C.
One way to access the tuple variable components is with assignment or composition.

[a,r] =ar // access tuple-variable components

printf( "%d %d\n", qr );
CYV also supports tuple indexing to access single components of a tuple expression.

// tuple pointer

// access remainder

// access quotient

// change quotient

// pass remainder and quotient/remainder
// access 2nd component of 1st component

[int, int] x p = &qr;

int rem = qr.1;

int quo = div( 13,5 ).0;
p—>0 =5;

bar( qr.1, qr );

rem = [div( 13, 5 ), 42].0.1;

4.3 | Flattening and restructuring

In function call contexts, tuples support implicit flattening and restructuring conversions. Tuple flattening recursively
expands a tuple into the list of its basic components. Tuple structuring packages a list of expressions into a value of tuple
type.

int f(int, int );

[int] g( [int, int] );

[int] h( int, [int, int] );

[int, int] x;

inty;

f( x); // flatten

g(y 10); // structure

h( %, y); // flatten and structure

In the call to f, x is implicitly flattened so the components of x are passed as two arguments. In the call to g, the values
y and 10 are structured into a single argument of type [int, int ] to match the parameter type of g. Finally, in the call to
h, x is flattened to yield an argument list of length 3, of which the first component of X is passed as the first parameter of
h, and the second component of x and y are structured into the second argument of type [int, int]. The flexible structure
of tuples permits a simple and expressive function call syntax to work seamlessly with both SRVFs and MRVFs with any
number of arguments of an arbitrarily complex structure.

4.4 | Tuple assignment

An assignment where the left side is a tuple type is called tuple assignment. There are two kinds of tuple assignment
depending on whether the right side of the assignment operator has a tuple type or a nontuple type, called multiple and
mass assignment, respectively.

int x = 10;

double y = 3.5;

[int, double] z;

z=[xy]; // multiple assignment
[x.y] =z // multiple assignment

z = 10; // mass assignment
ly, x] = 3.14; // mass assignment

Both kinds of tuple assignment have parallel semantics, so that each value on the left and right sides is evaluated before
any assignments occur. As a result, it is possible to swap the values in two variables without explicitly creating any tem-
porary variables or calling a function, eg, [X, y] = [y, x]. This semantics means mass assignment differs from C cascading
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assignment (eg, a = b = ¢) in that conversions are applied in each individual assignment, which prevents data loss from
the chain of conversions that can happen during a cascading assignment. For example, [y, X] = 3.14 performs the assign-
mentsy = 3.14 and x = 3.14, yielding y == 3.14 and x == 3, whereas C cascading assighment y = X = 3.14 performs the
assignments X = 3.14 and y = x, yielding 3 in y and x. Finally, tuple assignment is an expression where the result type is
the type of the left-hand side of the assignment, just like all other assignment expressions in C. This example shows mass,
multiple, and cascading assignment used in one expression.

[void] f( [int, int] );
f([xy]=2z=15); // assignments in parameter list

4.5 | Member access

It is also possible to access multiple members from a single expression using a member access. The result is a single
tuple-valued expression whose type is the tuple of the types of the members.

struct S { int x; double y; char % z; } s;
s.x,y, 2] =0;

Here, the mass assignment sets all members of s to zero. Since tuple-index expressions are a form of member-access
expression, it is possible to use tuple-index expressions in conjunction with member-tuple expressions to manually
restructure a tuple (eg, rearrange, drop, and duplicate components).

[int, int, long, double] x;
void f( double, long );

x.[0, 1] = x.[1, 0]; // rearrange: [x.0, x.1] = [x.1, x.0]
f( x.[0, 3] ); // drop: f(x.0, x.3)
[int, int, int] y = x.[2, 0, 2]; // duplicate: [y.0, y.1, y.2] = [x.2, x.0.x.2]

It is also possible for a member access to contain other member accesses.

struct A { double i; int j; };

struct B { int * k; short |; };

struct C{intx; Ay; Bz }v;

v.[x, y.[i, j], z.K]; // [v.x, [v.y.i, v.yj], v.z.k]

4.6 | Polymorphism

Tuples also integrate with CV polymorphism as a kind of generic type. Due to the implicit flattening and structuring
conversions involved in argument passing, otype and dtype parameters are restricted to matching only with nontuple

types.

forall( otype T, dtype U ) void f( T x, U x y );

f( [5, "hello"]);
Here, [5, "hello"]is flattened, giving argument list 5, "hello", and T binds to int and U binds to const char. Tuples,
however, may contain polymorphic components. For example, a plus operator can be written to sum two triples.

forall( otype T | {T7+2( T, T ); }) [T, T.T] 742( [T, T, T]x, [T, T, T}y ) {

return [x.0 + y.0, x.1 +y.1, x.2 + y.2];
}

[int, int, int] x;
intil, i2, i3;
[i1, i2, i3] = x + ([10, 20, 30]);

Flattening and restructuring conversions are also applied to tuple types in polymorphic type assertions.

[int] f( [int, double], double );
forall( otype T, otype U | { Tf( T, U, U); } )voidg( T, U);
g( 5,10.21);
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Hence, function parameter and return lists are flattened for the purposes of type unification allowing the example to pass
expression resolution. This relaxation is possible by extending the thunk scheme described by Bilson.?

4.7 | Variadic tuples

To define variadic functions, CV adds a new kind of type parameter, ie, ttype (tuple type). Matching against a ttype
parameter consumes all the remaining argument components and packages them into a tuple, binding to the resulting
tuple of types. In a given parameter list, there must be, at most, one ttype parameter that occurs last, which matches
normal variadic semantics, with a strong feeling of similarity to C++11 variadic templates. As such, ttype variables are
also called argument packs.

Like variadic templates, ttype polymorphic functions are primarily manipulated via recursion. Since nothing is known
about a parameter pack by default, assertion parameters are key to doing anything meaningful. Unlike variadic templates,
ttype polymorphic functions can be separately compiled. For example, the following is a generalized sum function.

int sum,() { return 0; }

forall( ttype Params | { int sum( Params ); } ) int sum,( int x, Params rest ) {
return x + sum( rest );
}

sum( 10, 20, 30 );

Since sum, does not accept any arguments, it is not a valid candidate function for the call sum(10, 20, 30). In order to
call sum;, 10 is matched with X, and the argument resolution moves on to the argument pack rest, which consumes the
remainder of the argument list, and Params is bound to [20, 30]. The process continues until Params is bound to [],
requiring an assertion int sum(), which matches sumg and terminates the recursion. Effectively, this algorithm traces as
sum(10, 20, 30) »10 + sum(20, 30) -»10 + (20 + sum(30)) —10 + (20 + (30 + sum())) =10 + (20 + (30 + 0)).

It is reasonable to take the sum function a step further to enforce a minimum number of arguments.

int sum( int x, inty ) { return x +y; }

forall( ttype Params | { int sum( int, Params ); } ) int sum( int %, int y, Params rest ) {
return sum( x + v, rest );

}

One more step permits the summation of any sumable type with all arguments of the same type.

trait sumable( otype T ) {
T242(T,T),

3
forall( otype R | sumable( R) ) Rsum( Rx, Ry ) {
return x + vy;

forall( otype R, ttype Params | sumable(R) | { R sum(R, Params); } ) R sum(R x, Ry, Params rest) {
return sum( x + y, rest );
}

Unlike C variadic functions, it is unnecessary to hard code the number and expected types. Furthermore, this code is
extendable for any user-defined type with a 7+? operator. Summing arbitrary heterogeneous lists is possible with similar
code by adding the appropriate type variables and addition operators.

It is also possible to write a type-safe variadic print function to replace printf.

struct S {int x, y; };
forall( otype T, ttype Params | { void print(T); void print(Params); } ) void print(T arg, Params rest) {
print(arg); print(rest);

void print( const char * x ) { printf( "%s", x ); }
void print( int x ) { printf( "%d", x ); }

void print( S's ) { print( "{ ", sx, ",", sy, " }" )}
print("s = ", (S){1, 2} "\n" ),
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This example showcases a variadic-template-like decomposition of the provided argument list. The individual print func-
tions allow printing a single element of a type. The polymorphic print allows printing any list of types, where each
individual type has a print function. The individual print functions can be used to build up more complicated print func-
tions, such as S, which cannot be done with printf in C. This mechanism is used to seamlessly print tuples in the CV I/O
library (see Section 8.4).

Finally, it is possible to use ttype polymorphism to provide arbitrary argument forwarding functions. For example, it is
possible to write new as a library function.

forall( otype R, otype S ) void 7{}( pair(R, S) *x, R, S );
forall( dtype T, ttype Params | sized(T) | { void ?{}( T %, Params ); } ) T * new( Params p ) {
return ((T *)malloc()){ p }; // construct into result of malloc

pair( int, char ) x x = new( 42, '!' ),

The new function provides the combination of type-safe malloc with a CV constructor call, making it impossible to forget
constructing dynamically allocated objects. This function provides the type safety of new in C++, without the need to
specify the allocated type again, due to return-type inference.

4.8 | Implementation

Tuples are implemented in the CV translator via a transformation into generic types. For each N, the first time an N-tuple
is seen in a scope, a generic type with N type parameters is generated. For example, the following

[int, int] f() {
[double, double] x;
[int, double, int] y;

}

is transformed into

forall( dtype TO, dtype T1 | sized(T0) | sized(T1) ) struct _tuple2 {
TO member_0; T1 member_1; // generated before the first 2-tuple

_tuple2(int, int) f() {

_tuple2(double, double) x;

forall( dtype TO, dtype T1, dtype T2 | sized(TO0) | sized(T1) | sized(T2) ) struct _tuple3 {
TO member_0; T1 member_1; T2 member_2;  // generated before the first 3-tuple

}.

_tuple3(int, double, int) y;

}

Tuple expressions are then converted directly into compound literals, eg, [5, 'x', 1.24] becomes (_tuple3(int, char,
double)){ 5, 'x', 1.24}.

5 1| CONTROL STRUCTURES

CV identifies inconsistent, problematic, and missing control structures in C, as well as extends, modifies, and adds control
structures to increase functionality and safety.

5.1 | if statement

The if expression allows declarations, similar to the for declaration expression.

if (intx="F()) .. //x1=0
if (intx="f(),y=g()) . J/x1=0&& y!=0
if (intx="f(),y=g()ix<y).. // relational expression

398017 SUALLLLIOD BAGERID 3 KEIKNdR AL AQ PULENGE 22 SPRE O 260 J0 U 10} ARXIT 3UIHO A21) UD (SU0DIPUOO-ALE-SLLBALIOD A3 W AR |BUI LD/ S ) SUORpU0D) PR SIS | 343335 ThZ02/E0/z2] Lo AR 3UID /811 'ARG1T S104 BB 00| JO AERALIN A #1797 305/200T 0T/10pAU0d /o] wARX]1BU| o/ Stny WL ppeo o ‘7T ‘8T0Z X4Z0L60T



MOSS ET AL. Wl LEY 2123

Unless a relational expression is specified, each variable is compared not equal to 0, which is the standard semantics for
the if expression, and the results are combined using the logical && operator.” The scope of the declaration(s) is local to
the if statement but exists within both the “then” and “else” clauses.

5.2 | switch statement

There are a number of deficiencies with the C switch statements: enumerating case lists, placement of case clauses,
scope of the switch body, and fall through between case clauses.

C has no shorthand for specifying a list of case values, whether the list is noncontiguous or contiguous.” CV provides a
shorthand for a noncontiguous list:

Ccv C

case 2, 10, 34, 42: case 2: case 10: case 34: case 42:

for a contiguous list:*

Cv C
case 2~42: case 2: case 3: ... case 41: case 42:

and a combination:

case -12~-4, -1~5, 14~21, 34~42:

C allows placement of case clauses within statements nested in the switch body (called Duff's device'¢);

switch (i) {
case 0:
for (inti=0;i<10;i+=1){

case 1: // no initialization of loop index

}
}

CV precludes this form of transfer into a control structure because it causes an undefined behavior, especially with respect
to missed initialization, and provides very limited functionality.

C allows placement of declaration within the switch body and unreachable code at the start, resulting in an undefined
behavior.

switch ( x ) {

inty =1; // unreachable initialization
x=T7, // unreachable code without label/branch
case 0:
intz=0; // unreachable initialization, cannot appear after case
z =2
case 1:
X =z // without fall through, z is undefined

}

CV allows the declaration of local variables, eg, y, at the start of the switch with scope across the entire switch body, ie, all
case clauses. CV disallows the declaration of local variable, eg, z, directly within the switch body, because a declaration
cannot occur immediately after a case since a label can only be attached to a statement, and the use of z is undefined in
case1 as neither storage allocation nor initialization may have occurred.

C switch provides multiple entry points into the statement body, but once an entry point is selected, control continues
across all case clauses until the end of the switch body, called fall through; case clauses are made disjoint by the break

*C++ only provides a single declaration always compared not equal to 0.
C provides this mechanism via fall through.
fgcc has the same mechanism but awkward syntax, 2 ...42, as a space is required after a number; otherwise, the first period is a decimal point.
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Cv

choose (day ) {
case Mon~Thu: // program

case Fri:  // program
wallet += pay;

C
switch ( day ) {
case Mon: case Tue: case Wed: case Thu: // program
break;
case Fri:  // program
wallet += pay;

fallthrough;
case Sat: // party case Sat:  // party
wallet -= party; wallet -= party;
break;
case Sun: // rest case Sun: // rest
break;

default:  // print error default:  // print error

FIGURE1 choose versus switch statements [Colour figure can be viewed at wileyonlinelibrary.com]

non-terminator target label
choose ( ... ) { choose ( ... ) {
case 3: case 3:
if (...){ ... fallthrough common;
... fallthrough; // goto case 4 case 4:

} else { ... fallthrough common;
common: // below fallthrough at same level as case clauses
} ... // common code for cases 3 and 4
// implicit break // implicit break
case 4: case 4:

FIGURE 2 fallthrough statement [Colour figure can be viewed at wileyonlinelibrary.com]|

statement. While fall through is a useful form of control flow, it does not match well with programmer intuition, resulting
in errors from missing break statements. For backward compatibility, CV provides a new control structure, ie, choose,
which mimics switch, but reverses the meaning of fall through (see Figure 1), similar to Go.

Finally, Figure 2 shows fallthrough may appear in contexts other than terminating a case clause and have an explicit
transfer label allowing separate cases but common final code for a set of cases. The target label must be below the
fallthrough and may not be nested in a control structure, ie, fallthrough cannot form a loop, and the target label must
be at the same or higher level as the containing case clause and located at the same level as a case clause; the target
label may be case default, but only associated with the current switch/choose statement.

5.3 | Labeled continue/break

While C provides continue and break statements for altering control flow, both are restricted to one level of nesting for
a particular control structure. Unfortunately, this restriction forces programmers to use goto to achieve the equivalent
control flow for more than one level of nesting. To prevent having to switch to the goto, CV extends continue and
break with a target label to support a static multilevel exit,'” as in Java. For both continue and break, the target label
must be directly associated with a for, while, or do statement; for break, the target label can also be associated with
a switch, if or compound ({}) statement. Figure 3 shows continue and break indicating the specific control structure
and the corresponding C program using only goto and labels. The innermost loop has seven exit points, which cause a
continuation or termination of one or more of the seven nested control structures.
With respect to safety, both labeled continue and break are goto restricted in the following ways.

« They cannot create a loop, which means only the looping constructs cause looping. This restriction means all situations
resulting in repeated execution are clearly delineated.

« They cannot branch into a control structure. This restriction prevents missing declarations and/or initializations at the
start of a control structure resulting in an undefined behavior.

The advantage of the labeled continue/break is allowing static multilevel exits without having to use the goto statement
and tying control flow to the target control structure rather than an arbitrary point in a program. Furthermore, the location
of the label at the beginning of the target control structure informs the reader (eye candy) that complex control flow is
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Ccv C
LC:{ {
... declarations ... ... declarations ...
LS: switch ( ... ) { switch (... ) {
case 3: case 3:
LIFif (.. ) { if (...){
LF: for (...) { for (...){
... break LC; ... ...goto LC; ...
... break LS; ... ...goto LS; ... // terminate compound
... break LIF; ... ... goto LIF; ... // terminate switch
... continue LF; ... ... goto LFC; ... // terminate if
... break LF; ... ... goto LFB; ... // continue loop
Y // for LFC: ; } LFB:; // terminate loop
} else { } else {
... break LIF; ... ... goto LIF; ...
Y/ if }LIF:;
} // switch } LS // terminate if
} // compound }LC

FIGURE 3 Multilevel exit [Colour figure can be viewed at wileyonlinelibrary.com|

Resumption Termination
exception R { int fix; }; exception T {};
void f() { void f() {
Rr;
.. resume( r); ... ... throw( T{}); ...

.. r.fix // control returns here after handler

try {

U (O
} catchResume( R r ) {

.. rfix = ...; // return correction to raise

} // dynamic return to _Resume

// control does NOT return here after handler

try {
O { Fa
Yecatch( Tt) {
... // recover and continue
} // static return to next statement

FIGURE 4 CYV exception handling [Colour figure can be viewed at wileyonlinelibrary.com]

occurring in the body of the control structure. With goto, the label is at the end of the control structure, which fails
to convey this important clue early enough to the reader. Finally, using an explicit target for the transfer instead of an
implicit target allows new constructs to be added or removed without affecting the existing constructs. Otherwise, the
implicit targets of the current continue and break, ie, the closest enclosing loop or switch, change as certain constructs
are added or removed.

5.4 | Exception handling

The following framework for CV exception handling is in place, excluding some runtime type information and virtual
functions. CV provides two forms of exception handling: fix-up and recovery (see Figure 4)."*'” Both mechanisms provide
a dynamic call to a handler using dynamic name lookup, where fix-up has dynamic return and recovery has static return
from the handler. CV restricts exception types to those defined by aggregate type exception. The form of the raise dictates
the set of handlers examined during propagation: resumption propagation (resume) only examines resumption handlers
(catchResume); terminating propagation (throw) only examines termination handlers (catch). If resume or throw has
no exception type, it is a reresume/rethrow, which means that the current exception continues propagation. If there is no
current exception, the reresume/rethrow results in a runtime error.
The set of exception types in a list of catch clauses may include both a resumption and a termination handler.

try {
.. resume( R{} ); ...
} catchResume( Rr ) { ... throw( R{} ); ... } // HI1
catch(Rr) { ..} // H2
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The resumption propagation raises R and the stack is not unwound; the exception is caught by the catchResume clause
and handler H1 is invoked. The termination propagation in handler H1 raises R and the stack is unwound; the exception
is caught by the catch clause and handler H2 is invoked. The termination handler is available because the resumption
propagation did not unwind the stack.

An additional feature is conditional matching in a catch clause.

try {
... write( datafile, ... ); ... // may throw IOError
... write( logfile, ... ); ...
} catch ( |OError err; err.file == datafile ) { ... } // handle datafile error
catch ( |OError err; err.file == logfile ) { ... } // handle logfile error
catch ( IOErrorerr ) { ... } // handler error from other files

Here, the throw inserts the failing file handle into the I/O exception. Conditional catch cannot be trivially mimicked by
other mechanisms because once an exception is caught, handler clauses in that try statement are no longer eligible.

The resumption raise can specify an alternate stack on which to raise an exception, called a nonlocal raise.

resume(exception-type, alternate-stack )

resume(alternate-stack )
These overloads of resume raise the specified exception or the currently propagating exception (reresume) at another
CV coroutine or task.* Nonlocal raise is restricted to resumption to provide the exception handler the greatest flexibility
because processing the exception does not unwind its stack, allowing it to continue after the handler returns.

To facilitate nonlocal raise, CV provides dynamic enabling and disabling of nonlocal exception propagation. The
constructs for controlling propagation of nonlocal exceptions are the enable and disable blocks.

enable exception-type-list {  disable exception-type-list {
// allow non-local raise // disallow non-local raise

} }

The arguments for enable/disable specify the exception types allowed to be propagated or postponed, respectively. Spec-
ifying no exception type is shorthand for specifying all exception types. Both enable and disable blocks can be nested;
turning propagation on/off on entry and on exit, the specified exception types are restored to their prior state. Coroutines
and tasks start with nonlocal exceptions disabled, allowing handlers to be put in place, before nonlocal exceptions are
explicitly enabled.

void main( mytask & t ) { // thread starts here
// non-local exceptions disabled
try { // establish handles for non-local exceptions
enable { // allow non-local exception delivery

// task body

// appropriate catchResume/catch handlers

}

Finally, CV provides a Java-like finally clause after the catch clauses.

try {
- f0); ...

// catchResume or catch clauses

} finally {
// house keeping
}

The finally clause is always executed, ie, if the try block ends normally or if an exception is raised. If an exception is raised
and caught, the handler is run before the finally clause. Like a destructor (see Section 6.4), a finally clause can raise an
exception but not if there is an exception being propagated. Mimicking the finally clause with mechanisms like Resource
Aquisition Is Initialization (RAII) is nontrivial when there are multiple types and local accesses.
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5.5 | with statement

Heterogeneous data are often aggregated into a structure/union. To reduce syntactic noise, CV provides a with statement
(see section 4.F in the Pascal User Manual and Report®) to elide aggregate member qualification by opening a scope
containing the member identifiers.

struct S { char ¢; int i; double d; };

struct T { double m, n; };

// multiple aggregate parameters

void f(S&s, T&t){ void f(S & s, T & t) with (s, t){
s.c; s.i; s.d; c i d; // no qualification
t.m; t.n; m; n;

Object-oriented programming languages only provide implicit qualification for the receiver.

In detail, the with statement has the form

with-statement:

'with' '('expression-list')' compound-statement

and may appear as the body of a function or nested within a function body. Each expression in the expression list provides
a type and object. The type must be an aggregate type. (Enumerations are already opened.) The object is the implicit
qualifier for the open structure members.

All expressions in the expression list are open in parallel within the compound statement, which is different from Pascal,
which nests the openings from left to right. The difference between parallel and nesting occurs for members with the
same name and type.

struct S { int i; int j; double m; } s, w; // member i has same type in structure types S and T
struct T {int i;int k; int m; } t, w;
with (s, t) { // open structure variables s and t in parallel

j+ k; // unambiguous, s.j + t.k

m = 5.0; // unambiguous, s.m = 5.0

m=1; // unambiguous, t.m = 1

inta=m; // unambiguous, a = t.m

double b = m; // unambiguous, b = s.m

int c = s.i + t.i; // unambiguous, qualification

(double)m; // unambiguous, cast s.m

For parallel semantics, both s.i and t.i are visible and, therefore, i is ambiguous without qualification; for nested semantics,
t.ihides s.i and, therefore, i implies t.i. CV's ability to overload variables means members with the same name but different
types are automatically disambiguated, eliminating most qualification when opening multiple aggregates. Qualification
or a cast is used to disambiguate.

There is an interesting problem between parameters and the function body with.

void 7{}( S & s, int i) with (s) { // constructor
si=1i j=3, m=55; // initialize members
}

Here, the assignment s.i = i means s.i = s.i, which is meaningless, and there is no mechanism to qualify the parameter i,
making the assignment impossible using the function body with. To solve this problem, parameters are treated like an
initialized aggregate

struct Params {
S&s;
int i;

} params;
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and implicitly opened after a function body open, to give them higher priority

void 7{}( S & s, int i ) with (s ) { with( params ) {
si=1i]=3; m=55;
Pi

Finally, a cast may be used to disambiguate among overload variables in a with expression

with (w ) { ..} // ambiguous, same name and no context
with ( (S)w) { ... } // unambiguous, cast

and with expressions may be complex expressions with type reference (see Section 6.2) to aggregate

struct S {int i, j; } sv;

with (sv) { // implicit reference
S & sr=sy;
with (sr) { // explicit reference
S x sp = &sv;
with (*xsp ) { // computed reference
i=3j=4 // sp=>i, sp—>j
}
i=2j=3; // sr.i, sr.j
}
i=1j=2 // sv.i, sv.j

}

Collectively, these control-structure enhancements reduce programmer burden and increase readability and safety.

6 | DECLARATIONS

Declarations in C have weaknesses and omissions. CV attempts to correct and add to C declarations, while ensuring CV
subjectively “feels like” C. An important part of this subjective feel is maintaining C's syntax and procedural paradigm,
as opposed to functional and object-oriented approaches in other systems languages such as C++ and Rust. Maintaining
the C approach means that C coding patterns remain not only useable but idiomatic in CV, reducing the mental burden
of retraining C programmers and switching between C and CV development. Nevertheless, some features from other
approaches are undeniably convenient; CV attempts to adapt these features to the C paradigm.

6.1 | Alternative declaration syntax

C declaration syntax is notoriously confusing and error prone. For example, many C programmers are confused by a
declaration as simple as the following.

int * x[5] XW x[F—+{0[1]2]3]4]
01234
Is this an array of five pointers to integers or a pointer to an array of five integers? If there is any doubt, it implies produc-
tivity and safety issues even for basic programs. Another example of confusion results from the fact that a function name

and its parameters are embedded within the return type, mimicking the way the return value is used at the function’s call
site. For example, a function returning a pointer to an array of integers is defined and used in the following way.

int («f())[5] {...}; // definition
- (OB +=1; // usage

Essentially, the return type is wrapped around the function name in successive layers (like an onion). While attempting
to make the two contexts consistent is a laudable goal, it has not worked out in practice.
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CV provides its own type, variable, and function declarations, using a different syntax.2!(PP856-85% The new declarations
place qualifiers to the left of the base type, whereas C declarations place qualifiers to the right. The qualifiers have the
same meaning but are ordered left to right to specify a variable’s type.

Cv C
[5] * int x1; int * x1 [5]; // array of 5 pointers to int
* [5] int x2; int (xx2)[5]; // pointer to array of 5 int
[* [5] int] f( int p); int («f( int p ))[5]; // function returning pointer to array of 5 int and taking int

The only exception is bit-field specification, which always appears to the right of the base type. However, unlike C, CV
type declaration tokens are distributed across all variables in the declaration list. For instance, variables x and y of type
pointer to integer are defined in CV as

Ccv C
*int x, y; int xx, xy, z;
int z;

The separation of regular and pointer declarations by CV declarations enforces greater clarity with only slightly more
syntax.

All specifiers (extern, static, etc) and qualifiers (const, volatile, etc) are used in the normal way with the new
declarations and also appear left to right.

Cv C
extern const * const int x; int extern const * const x; // external const pointer to const int
static const * [5] const int y; static const int (x const y)[5] // internal const pointer to array of 5 const int

Specifiers must appear at the start of a CV function declaration.?
The new declaration syntax can be used in other contexts where types are required, eg, casts and the pseudo-function
sizeof.

Cv C
y = (* int)x; y = (int *)x;
i = sizeof([ 5| * int); i = sizeof(int x [ 5]);
The syntax of the new function-prototype declaration follows directly from the new function-definition syntax; also,
parameter names are optional.

[intx]f( /*void %/ ); // returning int with no parameters

[intx]f(..); // returning int with unknown parameters

[*int] g (inty); // returning pointer to int with int parameter

[ void | h (int, char); // returning no result with int and char parameters

[ *int, int] ] (int); // returning pointer to int and int with int parameter

This syntax allows a prototype declaration to be created by cutting and pasting the source text from the function-definition
header (or vice versa). Like C, it is possible to declare multiple function prototypes in a single declaration, where the
return type is distributed across all function names in the declaration list.

Cv C
[double] foo(), foo( int ), foo( double ) {...} double fool( void ), foo2( int ), foo3( double );

Here, CV allows the last function in the list to define its body.
The syntax for pointers to CV functions specifies the pointer name on the right.

* [intx ] () fp; // pointer to function returning int with no parameters

[+ int] (inty) gp; // pointer to function returning pointer to int with int parameter

* [] (int, char ) hp; // pointer to function returning no result with int and char parameters

* [ x int, int | (int) jp; // pointer to function returning pointer to int and int with int parameter

$The placement of a storage-class specifier other than at the beginning of the declaration specifiers in a declaration is an obsolescent feature (see section
6.11.5(1) in ISO/IEC 98997).
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Note that the name of the function pointer is specified last, as for other variable declarations.

Finally, new CV declarations may appear together with C declarations in the same program block but cannot be mixed
within a specific declaration. Therefore, a programmer has the option of either continuing to use traditional C declarations
or taking advantage of the new style. Clearly, both styles need to be supported for some time due to existing C-style header
files, particularly for UNIX-like systems.

6.2 | References

All variables in C have an address, a value, and a type; at the position in the program’'s memory denoted by the address,
there exists a sequence of bits (the value), with the length and semantic meaning of this bit sequence defined by the type.
The C type system does not always track the relationship between a value and its address; a value that does not have a
corresponding address is called an rvalue (for “right-hand value”), whereas a value that does have an address is called an
lvalue (for “left-hand value”). For example, in int x; X = 42, the variable expression X on the left-hand side of the assign-
ment is an lvalue, whereas the constant expression 42 on the right-hand side of the assignment is an rvalue. Despite the
nomenclature of “left-hand” and “right-hand,” an expression's classification as an lvalue or an rvalue is entirely depen-
dent on whether it has an address or not; in imperative programming, the address of a value is used for both reading
and writing (mutating) a value, and as such, lvalues can be converted into rvalues and read from, but rvalues cannot be
mutated because they lack a location to store the updated value.

Within a lexical scope, lvalue expressions have an address interpretation for writing a value or a value interpretation
to read a value. For example, in X =y, X has an address interpretation, whereas y has a value interpretation. While this
duality of interpretation is useful, C lacks a direct mechanism to pass Ivalues between contexts, instead relying on pointer
types to serve a similar purpose. In C, for any type T, there is a pointer type T #, the value of which is the address of a
value of type T. A pointer rvalue can be explicitly dereferenced to the pointed-to lvalue with the dereference operator =?,
whereas the rvalue representing the address of an lvalue can be obtained with the address-of operator &?.

intx =1,y =2, % pl, x p2, *x p3;

pl = &x; // pl points to x
p2 = &y; // p2 points to y
p3 = &pl; // p3 points to pl

*p2 = ((*p1 + *p2) * (+xp3 - *pl)) / (¥*p3 - 15);

Unfortunately, the dereference and address-of operators introduce a great deal of syntactic noise when dealing with
pointed-to values rather than pointers, as well as the potential for subtle bugs because of pointer arithmetic. For both
brevity and clarity, it is desirable for the compiler to figure out how to elide the dereference operators in a complex expres-
sion such as the assignment to xp2 above. However, since C defines a number of forms of pointer arithmetic, two similar
expressions involving pointers to arithmetic types (eg, #p1 + X and p1 + X) may each have well-defined but distinct
semantics, introducing the possibility that a programmer may write one when they mean the other and precluding any
simple algorithm for elision of dereference operators. To solve these problems, CV introduces reference types T &; a T &
has exactly the same value as a T #, but where the T * takes the address interpretation by default, a T & takes the value
interpretation by default, as below.

intx=1y=2&rl, & r2, && r3;

&rl = &x; // rl points to x
&r2 = &y; // r2 points to y
&&r3 = &&rl; // r3 points to r2
r2 =((rl + r2) * (r3-rl)) / (r3 - 15); // implicit dereferencing

Except for auto-dereferencing by the compiler, this reference example is exactly the same as the previous pointer
example. Hence, a reference behaves like a variable name—an Ivalue expression that is interpreted as a value—but also
has the type system track the address of that value. One way to conceptualize a reference is via a rewrite rule, where the
compiler inserts a dereference operator before the reference variable for each reference qualifier in the reference variable
declaration; thus, the previous example implicitly acts as in the following.

#r2 = ((*#rl + *r2) x (xxr3 - *rl)) / (**r3 - 15);

References in CV are similar to those in C4++, with important improvements, which can be seen in the example
above. Firstly, CV does not forbid references to references. This provides a much more orthogonal design for library
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implementors, obviating the need for workarounds such as std::reference_wrapper. Secondly, CV references are rebind-
able, whereas C++ references have a fixed address. Rebinding allows CV references to be default initialized (eg, to a null
pointer?) and point to different addresses throughout their lifetime, like pointers. Rebinding is accomplished by extending
the existing syntax and semantics of the address-of operator in C.

In C, the address of an lvalue is always an rvalue, as, in general, that address is not stored anywhere in memory and
does not itself have an address. In CV, the address of a T & is an lvalue T #, as the address of the underlying T is stored in
the reference and can thus be mutated there. The result of this rule is that any reference can be rebound using the existing
pointer assignment semantics by assigning a compatible pointer into the address of the reference, eg, &r1 = &x; above.
This rebinding occurs to an arbitrary depth of reference nesting; loosely speaking, nested address-of operators produce a
nested lvalue pointer up to the depth of the reference. These explicit address-of operators can be thought of as “cancelling
out” the implicit dereference operators, eg, (&*)r1 = &x or (&(&*)*)r3 = &(&*)r1 or even (&*)r2 = (&*)*r3 for &r2 = &r3.
More precisely, we have the following.

« If Risan rvalue of type T &; - - -&,, where r > 1 references (& symbols), then &R has type T*&@: - - -&,, ie, T pointer
with r — 1 references (& symbols).

« If Lisanlvalue of type T & - - -&, where [ > 0 references (& symbols), then &L has type T*&; - - -&, ie, T pointer with
[ references (& symbols).

Since pointers and references share the same internal representation, the code using either is equally performant; in fact,
the CV compiler converts references into pointers internally, and the choice between them is made solely on convenience,
eg, many pointer or value accesses.

By analogy to pointers, CV references also allow cv-qualifiers such as const.

const int cx = 5; // cannot change cx

const int & cr = cx; // cannot change cr'’s referred value
&cr = &cx; // rebinding cr allowed

car=T, // ERROR, cannot change cr

int & const rc = x; // must be initialized, like in C++
&rc = &x; // ERROR, cannot rebind rc
rc=7,; // x now equal to 7

Given that a reference is meant to represent an lvalue, CV provides some syntactic shortcuts when initializing ref-
erences. There are three initialization contexts in CV: declaration initialization, argument/parameter binding, and
return/temporary binding. In each of these contexts, the address-of operator on the target Ivalue is elided. The syntac-
tic motivation is clearest when considering overloaded operator assignment, eg, int 7+=?(int&,int); given int x,y, the
expected call syntax is X +=y, not &x +=.

More generally, this initialization of references from Ivalues rather than pointers is an instance of an
“lvalue-to-reference” conversion rather than an elision of the address-of operator; this conversion is used in any context
in CV where an implicit conversion is allowed. Similarly, use of the value pointed to by a reference in an rvalue context
can be thought of as a “reference-to-rvalue” conversion, and CV also includes a qualifier-adding “reference-to-reference”
conversion, analogous to the T * to const T * conversion in standard C. The final reference conversion included in CV is
an “rvalue-to-reference” conversion, implemented by means of an implicit temporary. When an rvalue is used to initial-
ize a reference, it is instead used to initialize a hidden temporary value with the same lexical scope as the reference, and
the reference is initialized to the address of this temporary.

struct S { double x, y; };

int x, vy;
void f( int & i, int & j, S & s, int v[] );
f(3,x+y, (S){1.0,70} (int [3]){1,23}); // pass rvalue to Ivalue = implicit temporary

This allows complex values to be succinctly and efficiently passed to functions, without the syntactic overhead of the
explicit definition of a temporary variable or the runtime cost of pass-by-value. C++ allows a similar binding, but only for
const references; the more general semantics of CV are an attempt to avoid the const poisoning problem,? in which the
addition of a const qualifier to one reference requires a cascading chain of added qualifiers.

TWhile effort has been made into non-null reference checking in C++ and Java, the exercise seems moot for any nonmanaged languages (C/C+t), given
that it only handles one of many different error situations, eg, using a pointer after its storage is deleted.
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C Type Nesting C Implicit Hoisting Ccv
struct S { enum C { R, G, B}; | struct S {
enum C{R,G B}, union U {int i, j; }; enum C{R,G B};
struct T { struct T { struct T {
union U {int i, j; }; enum C ¢; union U {int i, j; };
enum C c; short int i, j; enum C c;
short int i, j; b short int i, j;
h struct S { h
struct T t; struct T t; struct T t;
s }si }si
int rtn() { int rtn() {
st.c=R; s.t.c = S.R; // type qualification
struct Tt={R, 1,2} struct STt={SR, 1,2}
enum Cc; enum S.C ¢;
union U u; union S.T.U u;
} }

FIGURE 5 Type nesting/qualification [Colour figure can be viewed at wileyonlinelibrary.com]

6.3 | Type nesting

Nested types provide a mechanism to organize associated types and refactor a subset of members into a named aggregate
(eg, subaggregates name, address, department, within aggregate employe). Java nested types are dynamic (apply to
objects), C++ are static (apply to the class), and C hoists (refactors) nested types into the enclosing scope, which means
there is no need for type qualification. Since CV in not object oriented, adopting dynamic scoping does not make sense;
instead, CV adopts C++ static nesting, using the member-selection operator “.” for type qualification, as does Java, rather
than the C++ type-selection operator “::” (see Figure 5). In the C left example, types C, U, and T are implicitly hoisted
outside of type S into the containing block scope. In the CV right example, the types are not hoisted and accessible.

6.4 | Constructors and destructors

One of the strengths (and weaknesses) of C is memory-management control, allowing resource release to be precisely
specified versus unknown release with garbage-collected memory management. However, this manual approach is ver-
bose, and it is useful to manage resources other than memory (eg, file handles) using the same mechanism as memory.
C++ addresses these issues using RAIIL, implemented by means of constructor and destructor functions; CV adopts con-
structors and destructors (and finally) to facilitate RAIL. While constructors and destructors are a common feature of
object-oriented programming languages, they are an independent capability allowing CV to adopt them while retaining
a procedural paradigm. Specifically, CV constructors and destructors are denoted by name and first parameter type ver-
sus name and nesting in an aggregate type. Constructor calls seamlessly integrate with existing C initialization syntax,
providing a simple and familiar syntax to C programmers and allowing constructor calls to be inserted into legacy C code
with minimal code changes.

In CV, a constructor is named ?{} and a destructor is named *?{}.* The name {} comes from the syntax for the initializer:
struct S {inti, j; } s = { 2, 3 }. Like other CV operators, these names represent the syntax used to explicitly call the
constructor or destructor, eg, s{...} or #s{...}. The constructor and the destructor have return type void, and the first
parameter is a reference to the object type to be constructed or destructed. While the first parameter is informally called
the this parameter, as in object-oriented languages, any variable name may be used. Both constructors and destructors
allow additional parameters after the this parameter for specifying values for initialization/deinitialization.!

struct VLA { int size, * data; }; // variable length array of integers
void ?{}( VLA & vla ) with ( vla ) { size = 10; data = alloc( size ); } // default constructor
void A?{}( VLA & vla ) with ( vla ) { free( data ); }  // destructor

{

VLA x; // implicit: x{};
} // implicit: *x{};

“The symbol * is used for the destructor name because it was the last binary operator that could be used in a unary context.
I Destruction parameters are useful for specifying storage-management actions, such as deinitialize but not deallocate.
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VLA is a managed type*: a type requiring a nontrivial constructor or destructor, or with a member of a managed type. A
managed type is implicitly constructed at allocation and destructed at deallocation to ensure proper interaction with run-
time resources, in this case, the data array in the heap. For details of the code-generation placement of implicit constructor
and destructor calls among complex executable statements, see section 2.2 in the work of Schluntz.*

CV also provides syntax for initialization and copy.

void 7{}( VLA & vla, int size, char fill = '\0"' ) { // initialization
vla.[ size, data | = [ size, alloc( size, fill ) |;

}

void 7{}( VLA & vla, VLA other ) { // copy, shallow
vla = other;

}

(Note that the example is purposely simplified using shallow-copy semantics.) An initialization constructor call has the
same syntax as a C initializer, except that the initialization values are passed as arguments to a matching constructor
(number and type of parameters).

VLAva={20,07}, xarr=alloc(){5, 0}

Note of the use of a constructor expression to initialize the storage from the dynamic storage allocation. Like C++, the
copy constructor has two parameters, the second of which is a value parameter with the same type as the first parameter;
appropriate care is taken to not recursively call the copy constructor when initializing the second parameter.

CV constructors may be explicitly called, like Java, and destructors may be explicitly called, like C++. Explicit calls to
constructors double as a C+4+-style placement syntax, useful for construction of members in user-defined constructors and
reuse of existing storage allocations. Like the other operators in CV, there is a concise syntax for constructor/destructor
function calls.

{
VLA x, y=49{20,0x01} z=y; // z points to y
/] Xk y{ 20, 0x01 }; Az y}
rx{}; // deallocate x
x{}; // reallocate x
z{ 5, Oxff }; // reallocate z, not pointing to y
ry{} // deallocate y
y{x} // reallocate y, points to x
x{}: // reallocate x, not pointing to y

L/ VA T

To provide a uniform type interface for otype polymorphism, the CV compiler automatically generates a default con-
structor, copy constructor, assignment operator, and destructor for all types. These default functions can be overridden
by user-generated versions. For compatibility with the standard behavior of C, the default constructor and destructor
for all basic, pointer, and reference types do nothing, whereas the copy constructor and assignment operator are bitwise
copies; if default zero initialization is desired, the default constructors can be overridden. For user-generated types, the
four functions are also automatically generated. enum types are handled the same as their underlying integral type, and
unions are also bitwise copied and no-op initialized and destructed. For compatibility with C, a copy constructor from
the first union member type is also defined. For struct types, each of the four functions is implicitly defined to call their
corresponding functions on each member of the struct. To better simulate the behavior of C initializers, a set of member
constructors is also generated for structures. A constructor is generated for each nonempty prefix of a structure's member
list to copy-construct the members passed as parameters and default-construct the remaining members. To allow users
to limit the set of constructors available for a type, when a user declares any constructor or destructor, the corresponding
generated function and all member constructors for that type are hidden from expression resolution; similarly, the gen-
erated default constructor is hidden upon the declaration of any constructor. These semantics closely mirror the rule for
implicit declaration of constructors in C-+.24P130)

In some circumstance, programmers may not wish to have implicit constructor and destructor generation and calls.
In these cases, CV provides the initialization syntax S x @= {}, and the object becomes unmanaged; hence, implicit

** A managed type affects the runtime environment versus a self-contained type.
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constructor and destructor calls are not generated. Any C initializer can be the right-hand side of an @= initializer, eg,
VLA a @= { 0, 0x0 }, with the usual C initialization semantics. The same syntax can be used in a compound literal, eg,
a = (VLA)@{ 0, 0x0 }, to create a C-style literal. The point of @= is to provide a migration path from legacy C code to
CV, by providing a mechanism to incrementally convert into implicit initialization.

7 | LITERALS

C already includes limited polymorphism for literals-0 can be either an integer or a pointer literal, depending on context,
whereas the syntactic forms of literals of the various integer and float types are very similar, differing from each other only
in suffix. In keeping with the general CV approach of adding features while respecting the “C style” of doing things, C's
polymorphic constants and typed literal syntax are extended to interoperate with user-defined types, while maintaining
a backward-compatible semantics.

A simple example is allowing the underscore, as in Ada, to separate prefixes, digits, and suffixes in all CV constants, eg,
Ox_1.ffff_ffff_p_128 I, where the underscore is also the standard separator in C identifiers. C++ uses a single quote as a
separator, but it is restricted among digits, precluding its use in the literal prefix or suffix, eg, 0x1.ffff ' ffffp128I, and causes
problems with most integrated development environments (IDEs), which must be extended to deal with this alternate
use of the single quote.

71 1 0/1

In C, O has the special property that it is the only “false” value; by the standard, any value that compares equal to O is
false, whereas any value that compares unequal to O is true. As such, an expression X in any Boolean context (such as the
condition of an if or while statement, or the arguments to &&, Il, or ?:) can be rewritten as x != 0 without changing its
semantics. Operator overloading in CV provides a natural means to implement this truth-value comparison for arbitrary
types, but the C type system is not precise enough to distinguish an equality comparison with O from an equality compar-
ison with an arbitrary integer or pointer. To provide this precision, CV introduces a new type zero_t as the type of literal
0 (somewhat analagous to nullptr_t and nullptr in C4++11); zero_t can only take the value 0, but has implicit conversions
to the integer and pointer types so that C code involving O continues to work. With this addition, CV rewrites if (x) and
similar expressions to if ( (x) != 0 ) or the appropriate analogue, and any type T is “truthy” by defining an operator over-
load int ?!1=?( T, zero_t). C+ makes types truthy by adding a conversion to bool; prior to the addition of explicit cast
operators in C4++11, this approach had the pitfall of making truthy types transitively convertible into any numeric type;
CV avoids this issue.

Similarly, CV also has a special type for 1, one_t; like zero_t, one_t has built-in implicit conversions to the various
integral types so that 1 maintains its expected semantics in legacy code for operations + and —. The addition of one_t
allows generic algorithms to handle the unit value uniformly for types where it is meaningful. In particular, polymorphic
functions in the CV prelude define ++x and x++ in terms of x += 1, allowing users to idiomatically define all forms
of increment for a type T by defining the single function T & ?+=(T &, one_t); analogous overloads for the decrement
operators are present as well.

7.2 | User literals

For readability, it is useful to associate units to scale literals, eg, weight (stone, pound, kilogram) or time (seconds, minutes,
hours). The left of Figure 6 shows the CV alternative call syntax (postfix: literal argument before function name), using
the backquote, to convert basic literals into user literals. The backquote is a small character, making the unit (function
name) predominate. For examples, the multiprecision integer type in Section 8.5 has the following user literals.

y = 9223372036854775807L" mp * 18446744073709551615UL" mp;
y = "12345678901234567890123456789" mp + "12345678901234567890123456789" " mp;

Because CV uses a standard function, all types and literals are applicable, as well as overloading and conversions, where
?" denotes a postfix-function name and ~ denotes a postfix-function call.
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Ccv C+
struct W { struct W {
double stones; double stones;
}5 W() { stones = 0.0; }
void ?7{}( W & w ) { w.stones = 0; } W( double w ) { stones = w; }
void ?7{}( W & w, double w ) { w.stones =w; } }
W2+2(WI, Wr){ W operator+( W I, Wr ) {
return (W){ l.stones + r.stones }; return W( |.stones + r.stones );
W 7" st(double w) { return (W){ w }; } W operator""_st(unsigned long long int w) {return W(w); }

W 7" Ib(double w) { return (W){ w/14.0 }; } W operator""_|b(unsigned long long int w) {return W(w/14.0); }
W 7" kg(double w) { return (W){ wx0.16 }; } W operator""_kg(unsigned long long int w) {return W(wx0.16); }
W operator""_st(long double w ) { return W( w ); }
W operator""_lb(long double w ) { return W( w / 14.0 ); }
W operator""_kg(long double w ) { return W( w = 0.16 ); }

int main() { int main() {

W w, heavy = {20 }; W w, heavy = {20 };

w = 155 |b; w = 155_1b;

w = 0b_1111"st; // binary unsupported

w = 0_233"Ib; w = 0'233_1lb; // quote separator

w = 0x_9b_u"kg; w = 0x9b_kg;

w = 55"st + 8 kg + 25.01"|b + heavy; w = 5.5d st + 8 kg + 25.01_|b + heavy;
} }

FIGURE 6 User literal [Colour figure can be viewed at wileyonlinelibrary.com]

postfix function constant variable/expression postfix pointer
int 77 h(ints); 0 “h; inti =7, int (x 7" p)(inti);
int 7" h( double s ); 3.5"h; i"h; Tp="h
int 7" m( char c); 1 m; (i+3)h; 3'p;
int 7" m( const char s ); "123" "456" " m; (i+3.5)h; i"p;
int 7" t(int a, int b, int ¢ ); [1,2,3]'t; (i+3)p

The right of Figure 6 shows the equivalent C++ version using the underscore for the call syntax. However, C++ restricts
the types, eg, unsigned long long int and long double to represent integral and floating literals. After which, user
literals must match (no conversions); hence, it is necessary to overload the unit with all appropriate types.

8 | LIBRARIES

As stated in Section 2.2, CV inherits a large corpus of library code, where other programming languages must rewrite or
provide fragile interlanguage communication with C. CV has replacement libraries condensing hundreds of existing C
names into tens of CV overloaded names, all without rewriting the actual computations. In many cases, the interface is
an inline wrapper providing overloading during compilation but of zero cost at runtime. The following sections give a
glimpse of the interface reduction to many C libraries. In many cases, signed/unsigned char, short, and _Complex
functions are available (but not shown) to ensure that expression computations remain in a single type, as conversions
can distort results.

8.1 | Limits

C library limits.h provides lower and upper bound constants for the basic types. CV name overloading is used to condense
these typed constants.

Definition Usage
const short int MIN = -32768; short int si = MIN;
const int MIN = -2147483648; int i = MIN;

const long int MIN = -9223372036854775808L; long int i = MIN;

The result is a significant reduction in names to access typed constants.
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Cv C

MIN  CHAR_MIN, SHRT_MIN, INT_MIN, LONG_MIN, LLONG_MIN, FLT_MIN, DBL_MIN, LDBL_MIN

MAX UCHAR_MAX, SHRT_MAX, INT_MAX, LONG_MAX, LLONG_MAX, FLT_MAX, DBL_MAX, LDBL_MAX
Pl M_PI, M_PII

E M_E, M_El

8.2 | Math

C library math.h provides many mathematical functions. CV function overloading is used to condense these mathematical
functions.

Definition Usage
float log( float x ); float f = log( 3.5 );
double log( double ); double d = log( 3.5 );

double _Complex log( double _Complex x ); double _Complex dc = log( 3.5+0.51 );

The result is a significant reduction in names to access math functions.

Ccv C

log logf, log, logl, clogf, clog, clogl

sqrt sqrtf, sqrt, sqrtl, csqrtf, csqrt, csqrtl
sin sinf, sin, sinl, csinf, csin, csinl

While C11 has type-generic math (see section 7.25 of the ISO/IEC 98997) in tgmath.h to provide a similar mechanism,
these macros are limited, matching a function name with a single set of floating type(s). For example, it is impossible to
overload atan for both one and two arguments; instead, the names atan and atan2 are required (see Section 2.1). The key
observation is that only a restricted set of type-generic macros is provided for a limited set of function names, which do
not generalize across the type system, as in CV.

8.3 | Standard

C library stdlib.h provides many general functions. CV function overloading is used to condense these utility functions.

Definition Usage
unsigned int abs( int ); unsigned int i = abs( -1);
double abs( double ); double d = abs( -1.5);

double abs( double _Complex ); double d = abs( -1.540.51 );

The result is a significant reduction in names to access utility functions.

Ccv C
abs abs, labs, llabs, fabsf, fabs, fabsl, cabsf, cabs, cabsl
strto strtol, strtoul, strtoll, strtoull, strtof, strtod, strtold

random srand48, mrand48, Irand48, drand48

In addition, there are polymorphic functions, like min and max, that work on any type with operator ?<? or ?>?.

The following shows one example where CV extends an existing standard C interface to reduce complexity and provide
safety. C/C11 provide a number of complex and overlapping storage-management operations to support the following
capabilities.

fill an allocation with a specified character.

resize an existing allocation to decrease or increase its size. In either case, new storage may or may not be allocated,
and if there is a new allocation, as much data from the existing allocation are copied. For an increase in storage
size, new storage after the copied data may be filled.
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C

C11
Cv

WILEY—27
TABLE1 Storage-management operations
fill resize  align  array
malloc no no no no
calloc  yes (0 only) no no yes
realloc no/copy yes no no
memalign no no yes no
posix_memalign no no yes no
aligned_alloc  no no yes no
alloc  yes/copy no/yes  no yes
align_alloc  yes no yes yes

size_t dim = 10;

// array dimension

char fill = "\xff'; // initialization fill value
int * ip;
Ccv C
ip = alloc(); ip = (int *)malloc( sizeof(int) );
ip = alloc( fill ); ip = (int *)malloc( sizeof(int) ); memset( ip, fill, sizeof(int) );
ip = alloc( dim ); ip = (int *)malloc( dim * sizeof(int) );
ip = alloc( dim, fill ); ip = (int *)malloc( sizeof(int) ); memset( ip, fill, dim * sizeof(int) );
ip = alloc( ip, 2 * dim ); ip = (int *)realloc( ip, 2 * dim * sizeof(int) );
ip = alloc( ip, 4 * dim, fill ); ip = (int *)realloc( ip, 4 * dim * sizeof(int) ); memset( ip, fill, 4 x dim * sizeof(int));
ip = align_alloc ); ip = memalign( 16, sizeof(int) );

ip = align_alloc dim ); ip = memalign( 16, dim = sizeof(int) );

(16 (
ip = align_alloc( 16, fill ); ip = memalign( 16, sizeof(int) ); memset( ip, fill, sizeof(int) );
( 16, (
ip = align_alloc( 16, dim, fill ); ip = memalign( 16, dim * sizeof(int) ); memset( ip, fill, dim * sizeof(int) );

FIGURE 7 CYV versus C storage allocation

align an allocation on a specified memory boundary, eg, an address multiple of 64 or 128 for cache-line purposes.
array allocation with a specified number of elements. An array may be filled, resized, or aligned.

Table 1 shows the capabilities provided by C/C11 allocation functions and how all the capabilities can be combined into
two CV functions. CV storage-management functions extend the C equivalents by overloading, providing shallow type
safety, and removing the need to specify the base allocation size. Figure 7 contrasts CV and C storage allocation performing
the same operations with the same type safety.

Variadic new (see Section 4.7) cannot support the same overloading because extra parameters are for initialization.
Hence, there are new and anew functions for single and array variables, and the fill value is the arguments to the
constructor.

struct S {int i, j; };

void 7{}(S & s,inti, intj) {si=isj=j }
Sxs=new(23)

S % as = anew( dim, 2, 3);

// allocate storage and run constructor
// each array element initialized to 2, 3

Note that C++ can only initialize array elements via the default constructor.

Finally, the CV memory allocator has sticky properties for dynamic storage: fill and alignment are remembered with
an object’s storage in the heap. When a realloc is performed, the sticky properties are respected, so that new storage is
correctly aligned and initialized with the fill character.

84 | I/0

The goal of CV I/0O is to simplify the common cases, while fully supporting polymorphism and user-defined types in a
consistent way. The approach combines ideas from C++ and Python. The CV header file for the I/O library is fstream.
The common case is printing out a sequence of variables separated by whitespace.
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Cv C++
intx=1y=22z=3;
sout | x |y |z | endl cout << x << " "<<y<<" " <<z<<endl
1.2.3 1.2.3

The CV form has half the characters of the C4++ form and is similar to Python I/O with respect to implicit separators.

@

Similar simplification occurs for tuple I/O, which prints all tuple values separated by ,;,”.

[int, [int,int]Jt1=1[1,[23]],t2=[4,[5,6]];
sout | t1 | t2 | endl; // print tuples

1,02,0304,05,06

Finally, CV uses the logical-or operator for I/O as it is the lowest-priority overloadable operator, other than assignment.
Therefore, fewer output expressions require parenthesis.

CV:  sout |x*x3|y+1|z<<2|x==y|(x|y)|(x]|ly)]|(x>z?1:2)]end]
CH: cout<<x*x3<<y+1<<(z<<2)<<(x==y)<<(x|y)<<(x]||y)<<(x>2z71:2)<<endl
31_]31_|12u0|_|3[_| 1l_I2

There is a weak similarity between the CV logical-or operator and the Shell pipe operator for moving data, where data flow
in the correct direction for input but in the opposite direction for output. There are functions to set and get the separator
string and manipulators to toggle separation on and off in the middle of output.

8.5 | Multiprecision integers

CV has an interface to the GNU multiple precision (GMP) signed integers,* similar to the C++ interface provided by
GMP. The CV interface wraps GMP functions into operator functions to make programming with multiprecision integers
identical to using fixed-sized integers. The CV type name for multiprecision signed integers is Int, and the header file is
gmp. Figure 8 shows a multiprecision factorial program contrasting the GMP interface in CV and C.

9 | POLYMORPHISM EVALUATION

CV adds parametric polymorphism to C. A runtime evaluation is performed to compare the cost of alternative styles of
polymorphism. The goal is to compare just the underlying mechanism for implementing different kinds of polymorphism.
The experiment is a set of generic-stack microbenchmarks® in C, CV, and C++ (see implementations in Appendix A).
Since all these languages share a subset essentially comprising standard C, maximal-performance benchmarks should
show little runtime variance, differing only in length and clarity of source code. A more illustrative comparison measures
the costs of idiomatic usage of each language’s features. Figure 9 shows the CV benchmark tests for a generic stack based
on a singly linked list. The benchmark test is similar for the other languages. The experiment uses element types int and
pair(short, char) and pushes N = 40M elements on a generic stack, copies the stack, clears one of the stacks, and finds
the maximum value in the other stack.

Cv C
#include <gmp> #include <gmp.h>
int main( void ) { int main( void ) {
sout | "Factorial Numbers" | endl; gmp_printf( "Factorial Numbers\n" );
Int fact = 1; mpz_t fact; mpz_init_set_ui( fact, 1 );
sout | 0 | fact | endl; gmp_printf( "%d %Zd\n", 0, fact );
for (unsignedinti=1;i<=40;i+=1){ for (unsignedinti=1;i<=40;i+=1){
fact =i mpz_mul_ui( fact, fact, i );
sout | i | fact | endl; gmp_printf( "%d %Zd\n", i, fact );
}
¥ ¥

FIGURE 8 GMP interface CV versus C [Colour figure can be viewed at wileyonlinelibrary.com]
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int main() {
int max = 0, val = 42;
stack( int ) si, ti;

REPEAT_TIMED( "push_int", N, push( si, val ); )

TIMED( "copy_int", ti{ si }; )

TIMED( "clear_int", clear( si ); )

REPEAT_TIMED( "pop_int", N, int x = pop( ti ); if ( x > max ) max = x; )

pair( short, char ) max = { Oh, '\0"' }, val = { 42h, 'a' };
stack( pair( short, char ) ) sp, tp;

REPEAT_TIMED( "push_pair", N, push( sp, val ); )

TIMED( "copy_pair", tp{ sp }; )

TIMED( "clear_pair", clear( sp );)

REPEAT_TIMED( "pop_pair", N, pair(short, char) x = pop( tp ); if ( x > max ) max = x; )

}
FIGURE 9 CV benchmark test
23.
10 T T T 1 T T T T 9
s C ! ! ! i
zzzza CVY :
8r CH 1 ]
ER N '
=]
8 N
2 4t _ .............................. ]
N
2 N ]
\
push copy clear pop push copy clear pop o
int int int int pair pair pair pair

FIGURE 10 Benchmark timing results (smaller is better) [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Properties of benchmark code

C Cv C++ C-++obj
maximum memory usage (MB) 10001 2502 2503 11253
source code size (lines) 201 191 125 294
redundant type annotations (lines) 27 0 2 16
binary size (KB) 14 257 14 37

The structure of each benchmark implemented is C with void sx-based polymorphism, CV with parametric polymor-
phism, C++ with templates, and C-++ using only class inheritance for polymorphism, called C++obj. The C++obj variant
illustrates an alternative object-oriented idiom where all objects inherit from a base object class, mimicking a Java-like
interface; hence, runtime checks are necessary to safely downcast objects. The most notable difference among the imple-
mentations is in the memory layout of generic types: CV and C++ inline the stack and pair elements into corresponding
list and pair nodes, whereas C and C-++obj lack such capability and, instead, must store generic objects via pointers to
separately allocated objects. Note that the C benchmark uses unchecked casts as C has no runtime mechanism to perform
such checks, whereas CV and C++ provide type safety statically.

Figure 10 and Table 2 show the results of running the benchmark in Figure 9 and its C, C++, and C++obj equivalents.
The graph plots the median of five consecutive runs of each program, with an initial warm-up run omitted. All code is
compiled at -02 by gcc or g+ + 6.4.0, with all C+ code compiled as C4++14. The benchmarks are run on an Ubuntu 16.04
workstation with 16 GB of RAM and a 6-core AMD FX-6300 CPU with 3.5 GHz maximum clock frequency.

The C and C++obj variants are generally the slowest with the largest memory footprint, due to their less-efficient mem-
ory layout and the pointer indirection necessary to implement generic types; this inefficiency is exacerbated by the second
level of generic types in the pair benchmarks. By contrast, the CV and C++ variants run in roughly equivalent time for
both the integer and pair because of the equivalent storage layout, with the inlined libraries (ie, no separate compila-
tion) and greater maturity of the C4++ compiler contributing to its lead. C++obj is slower than C largely due to the cost
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of runtime type checking of downcasts (implemented with dynamic_cast); the outlier for CV, pop pair, results from the
complexity of the generated-C polymorphic code. The gcc compiler is unable to optimize some dead code and condense
nested calls; a compiler designed for CV could easily perform these optimizations. Finally, the binary size for CV is larger
because of static linking with the CV libraries.

CVis also competitive in terms of source code size, measured as a proxy for programmer effort. The line counts in Table 2
include implementations of pair and stack types for all four languages for purposes of direct comparison, although it
should be noted that CV and C++ have prewritten data structures in their standard libraries that programmers would gen-
erally use instead. Use of these standard library types has minimal impact on the performance benchmarks, but shrinks
the CV and C++ benchmarks to 39 and 42 lines, respectively. The difference between the CV and C++ line counts is pri-
marily declaration duplication to implement separate compilation; a header-only CV library would be similar in length
to the C4++ version. On the other hand, C does not have a generic collections library in its standard distribution, result-
ing in frequent reimplementation of such collection types by C programmers. C++obj does not use the C++ standard
template library by construction and, in fact, includes the definition of object and wrapper classes for char, short, and
int in its line count, which inflates this count somewhat, as an actual object-oriented language would include these in
the standard library; with their omission, the C++obj line count is similar to C. We justify the given line count by noting
that many object-oriented languages do not allow implementing new interfaces on library types without subclassing or
wrapper types, which may be similarly verbose.

Line count is a fairly rough measure of code complexity; another important factor is how much type information the
programmer must specify manually, especially where that information is not compiler checked. Such unchecked type
information produces a heavier documentation burden and increased potential for runtime bugs and is much less com-
mon in CV than C, with its manually specified function pointer arguments and format codes, or C++obj, with its extensive
use of un-type-checked downcasts, eg, object to integer when popping a stack. To quantify this manual typing, the
“redundant type annotations” line in Table 2 counts the number of lines on which the type of a known variable is respec-
ified, either as a format specifier, explicit downcast, type-specific function, or by name in a sizeof, struct literal, or new
expression. The C4++ benchmark uses two redundant type annotations to create a new stack nodes, whereas the C and
C++obj benchmarks have several such annotations spread throughout their code. The CV benchmark is able to eliminate
all redundant type annotations through the use of the polymorphic alloc function discussed in Section 8.

We conjecture that these results scale across most generic data types as the underlying polymorphism implement is
constant.

10 | RELATED WORK

10.1 | Polymorphism

ML* was the first language to support parametric polymorphism. Like CV, it supports universal type parameters, but not
the use of assertions and traits to constrain type arguments. Haskell*® combines ML-style polymorphism, polymorphic
data types, and type inference with the notion of type classes, collections of overloadable methods that correspond in
intent to traits in CV. Unlike CV, Haskell requires an explicit association between types and their classes that specifies
the implementation of operations. These associations determine the functions that are assertion arguments for particular
combinations of class and type, in contrast to CV where the assertion arguments are selected at function call sites based
upon the set of operations in scope at that point. Haskell also severely restricts the use of overloading: an overloaded name
can only be associated with a single class, and methods with overloaded names can only be defined as part of instance
declarations.

C++ provides three disjoint polymorphic extensions to C: overloading, inheritance, and templates. The overloading is
restricted because resolution does not use the return type, inheritance requires learning object-oriented programming and
coping with a restricted nominal-inheritance hierarchy, templates cannot be separately compiled resulting in compila-
tion/code bloat and poor error messages, and determining how these mechanisms interact and which to use is confusing.
In contrast, CV has a single facility for polymorphic code supporting type-safe separate compilation of polymorphic func-
tions and generic (opaque) types, which uniformly leverage the C procedural paradigm. The key mechanism to support
separate compilation is CV's explicit use of assumed type properties. Until C++ concepts® are standardized (anticipated
for C++20), C++ provides no way of specifying the requirements of a generic function beyond compilation errors during
template expansion; furthermore, C++ concepts are restricted to template polymorphism.
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Cyclone® also provides capabilities for polymorphic functions and existential types, similar to CV's forall functions and
generic types. Cyclone existential types can include function pointers in a construct similar to a virtual function table,
but these pointers must be explicitly initialized at some point in the code, which is a tedious and potentially error-prone
process. Furthermore, Cyclone's polymorphic functions and types are restricted to abstraction over types with the same
layout and calling convention as voidx, ie, only pointer types and int. In CV terms, all Cyclone polymorphism must be
dtype-static. While the Cyclone design provides the efficiency benefits discussed in Section 3.3 for dtype-static polymor-
phism, it is more restrictive than CV's general model. Smith and Volpano* present Polymorphic C, an ML dialect with
polymorphic functions, C-like syntax, and pointer types; it lacks many of C's features, most notably structure types, and,
hence, is not a practical C replacement.

Objective-C** is an industrially successful extension to C. However, Objective-C is a radical departure from C, using
an object-oriented model with message passing. Objective-C did not support type-checked generics until recently,*
historically using less-efficient runtime checking of object types. The GObject** framework also adds object-oriented
programming with runtime type-checking and reference-counting garbage collection to C; these features are more intru-
sive additions than those provided by CV, in addition to the runtime overhead of reference counting. Vala** compiles to
GObject-based C, adding the burden of learning a separate language syntax to the aforementioned demerits of GObject as
a modernization path for existing C code bases. Java*® included generic types in Java 5, which are type checked at compi-
lation and type erased at runtime, similar to CV's. However, in Java, each object carries its own table of method pointers,
whereas CV passes the method pointers separately to maintain a C-compatible layout. Java is also a garbage-collected,
object-oriented language, with the associated resource usage and C-interoperability burdens.

D,*” Go, and Rust*® are modern compiled languages with abstraction features similar to CV traits, interfaces in D and
Go, and traits in Rust. However, each language represents a significant departure from C in terms of language model, and
none has the same level of compatibility with C as CV. D and Go are garbage-collected languages, imposing the associ-
ated runtime overhead. The necessity of accounting for data transfer between managed runtimes and the unmanaged C
runtime complicates foreign-function interfaces to C. Furthermore, while generic types and functions are available in Go,
they are limited to a small fixed set provided by the compiler, with no language facility to define more. D restricts garbage
collection to its own heap by default, whereas Rust is not garbage collected and, thus, has a lighter-weight runtime more
interoperable with C. Rust also possesses much more powerful abstraction capabilities for writing generic code than Go.
On the other hand, Rust's borrow checker provides strong safety guarantees but is complex and difficult to learn and
imposes a distinctly idiomatic programming style. CV, with its more modest safety features, allows direct ports of C code
while maintaining the idiomatic style of the original source.

10.2 | Tuples/variadics

Many programming languages have some form of tuple construct and/or variadic functions, eg, SETL, C, KW-C, C++, D,
Go, Java, ML, and Scala. SETL* is a high-level mathematical programming language, with tuples being one of the primary
data types. Tuples in SETL allow subscripting, dynamic expansion, and multiple assignment. C provides variadic func-
tions through va_list objects, but the programmer is responsible for managing the number of arguments and their types;
thus, the mechanism is type unsafe. KW-C,* a predecessor of CV, introduced tuples to C as an extension of the C syntax,
taking much of its inspiration from SETL. The main contributions of that work were adding MRVF, tuple mass and multi-
ple assignment, and record-member access. C++11 introduced std::tuple as a library variadic-template structure. Tuples
are a generalization of std::pair, in that they allow for arbitrary length, fixed-size aggregation of heterogeneous values.
Operations include std::get<N> to extract values, std::tie to create a tuple of references used for assignment, and lexico-
graphic comparisons. C++17 proposes structured bindings* to eliminate predeclaring variables and the use of std::tie for
binding the results. This extension requires the use of auto to infer the types of the new variables; hence, complicated
expressions with a nonobvious type must be documented with some other mechanism. Furthermore, structured bindings
are not a full replacement for std::tie, as it always declares new variables. Like C++, D provides tuples through a library
variadic-template structure. Go does not have tuples but supports MRVF. Java's variadic functions appear similar to C's
but are type safe using homogeneous arrays, which are less useful than CV's heterogeneously typed variadic functions.
Tuples are a fundamental abstraction in most functional programming languages, such as Standard ML,* Haskell, and
Scala,* which decompose tuples using pattern matching.

10.3 | C extensions

C++ is the best known C-based language and is similar to CV in that both are extensions to C with source and runtime
backward compatibility. Specific differences between CV and C++ have been identified in prior sections, with a final
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observation that CV has equal or fewer tokens to express the same notion in many cases. The key difference in design
philosophies is that CV is easier for C programmers to understand by maintaining a procedural paradigm and avoiding
complex interactions among extensions. C++, on the other hand, has multiple overlapping features (such as the three
forms of polymorphism), many of which have complex interactions with its object-oriented design. As a result, C++
has a steep learning curve for even experienced C programmers, especially when attempting to maintain performance
equivalent to C legacy code.

There are several other C extension languages with less usage and even more dramatic changes than C++. Objective-C
and Cyclone are two other extensions to C with different design goals than CV, as discussed above. Other languages extend
C with more focused features. uC++,* CUDA,* ispc,* and Sierra* add concurrent or data-parallel primitives to C or C++;
data-parallel features have not yet been added to CV but are easily incorporated within its design, whereas concurrency
primitives similar to those in 4C++ have already been added.* Finally, CCured*” and Ironclad C++* attempt to provide
a more memory-safe C by annotating pointer types with garbage collection information; type-checked polymorphism in
CV covers several of C's memory-safety issues, but more aggressive approaches such as annotating all pointer types with
their nullability or requiring runtime garbage collection are contradictory to CV's backward compatibility goals.

11 | CONCLUSION AND FUTURE WORK

The goal of CV is to provide an evolutionary pathway for large C development environments to be more productive and
safer, while respecting the talent and skill of C programmers. While other programming languages purport to be a bet-
ter C, they are, in fact, new and interesting languages in their own right, but not C extensions. The purpose of this paper
is to introduce CV and showcase language features that illustrate the CV type system and approaches taken to achieve
the goal of evolutionary C extension. The contributions are a powerful type system using parametric polymorphism and
overloading, generic types, tuples, advanced control structures, and extended declarations, which all have complex inter-
actions. The work is a challenging design, engineering, and implementation exercise. On the surface, the project may
appear as a rehash of similar mechanisms in C++. However, every CV feature is different than its C++ counterpart, often
with extended functionality, better integration with C and its programmers, and always supporting separate compilation.
All of these new features are being used by the CV development team to build the CV runtime system. Finally, we demon-
strate that CV performance for some idiomatic cases is better than C and close to C++, showing the design is practically
applicable.

While all examples in the paper compile and run, there are ongoing efforts to reduce compilation time, provide better
debugging, and add more libraries; when this work is complete in early 2019, a public beta release will be available at
https://github.com/cforall/cforall. There is also new work on a number of CV features, including arrays with size, run-
time type information, virtual functions, user-defined conversions, and modules. While CV polymorphic functions use
dynamic virtual dispatch with low runtime overhead (see Section 9), it is not as low as C++ template inlining. Hence, it
may be beneficial to provide a mechanism for performance-sensitive code. Two promising approaches are an inline anno-
tation at polymorphic function call sites to create a template specialization of the function (provided the code is visible) or
placing an inline annotation on polymorphic function definitions to instantiate a specialized version for some set of types
(C++ template specialization). These approaches are not mutually exclusive and allow performance optimizations to be
applied only when necessary, without suffering global code bloat. In general, we believe separate compilation, producing
smaller code, works well with loaded hardware caches, which may offset the benefit of larger inlined code.
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APPENDIX A

BENCHMARK STACK IMPLEMENTATIONS

Throughout, /***/ designates a counted redundant type annotation; code reformatted slightly for brevity.

Al 1 C

typedef struct node {
void * value;
struct node * next;
} node;
typedef struct stack {
struct node * head;
} stack;
void copy_stack( stack * s, const stack * t,
void x (xcopy)( const void * ) ) {
node ** cr = &s—>head;
for (node x nx = t->head; nx; nx = nx->next) {
xcr = malloc( sizeof(node) ); /**x*/
(*cr)->value = copy( nx->value );
cr = &(xcr)->next;

xcr = NULL;
}
void clear_stack( stack * s, void (x free_el)( void * ) ) {
for ( node * nx = s=>head; nx; ) {
node x cr = nx;
nx = cr->next;
free_el( cr—>value );
free( cr );

}
s—>head = NULL;

stack new_stack() {
return (stack){ NULL }; /*xx/
}

stack * assign_stack( stack * s, const stack * t,
void * (xcopy_el)( const void * ),
void (*free_el)( void * ) ) {

if ( s>head == t->head ) return s;
clear_stack( s, free_el ); /xxx/
copy_stack( s, t, copy_el ); /#¥x/
return s;

_Bool stack_empty( const stack * s ) {
return s—>head == NULL;

void push_stack( stack # s, void * v ) {
node x n = malloc( sizeof(node) ); /*xx/
xn = (node){ v, s->head }; /*xx/
s—>head = n;

void * pop_stack( stack x s ) {
node * n = s—>head;
s-—>head = n->next;
void * v = n->value;
free( n);

return v,
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A2 | CVY

forall( otype T ) {
struct node {
T value;
node(T) * next;

struct stack { node(T) * head; };
void ?{}( stack(T) & s, stack(T) t ) { // copy
node(T) #* cr = &s.head;
for ( node(T) * nx = t.head; nx; nx = nx>next ) {
xcr = alloc();
((xcr)—>value){ nx->value };
cr = &(*xcr)->next;

xcr = 0;

}
void clear( stack(T) & s ) with( s ) {
for ( node(T) * nx = head; nx; ) {
node(T) * cr = nx;
nx = cr->next;
rer){}:
free( cr );

}
head = 0;

A3 | C++

template<typename T> struct stack {
struct node {
T value;
node * next;
node( const T & v, node * n = nullptr ) :
value( v ), next( n) {}

node * head;
void copy( const stack<T> & o) {
node x* cr = &head;
for ( node * nx = o.head; nx; nx = nx->next ) {
xcr = new node{ nx->value }; /*¥x*/
cr = &(*cr)->next;

xcr = nullptr;

}
void clear() {
for ( node * nx = head; nx; ) {
node * cr = nx;
nx = cr->next;
delete cr;

head = nullptr;

WILEY—24

void 7{}( stack(T) & s ) { (s.head){ 0 }; }
void 2 ?{}( stack(T) & s) { clear( s ); }
stack(T) 7=7( stack(T) & s, stack(T) t ) {

if ( s.head == t.head ) returns;

clear( s );

s{th

return s;

_Bool empty( const stack(T) & s ) {
return s.head == 0;

¥

void push( stack(T) & s, T value ) with( s ) {
node(T) * n = alloc();
(*n){ value, head };
head = n;

¥
T pop( stack(T) & s ) with(s) {
node(T) * n = head;
head = n->next;
T v = n>value;
) {3
free( n);

return v;

stack() : head( nullptr ) {}
stack( const stack<T> & o) { copy( 0 ); }
~stack() { clear(); }
stack & operator=( const stack<T> & o) {
if ( this == &o ) return xthis;
clear();
copy( 0 );
return xthis;

bool empty() const {
return head == nullptr;

void push( const T & value ) {
head = new node{ value, head }; /#¥x/

}
T pop() {
node * n = head;
head = n—>next;
T v = std::move( n->value );
delete n;
return v;

33RO SUOLLLLOD) 3AERID 3)ge21 e AR AQ PRLLEN0D 22 SSPRE WO BN 40 S2IU 0} ARX1 U1 O 43| I UO (SU0BIPU0-PUR-SULEYLL0D A3 i ARig Ul U0/ ) SUORIPU0)) PLR SR | 33335 ThZ02/E0/2Z] o AR auiuo A A suod eueq ool JO AERALIN Ag $79Z 2d5/200T 0T/100W02 /8| wh AR 1Rul oy /Sty Loy papeoumoq ‘2T 'ST0Z "*4Z0L60T



2146 Wl LEY MOSS ET AL.
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struct stack {
struct node {
ptr<object> value;
node x next;
node( const object & v, node * n = nullptr ) :
value( v.new_copy() ), next( n ) {}

node x head,;
void copy( const stack & o) {
node x* cr = &head;
for ( node x nx = o.head; nx; nx = nx->next ) {
xcr = new node{ *nx->value }; /#¥x/
cr = &(xcr)->next;

xcr = nullptr;

}
void clear() {
for ( node x nx = head; nx; ) {
node * cr = nx;
nx = cr->next;
delete cr;

head = nullptr;

stack() : head( nullptr ) {}
stack( const stack & o) { copy( 0 ); }
~stack() { clear(); }
stack & operator=( const stack & o) {
if (this == &o ) return xthis;
clear();
copy( 0 );
return xthis;

bool empty() const {
return head == nullptr;

void push( const object & value ) {
head = new node{ value, head }; /x¥x/

ptr<object> pop() {
node * n = head;
head = n—>next;
ptr<object> v = std::move( n->value );
delete n;
return v;
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