The CV Scheduler

PhD Comprehensive || Research Proposal

Thierry Delisle

September 1, 2020

u]
o)
it

Q>

The CV Scheduler

Thierry Delisle

Introduction

CV and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

0/27

#® Introduction

CV and Concurrency

Scheduling in Practice

#®) Project: Proposal & Details

Conclusion

«4O0> «Fr «E» «

DA

The CV Scheduler

Thierry Delisle

Introduction

CV and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

1/27

CV and Concurrency

<O < Fr o«

DA

The CV Scheduler
Thierry Delisle
Introduction

CV and Concurrency

Schedulinalig
Practice
Project: Proposal &

Details

Conclusion

2/27

<O» «F>r «

Ul
v

DA

The CV Scheduler

Thierry Delisle

Introduction

CV and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

3/27

Concurrency in CV

User Level Threading
» M:N threading.

» User Level Context Switching causes kernel-threads to

run a different user-thread.

Threads organized in clusters:

» Clusters have their own kernel threads.

» Threads in a cluster are on run on the kernel threads of

that cluster.

«4O0>» «Fr «E»

«E)>

DA

The CV Scheduler

Thierry Delisle

Introduction

CV and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

427

Concurrency in CV

User Cluster Other Cluster(s)

|
000 | -
o0~ [
Blocked Tasks o Q) 3 3
:

Discrete-event
Manager o D@‘>
—
Ready Tasks L] =
preemption O O e Processors

Ogenerator/coroutine O task O monitor D processor }7

«O» «F»r «

! cluster

DA

The CV Scheduler

Thierry Delisle

Introduction

CV and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

5/27

Scheduling goal for CV

The CV scheduler should be viable for any workload.

This implies:

1. Producing a scheduler with sufficient fairness guarantees.
2. Handling kernel-threads running out of work.

3. Handling blocking 1/O operations.

«4O0>» «Fr «E»

«E)>

DA

The CV Scheduler

Thierry Delisle

Introduction

CV and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

6/27

Scheduling in Practice

«O» «F»r «

DA

The CV Scheduler

Thierry Delisle

Introduction

CV and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

7/21

In the Wild

Schedulers found in production application generally fall into

two categories:
» Feedback Scheduling

» Priority Scheduling (explicit or not)

«O» «F»r «

DA

Feedback Scheduling

The CV Scheduler

Thierry Delisie Most operating systems based their scheduling on feedback
Introduction IOOpS.
CV and Concurrency
Seheduling in The scheduler runs a thread and adjusts some metric to
choose when to run it, e.g., least CPU time first.

Project: Proposal &
Details

Conclusion

Relies on the following assumptions:

1. Threads live long enough for useful feedback information
to be to gathered.

2. Threads belong to multiple users so fairness across
threads is insufficient.

8/27 «O> «F>» «E>» « >

DA

The CV Scheduler

Thierry Delisle

Introduction

CV and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

9/27

Priority Scheduling

Runs all ready threads in group A before any ready

threads in group B.

Explicit priorities:

Threads given a priority at creation, e.g., Thread A has

priority 1, Thread B has priority 6.

Implicit priorities:

Certain threads are preferred, based on various metrics,

e.g., last run, last run on this CPU.

«4O0>» «Fr «E»

«E)>

DA

Priority Scheduling: Work-Stealing

The CV Scheduler
Ty 5 Work-Stealing is a very popular strategy.
Introduction Algorithm
CV and Concurrency .
Each processor has a list of ready threads.

Scheduling in

Practice Each processor runs threads from its ready queue first.
Project: Proposal & y .

Details If a processor's ready queue is empty, attempt to run
Conelusion threads from some other processor's ready queue.

Work-Stealing has implicit priorities: For a given processor,
threads on it's queue have higher priority.
Processors begin busy for long periods can mean starvation.

«4O0>» «FPr «E» «E»

it
V)
ye)
i)

10/27

The CV Scheduler

Thierry Delisle

Introduction

CV and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

11/27

Project: Proposal & Details

«O» «F»r «

DA

Central Ready-Queue

The CV Scheduler

Thierry Delisle

CV will have a single ready-queue per cluster.

Introduction

CV and Concurrency

The ready-queue will be sharded internally to reduce
contention.

Scheduling in
Practice

Project: Proposal &
Details

No strong coupling between internal queues and processors.

Conclusion

Constrasts with work-stealing which has a queue per
processor.

12 /27 «O>» «F> «E> <

!
v
it

DA

The CV Scheduler

Thierry Delisle

Introduction

CV and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

13/27

Central Ready-Queue

Ready
Threads

Array of
Queues

o0oo

«O» «F»r «

DA

Central Ready-Queue Challenges

The CV Scheduler

Thierry Delisle

Introduction

ot conemeney S€MI- “Empty” ready-queues
Scheduling i means success rate of randomly e
Practice .
t guessing goes down.
Project: Proposal &

s (T T[]

Queues

Conclusion

Possible solutions:

» Data structure tracking the work, can be dense or sparse,
global or sharded.

» Add bias towards certain sub-queues.

14 /27 «O>» «F> «E> <

!
v
it

DA

Dynamic Resizing

The CV Scheduler

Thierry Delisle
e Processors can be added at anytime on a cluster.
CV and Concurrency
Scheduling in The array of queues needs to be adjusted in consequence.

Project: Proposal &
Details

Solution: Global Reader-Writer lock

» Acquire for reading for normal scheduling operations.

» Acquire for right when resizing the array and
creating/deleting internal queues.

Conclusion

15 /27 «O>» «F> «E> <

!
v
it

DA

|dle Sleep

The CV Scheduler

Thierry Delisle

Processors which cannot find threads to run should sleep,
using pthread cond wait, sigwaitinfo, etc.

Introduction

CV and Concurrency

Scheduling in

Practice Scheduling a thread may need to wake sleeping processors.
Project; Proposal & Threads can be scheduled from processors terminating or
. running outside the cluster. In this case, all processors on

the cluster could be sleeping.

If some processors are sleeping, waking more may be wasteful.
A heuristic for this case is outside the scope of this project.

16 / 27 «O> «F>» «E>» « >

DA

Asynchronous |/0

The CV Scheduler

Thierry Delisle

Introduction

» 1/O Operations should block user-threads rather than
kernel-threads.

CV and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

» This requires 3 components:
1. an OS abstraction layer over the asynchronous interface,

Conclusion

2. an event-engine to (de)multiplex the operations,

3. and a synchronous interface for users to use.

17 /27 «O>» «F> «E> <

!
v
it

DA

The CV Scheduler

Thierry Delisle

Introduction

CV and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

18/27

Asynchronous |/O: OS Abstraction

select

“select() allows a program to monitor multiple file
descriptors, waiting until one or more of the file

descriptors become “ready” for some class of 1/0

operation.”

— Linux Programmer’s Manual

moderate overhead per syscall
Relies on syscalls returning EWOULDBLOCK.

«4O0>» «Fr «E»

«E)>

DA

The CV Scheduler

Thierry Delisle

Introduction

CV and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

19/27

Asynchronous |/O: OS Abstraction

epoll

More recent system call with a similar purpose.

+ Smaller overhead per syscall.
+ Shown to work well for sockets.

- Still relies on syscalls returning EWOULDBLOCK.

- Does not support linux pipes and TTYs.

«4O0>» «Fr «E»

«E)>

DA

Asynchronous |/O: OS Abstraction

The v sehediler K arnel Threads

Thierry Delisle

Introduction

CV and Concurrency

Use a pool of kernel-threads, to which blocking calls are
Practice ™" delegated.

Project: Proposal &

Deals » Technique used by many existing systems, e.g., Go, libuv
e + Definitely works for all syscalls.

— Can require many kernel threads.
20 /27

«4O0>» «FPr «E» «E»

DA

Asynchronous |/O: OS Abstraction

The CV Scheduler

lo_uring
Thierry Delisle
Introduction A very recent framework for asynchronous operations
St qvailable in Linux 5.1 and later. Uses two ring buffers to
Praciice submit operations and poll completions.

Project: Proposal &
Details

Handles many syscalls.

Does not rely on syscalls returning EWOULDBLOCK.
Requires synchronization on submission.

System call itself is serialized in the kernel.

Conclusion

21 /27 «O> «F>» «E>» « >

DA

Asynchronous 1/O: Event Engine

The CV Scheduler

Thierry Delisle a . .
An event engine must be built to fit the chosen OS
Introduction -
Abstraction.
CV and Concurrency
Scheduling in . . - -
et The engine must park user-threads until operation is

Project: Proposal & CO m pleted i

Details

Conclusion
Depending on the chosen abstraction the engine may need to
serialize operation submission.

Throughput and latency are important metrics.

22/27 «O> «F>» «E>» « >

DA

Asynchronous 1/O: The interface

The CV Scheduler

Thierry Delisle

e The Asynchronous |/O needs an interface.

CV and Concurrency

Sl Several options to take into consideration:
E—— » Adding to existing call interface, e.g., read and
Details

cfaread.

Conclusion

» Replacing existing call interface.

» True asynchronous interface, e.g., callbacks, futures.

23 /27 «O> «F>» «E>» « >

DA

The CV Scheduler

Thierry Delisle

Introduction
CV and Concurrency
0000

Scheduling in
Practice
0000

Project: Proposal &
Details

000000000000

000

24 /21

«O» «F»r <«

DA

Summary

The CV Scheduler

Thierry Delisle

Introduction

CV and Concurrency

Runtime system and scheduling are still open topics.

Scheduling in
Practice

This work offers a novel runtime and scheduling package.

Project: Proposal &

Details
S Existing work only offers fragments that users must assemble
themselves when possible.
25 /27 «O> «F>» «E>» « > E Al

The CV Scheduler

Thierry Delisle

Introduction

CV and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

26 /27

Timeline

May 2020 .
reation of th rforman nchmark.

N Creation of the performance benchma
\\ 2020 : . .
oV Completion of the implementation.
Mar 2021
Mar 2021 : i

Final performance experiments.
Apr 2021
\Y] 2021 . ..

. Thesis writing and defense.

Aug 2021

«4O0>» «FPr «E» «E»

DA

Timeline

The CV Scheduler

Thierry Delisle

Introduction

CV and Concurrency

Scheduling in
Practice

Project: Proposal &
Details

Conclusion

27 /27

Questions?

«O>» «F»r «

DA

	Introduction
	C180A and Concurrency
	Scheduling in Practice
	Project: Proposal & Details
	Conclusion

