Ignore:
Timestamp:
Nov 29, 2017, 4:33:46 PM (5 years ago)
Author:
Thierry Delisle <tdelisle@…>
Branches:
aaron-thesis, arm-eh, cleanup-dtors, deferred_resn, demangler, enum, forall-pointer-decay, jacob/cs343-translation, jenkins-sandbox, master, new-ast, new-ast-unique-expr, new-env, no_list, persistent-indexer, pthread-emulation, resolv-new, with_gc
Children:
f0743a7
Parents:
9d48a17
Message:

Ran Antidoe 9 spell checker on my thesis

File:
1 edited

Legend:

Unmodified
Added
Removed
  • doc/proposals/concurrency/text/basics.tex

    r9d48a17 r6090518  
    44% ======================================================================
    55% ======================================================================
    6 Before any detailed discussion of the concurrency and parallelism in \CFA, it is important to describe the basics of concurrency and how they are expressed in \CFA user-code.
     6Before any detailed discussion of the concurrency and parallelism in \CFA, it is important to describe the basics of concurrency and how they are expressed in \CFA user code.
    77
    88\section{Basics of concurrency}
     
    1111Execution with a single thread and multiple stacks where the thread is self-scheduling deterministically across the stacks is called coroutining. Execution with a single and multiple stacks but where the thread is scheduled by an oracle (non-deterministic from the thread perspective) across the stacks is called concurrency.
    1212
    13 Therefore, a minimal concurrency system can be achieved by creating coroutines, which instead of context switching among each other, always ask an oracle where to context switch next. While coroutines can execute on the caller's stack-frame, stack-full coroutines allow full generality and are sufficient as the basis for concurrency. The aforementioned oracle is a scheduler and the whole system now follows a cooperative threading-model (a.k.a non-preemptive scheduling). The oracle/scheduler can either be a stack-less or stack-full entity and correspondingly require one or two context switches to run a different coroutine. In any case, a subset of concurrency related challenges start to appear. For the complete set of concurrency challenges to occur, the only feature missing is preemption.
    14 
    15 A scheduler introduces order of execution uncertainty, while preemption introduces uncertainty about where context-switches occur. Mutual-exclusion and synchronization are ways of limiting non-determinism in a concurrent system. Now it is important to understand that uncertainty is desirable; uncertainty can be used by runtime systems to significantly increase performance and is often the basis of giving a user the illusion that tasks are running in parallel. Optimal performance in concurrent applications is often obtained by having as much non-determinism as correctness allows.
    16 
    17 \section{\protect\CFA 's Thread Building Blocks}
    18 One of the important features that is missing in C is threading. On modern architectures, a lack of threading is unacceptable~\cite{Sutter05, Sutter05b}, and therefore modern programming languages must have the proper tools to allow users to write performant concurrent programs to take advantage of parallelism. As an extension of C, \CFA needs to express these concepts in a way that is as natural as possible to programmers familiar with imperative languages. And being a system-level language means programmers expect to choose precisely which features they need and which cost they are willing to pay.
    19 
    20 \section{Coroutines: A stepping stone}\label{coroutine}
    21 While the main focus of this proposal is concurrency and parallelism, it is important to address coroutines, which are actually a significant building block of a concurrency system. Coroutines need to deal with context-switches and other context-management operations. Therefore, this proposal includes coroutines both as an intermediate step for the implementation of threads, and a first class feature of \CFA. Furthermore, many design challenges of threads are at least partially present in designing coroutines, which makes the design effort that much more relevant. The core \acrshort{api} of coroutines revolve around two features: independent call stacks and \code{suspend}/\code{resume}.
     13Therefore, a minimal concurrency system can be achieved by creating coroutines, which instead of context-switching among each other, always ask an oracle where to context-switch next. While coroutines can execute on the caller?s stack-frame, stack-full coroutines allow full generality and are sufficient as the basis for concurrency. The aforementioned oracle is a scheduler and the whole system now follows a cooperative threading-model (aka non-preemptive scheduling). The oracle/scheduler can either be a stack-less or stack-full entity and correspondingly require one or two context-switches to run a different coroutine. In any case, a subset of concurrency related challenges start to appear. For the complete set of concurrency challenges to occur, the only feature missing is preemption.
     14
     15A scheduler introduces order of execution uncertainty, while preemption introduces uncertainty about where context switches occur. Mutual exclusion and synchronization are ways of limiting non-determinism in a concurrent system. Now it is important to understand that uncertainty is desirable; uncertainty can be used by runtime systems to significantly increase performance and is often the basis of giving a user the illusion that tasks are running in parallel. Optimal performance in concurrent applications is often obtained by having as much non-determinism as correctness allows.
     16
     17\section{\protect\CFA's Thread Building Blocks}
     18One of the important features that are missing in C is threading. On modern architectures, a lack of threading is unacceptable~\cite{Sutter05, Sutter05b}, and therefore modern programming languages must have the proper tools to allow users to write efficient concurrent programs to take advantage of parallelism. As an extension of C, \CFA needs to express these concepts in a way that is as natural as possible to programmers familiar with imperative languages. And being a system-level language means programmers expect to choose precisely which features they need and which cost they are willing to pay.
     19
     20\section{Coroutines: A Stepping Stone}\label{coroutine}
     21While the main focus of this proposal is concurrency and parallelism, it is important to address coroutines, which are actually a significant building block of a concurrency system. Coroutines need to deal with context switches and other context-management operations. Therefore, this proposal includes coroutines both as an intermediate step for the implementation of threads, and a first-class feature of \CFA. Furthermore, many design challenges of threads are at least partially present in designing coroutines, which makes the design effort that much more relevant. The core \acrshort{api} of coroutines revolves around two features: independent call-stacks and \code{suspend}/\code{resume}.
    2222
    2323\begin{table}
     
    133133\end{table}
    134134
    135 A good example of a problem made easier with coroutines is generators, like the Fibonacci sequence. This problem comes with the challenge of decoupling how a sequence is generated and how it is used. Table \ref{lst:fibonacci-c} shows conventional approaches to writing generators in C. All three of these approach suffer from strong coupling. The left and center approaches require that the generator have knowledge of how the sequence is used, while the rightmost approach requires holding internal state between calls on behalf of the generator and makes it much harder to handle corner cases like the Fibonacci seed.
     135A good example of a problem made easier with coroutines is generators, like the Fibonacci sequence. This problem comes with the challenge of decoupling how a sequence is generated and how it is used. Table \ref{lst:fibonacci-c} shows conventional approaches to writing generators in C. All three of these approach suffer from strong coupling. The left and centre approaches require that the generator have knowledge of how the sequence is used, while the rightmost approach requires holding internal state between calls on behalf of the generator and makes it much harder to handle corner cases like the Fibonacci seed.
    136136
    137137Listing \ref{lst:fibonacci-cfa} is an example of a solution to the Fibonacci problem using \CFA coroutines, where the coroutine stack holds sufficient state for the next generation. This solution has the advantage of having very strong decoupling between how the sequence is generated and how it is used. Indeed, this version is as easy to use as the \code{fibonacci_state} solution, while the implementation is very similar to the \code{fibonacci_func} example.
     
    233233One important design challenge for implementing coroutines and threads (shown in section \ref{threads}) is that the runtime system needs to run code after the user-constructor runs to connect the fully constructed object into the system. In the case of coroutines, this challenge is simpler since there is no non-determinism from preemption or scheduling. However, the underlying challenge remains the same for coroutines and threads.
    234234
    235 The runtime system needs to create the coroutine's stack and more importantly prepare it for the first resumption. The timing of the creation is non-trivial since users both expect to have fully constructed objects once execution enters the coroutine main and to be able to resume the coroutine from the constructor. There are several solutions to this problem but the chosen options effectively forces the design of the coroutine.
    236 
    237 Furthermore, \CFA faces an extra challenge as polymorphic routines create invisible thunks when casted to non-polymorphic routines and these thunks have function scope. For example, the following code, while looking benign, can run into undefined behaviour because of thunks:
     235The runtime system needs to create the coroutine?s stack and more importantly prepare it for the first resumption. The timing of the creation is non-trivial since users both expect to have fully constructed objects once execution enters the coroutine main and to be able to resume the coroutine from the constructor. There are several solutions to this problem but the chosen option effectively forces the design of the coroutine.
     236
     237Furthermore, \CFA faces an extra challenge as polymorphic routines create invisible thunks when cast to non-polymorphic routines and these thunks have function scope. For example, the following code, while looking benign, can run into undefined behaviour because of thunks:
    238238
    239239\begin{cfacode}
     
    268268}
    269269\end{ccode}
    270 The problem in this example is a storage management issue, the function pointer \code{_thunk0} is only valid until the end of the block, which limits the viable solutions because storing the function pointer for too long causes Undefined Behavior; i.e., the stack-based thunk being destroyed before it can be used. This challenge is an extension of challenges that come with second-class routines. Indeed, GCC nested routines also have the limitation that nested routine cannot be passed outside of the declaration scope. The case of coroutines and threads is simply an extension of this problem to multiple call-stacks.
     270The problem in this example is a storage management issue, the function pointer \code{_thunk0} is only valid until the end of the block, which limits the viable solutions because storing the function pointer for too long causes Undefined Behaviour; i.e., the stack-based thunk being destroyed before it can be used. This challenge is an extension of challenges that come with second-class routines. Indeed, GCC nested routines also have the limitation that nested routine cannot be passed outside of the declaration scope. The case of coroutines and threads is simply an extension of this problem to multiple call stacks.
    271271
    272272\subsection{Alternative: Composition}
     
    310310symmetric_coroutine<>::yield_type
    311311\end{cfacode}
    312 Often, the canonical threading paradigm in languages is based on function pointers, pthread being one of the most well known examples. The main problem of this approach is that the thread usage is limited to a generic handle that must otherwise be wrapped in a custom type. Since the custom type is simple to write in \CFA and solves several issues, added support for routine/lambda based coroutines adds very little.
     312Often, the canonical threading paradigm in languages is based on function pointers, pthread being one of the most well-known examples. The main problem of this approach is that the thread usage is limited to a generic handle that must otherwise be wrapped in a custom type. Since the custom type is simple to write in \CFA and solves several issues, added support for routine/lambda based coroutines adds very little.
    313313
    314314A variation of this would be to use a simple function pointer in the same way pthread does for threads :
     
    327327This semantics is more common for thread interfaces but coroutines work equally well. As discussed in section \ref{threads}, this approach is superseded by static approaches in terms of expressivity.
    328328
    329 \subsection{Alternative: Trait-based coroutines}
    330 
    331 Finally the underlying approach, which is the one closest to \CFA idioms, is to use trait-based lazy coroutines. This approach defines a coroutine as anything that satisfies the trait \code{is_coroutine} and is used as a coroutine.
     329\subsection{Alternative: Trait-Based Coroutines}
     330
     331Finally, the underlying approach, which is the one closest to \CFA idioms, is to use trait-based lazy coroutines. This approach defines a coroutine as anything that satisfies the trait \code{is_coroutine} and is used as a coroutine.
    332332
    333333\begin{cfacode}
     
    369369
    370370\section{Thread Interface}\label{threads}
    371 The basic building blocks of multi-threading in \CFA are \glspl{cfathread}. Both user and kernel threads are supported, where user threads are the concurrency mechanism and kernel threads are the parallel mechanism. User threads offer a flexible and lightweight interface. A thread can be declared using a struct declaration \code{thread} as follows:
     371The basic building blocks of multithreading in \CFA are \glspl{cfathread}. Both user and kernel threads are supported, where user threads are the concurrency mechanism and kernel threads are the parallel mechanism. User threads offer a flexible and lightweight interface. A thread can be declared using a struct declaration \code{thread} as follows:
    372372
    373373\begin{cfacode}
     
    394394\end{cfacode}
    395395
    396 In this example, threads of type \code{foo} start execution in the \code{void main(foo &)} routine, which prints \code{"Hello World!"}. While this thesis encourages this approach to enforce strongly-typed programming, users may prefer to use the routine-based thread semantics for the sake of simplicity. With the static semantics it is trivial to write a thread type that takes a function pointer as a parameter and executes it on its stack asynchronously.
     396In this example, threads of type \code{foo} start execution in the \code{void main(foo &)} routine, which prints \code{"Hello World!".} While this thesis encourages this approach to enforce strongly typed programming, users may prefer to use the routine-based thread semantics for the sake of simplicity. With the static semantics it is trivial to write a thread type that takes a function pointer as a parameter and executes it on its stack asynchronously.
    397397\begin{cfacode}
    398398typedef void (*voidFunc)(int);
     
    419419int main() {
    420420        FuncRunner f = {hello, 42};
    421         return 0'
    422 }
    423 \end{cfacode}
    424 
    425 A consequence of the strongly-typed approach to main is that memory layout of parameters and return values to/from a thread are now explicitly specified in the \acrshort{api}.
     421        return 0?
     422}
     423\end{cfacode}
     424
     425A consequence of the strongly typed approach to main is that memory layout of parameters and return values to/from a thread are now explicitly specified in the \acrshort{api}.
    426426
    427427Of course for threads to be useful, it must be possible to start and stop threads and wait for them to complete execution. While using an \acrshort{api} such as \code{fork} and \code{join} is relatively common in the literature, such an interface is unnecessary. Indeed, the simplest approach is to use \acrshort{raii} principles and have threads \code{fork} after the constructor has completed and \code{join} before the destructor runs.
Note: See TracChangeset for help on using the changeset viewer.