
doc/related_papers/Grossman06.pdf


Quantified Types in an Imperative Language


DAN GROSSMAN


University of Washington


We describe universal types, existential types, and type constructors in Cyclone, a strongly typed
C-like language. We show how the language naturally supports first-class polymorphism and poly-
morphic recursion while requiring an acceptable amount of explicit type information. More im-
portantly, we consider the soundness of type variables in the presence of C-style mutation and the
address-of operator. For polymorphic references, we describe a solution more natural for the C level
than the ML-style “value restriction.” For existential types, we discover and subsequently avoid
a subtle unsoundness issue resulting from the address-of operator. We develop a formal abstract
machine and type-safety proof that capture the essence of type variables at the C level.


Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs
and Features—Abstract data types, polymorphism; F.3.3 [Logics and Meanings of Programs]:
Studies of Program Constructs—Type structure; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—Operational semantics; D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory


General Terms: Languages, Theory, Verification


Additional Key Words and Phrases: Cyclone, existential types, polymorphism, type variables


1. INTRODUCTION


Strongly typed programming languages prevent certain programming errors
and provide a way for users to enforce abstractions (e.g., at interface bound-
aries). Inevitably, strong typing prohibits some correct programs, but an expres-
sive type system reduces the limitations. In particular, universal (i.e., polymor-
phic) types let code operate uniformly over many types of data, and data-hiding
constructs (such as closures and objects) let users give the same type to data
with some components of different types.


High-level languages such as ML [Milner et al. 1997; Chailloux et al. 2000;
Leroy 2002a], Haskell [Jones and Hughes 1999], and GJ (a Java extension)
[Bracha et al. 1998] have sound type systems with universal types. Essentially
every strongly typed high-level language has a powerful data-hiding mecha-
nism. Language implementations must balance performance-critical tradeoffs


Author’s address: Department of Computer Science and Engineering, University of Washington,
Box 352350, Seattle, WA 98195-2350; email: djg@cs.washington.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0164-0925/06/0500-0429 $5.00


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006, Pages 429–475.







430 • D. Grossman


that polymorphism and data hiding introduce: implementing polymorphic func-
tions requires some combination of indirection (passing pointers to data),
run-time type information (passing type tags as extra arguments), or code du-
plication (generating different code for data of different types). Implementing
closures or objects requires data structures for storing free variables or object
fields.


In lower-level languages, users are not at the mercy of the implementation
for efficient data representation. Conventionally, this flexibility has required
sacrificing the benefits of strong typing. Recent work on languages such as
Typed Assembly Language [Morrisett et al. 1999b, 2002] has applied ideas from
strongly typed high-level languages to lower-level settings. Typed Assembly
Language distinguishes type variables that represent types of different sizes
and uses existential types [Mitchell and Plotkin 1988] to encode data-hiding
constructs [Minamide et al. 1996; Bruce et al. 1999].


In this work, we describe the essence of universal and existential types in
Cyclone [Cyclone 2001; Jim et al. 2002], a safe language that is very much
like C [ISO 1999]. Our implementation provides a level of abstraction equal
to conventional C implementations, which is squarely between high-level and
assembly languages. Cyclone does not add levels of indirection or hidden data
fields, but it uses native calling conventions and lets values have platform-
specific sizes. As in C, mutation and aliasing run rampant in Cyclone programs.


1.1 Contributions


This work describes Cyclone’s approach to quantified types, novel technical
problems and solutions that arise at the C level, and a formal machine suitable
for proving that the solutions are sound. Despite some interconnection, we can
enumerate more specific contributions:


(1) A complete design, implementation, and extensive use of a polymorphic type
system for a safe C-level language. Unlike ML or Haskell, Cyclone (and C)
distinguish “left expressions” from “right expressions” and evaluate them
differently. For example, the address-of operator (i.e., the & in &e) makes a
right expression from a left expression. Even object-oriented languages with
quantified types typically do not have &, which has interesting semantic and
soundness ramifications.


(2) A solution to the polymorphic-reference problem different from the “value
restriction” or “weak type variables.” In Cyclone, it suffices to restrict uni-
versal quantification to (immutable) functions, but the formal language
reveals that a much weaker restriction suffices: We need only ensure that
type instantiations are not left expressions. Section 5.2 discusses why the
stronger restriction is not a burden in practice.


(3) A new soundness issue that arises from existential types, mutation, and the
address-of operator. We present the problem, identify its source, present two
orthogonal solutions, and prove both solutions sound.


(4) A simple kind system for distinguishing pointer types from types of
unknown size. While crucial for implementing Cyclone efficiently and


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 431


modularly, it turns out restricting the use of unknown-size types is not a
soundness issue: the formal type-soundness proof never relies on the restric-
tions because the formal dynamic semantics can implicitly “copy” values of
arbitrary size whereas such an operation is difficult to compile.


These results are crucial for safe C-like languages that rely on universal types
for code reuse and existential types for data hiding. Moreover, the results serve
as warning and guidance for language designers combining mutation and poly-
morphism at any abstraction level.


1.2 Overview


Section 2 places this work in context by describing Cyclone’s goals, applica-
tions to date, and relevant features. It motivates C-level quantified types, but
it is not necessary for understanding them. Section 3 then describes how we
use quantified types in Cyclone to describe polymorphic code, data hiding, and
container types. This section adapts well-known ideas to a C-like language;
readers familiar with quantified types and more interested in technical issues
than programming-language design might skip this section. Section 4 infor-
mally presents the complications that arise at the C level and how Cyclone
addresses them. In particular, it highlights the technical insights of this work.
Section 5 discusses the type system’s limitations. Section 6 presents a formal
language, abstract machine, and type system suitable for arguing that Cyclone
is type-safe, which is particularly important in light of the interaction with mu-
tation. Section 7 discusses related work. Section 8 concludes the article. The
Appendix proves type safety for the formal language.


This work is presented more thoroughly in the author’s dissertation
[Grossman 2003a]. The unsound interaction with existential types is the subject
of a previous conference publication [Grossman 2002]. The Cyclone compiler is
publicly available.1


2. CYCLONE CONTEXT


Because this work extracts the essence of a type system from a full programming
language, it is useful to describe briefly the language’s goals and features. In
particular, type-level variables in Cyclone enforce several invariants, but in this
work we consider only invariants regarding abstraction of conventional types.


2.1 Goals and Applications


Cyclone is a type-safe language that, except for safety, is very much like C.
The language uses many techniques to avoid the ways a C program can thwart
safety (dangling-pointer dereferences, incorrect type casts, array-bounds viola-
tions, etc.). Remaining at the C level makes it easier to interoperate with low-
level systems, port legacy systems incrementally, and write applications where
low-level data-representation and memory-management decisions are essen-
tial. The ultimate goal is to provide a safe, convenient alternative suitable for
implementing most of a large software system such as an operating system.


1Go online to http://www.research.att.com/projects/cyclone.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







432 • D. Grossman


Cyclone has enjoyed moderate success as a safe language for research
projects developing low-level extensible systems. Example systems using
Cyclone include MediaNet [Hicks et al. 2003] (a multimedia overlay network),
the Open Kernel Environment [Bos and Samwel 2002] (a kernel allowing par-
tially trusted extensions), RBClick [Patel and Lepreau 2003] (an active net-
work), and STP [Patel et al. 2003] (an extensible transport protocol). These
systems exploit Cyclone’s safety guarantee, user-controlled performance, and
low-level interoperability. In addition, the Cyclone compiler and extensive li-
braries are written in Cyclone, demonstrating Cyclone is effective for large
programs (compiling over 100,000 lines of code in about 30s on commodity
hardware). Generic libraries, such as for lists and closures, require quantified
types and are used often in practice. We have studied the run-time performance
and source-program changes necessary to port C benchmarks to Cyclone [Jim
et al. 2002; Grossman et al. 2002; Hicks et al. 2004].


2.2 Achieving Safety


To avoid needing C’s unsafe features, Cyclone employs complementary and syn-
ergistic techniques including run-time checking, intraprocedural flow analysis,
and a powerful type system. Preventing array-bounds violations is an exam-
ple that demonstrates how programmers can choose among the techniques: the
simplest approach uses “fat pointers,” which like arrays in high-level languages
carry bounds information and raise a run-time exception upon an out-of-bounds
access. This approach does not detect errors until run-time and imposes space
and time overhead compared to C arrays. Therefore, programmers can use the
type system to specify an array’s size is known statically or the size is stored
in a user-specified location. In either case, the flow analysis ensures the user
checks the bound before an access. Leaving the check under user control allows
users to control cost by, for example, hoisting checks out of loops. When the
intraprocedural analysis is too weak, users can use the type system to express
interprocedural and data-structure invariants.


As an example, a programmer could define a struct type describing values in
which there exists an integer α such that the sz field holds α, and the arr1 and
arr2 fields point to arrays of size α.2 The two arrays share a size and the flow
analysis ensures users of the arrays consult sz appropriately. On a technical
level, this example uses type-level variables ranging over constant integers and
existential quantification to describe a safety-critical invariant.


In fact, Cyclone type variables and quantified types are essential to the entire
type system. We use them to describe array lengths, object lifetimes [Grossman
et al. 2002], locking disciplines [Grossman 2003b], and polymorphic functions.
Indeed, this unified approach to seemingly disparate safety threats is the
essence of Cyclone and the key way we keep the language’s complexity
manageable. In practice, it means most Cyclone functions are polymorphic in
one way or another, so a sound and convenient approach to type variables is
an absolute necessity.


2In Cyclone, we write struct T { <‘i> tag t<‘i> sz; int*{‘i} arr1; int*{‘i} arr2;};


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 433


Therefore, a careful study of type variables for a safe, C-level language pro-
vides an important intellectual foundation. For this purpose, the work here
considers only “conventional” type variables abstracting types. Doing so lets us
focus on the interactions among type variables, mutation, and the address-of
operator without complications (e.g., an effects system) that other kinds of type
variables introduce.


3. BASIC CONSTRUCTS


This section shows how we adapt the well-known theory of quantified types to
Cyclone, deferring complications such as nonuniform sizes of data objects to
Section 4.


One form of type in Cyclone is a type variable (written α, β, etc.). (The ac-
tual ASCII syntax is ‘a, ‘b, etc.). Certain constructs introduce type variables
in a particular scope. The type variable describes values of an unknown type.
The power of type variables is that a type variable always describes the same
unknown type, within some scope. We present each of the constructs that intro-
duce type variables and explain their usefulness. We then present techniques
that render optional much of the cumbersome notation in the explanations.


3.1 Universal Quantification


The simplest example of universal quantification is this function:
α id<α>(α x) { return x;}
The function id has a type parameter represented by the type variable α in
angle brackets; id takes an argument x of type α and returns a value of type
α. The function is polymorphic because callers can instantiate α with different
types to use the function for values of different types.


In general, a function can introduce universally bound type variables
α1, α2, . . . by writing <α1, α2, . . .> after the function name. The type variables’
scope is the parameters, return type, and function body. The type of the func-
tion is a universal type. For example, the type of id is α id<α>(α), pronounced,
“for all α, id takes an α and returns an α.” Using more conventional notation
for universal types and function types, we would write ∀α.α → α. As Section 4
explains, id cannot actually be used for all types.


To use a polymorphic function (i.e., a value of universal type), we instantiate
the type variables with types. As examples, id<int> has type int id(int) and
if y has type int*, then id<int*>(y) has type int*.


C programmers typically use void* to compensate for the lack of type vari-
ables. Doing so is more flexible, error-prone, and cumbersome. For example,
void* id(void*) expresses no connection between the argument and return
type. If they were different, clients might still think they were the same. In any
case, clients must use an unchecked cast on the result before using it.


More interesting polymorphic functions take function-pointer arguments,
such as this function, which applies a function to the elements of a 10-element
array3:


3Where convenient, we exploit C’s arcane rules regarding function pointers and their types. The
first argument to app10 is an implicit pointer that is implicitly dereferenced in f(env,arr[i]).


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







434 • D. Grossman


void app10<α,β>(void f(β, α), β env, α arr[10]) {
for(int i=0; i < 10; ++i)
f(env,arr[i]);


}


The function call type-checks because the arguments have the type the function
expects, namely, β and α. We pass env explicitly because Cyclone functions must
be closed. (Function closures are encodable, but not built-in.) To show that the
code is reusable, we instantiate it two different ways:


int i; // global variable that functions modify
void add_int(int *p, int x) { *p += x; }
void add_ptr(int *p1, int *p2) { *p1 += *p2; }
void add_intarr(int arr[10]) { app10<int*,int >(add_int,&i,arr); }
void add_ptrarr(int* arr[10]) { app10<int*,int*>(add_ptr,&i,arr); }


In short, universally quantified type variables are a powerful way to encode
idioms in which code does not need to know certain types, but does need to relate
the types of multiple arguments or arguments and results. In C, we conflate all
such types with void*, sacrificing the ability to detect inconsistencies with the
type system.


In Cyclone, the refined information from polymorphism induces no run-time
cost; type instantiation is a compile-time operation. The compiler does not du-
plicate code; there is one compiled version of app10 regardless of the types with
which the program instantiates it. Similarly, instantiation does not require the
function body, so we can compile app10’s uses separately from app10’s imple-
mentation. (This approach assumes all pointers have the same representation
and calling convention. The C standard disallows this assumption, though it
holds on many architectures. Compiling Cyclone under weaker assumptions is
beyond the scope of this work.)


We also do not use run-time type information: we pass app10 the same ar-
guments we would in C. There are no “secret arguments” describing the type
instantiation, which is important for two reasons. First, it meets our goal of
“acting like C” and not introducing extra data and run-time cost. We do not
want to penalize reusable code. Second, it becomes complicated to compile poly-
morphic code differently than monomorphic code, as this example suggests:


α id<α>(α x) { return x; }
int f(int x) { return x+1; }
void g(bool b) {
int (*h)(int) = (b ? id<int> : f);
// use h


}


Because id<int> and f have the same type, we need to support (indirect) func-
tion calls where we do not know until run-time which we are calling. To do
so without extra run-time cost, the two functions must have the same calling
convention.


Cyclone also supports first-class polymorphism and polymorphic recursion.
The former means universal types can appear anywhere function types appear,
not just in the types of top-level functions. This small example requires this


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 435


feature:


void f(void g<α>(α), int x, int *y) {
g<int> (x);
g<int*>(y);


}


Polymorphic recursion lets recursive function calls instantiate type variables
differently than the outer call. Without this feature, within a function f quan-
tifying over α1, α2, . . . , all instantiations of f must be f<α1, α2, . . .>. This small
example uses polymorphic recursion:


α slow id<α>(α x, int n) {
if(n >= 0)
return *slow id<α*>(&x, n-1);


return x;
}


First-class polymorphism and polymorphic recursion are natural features.
We emphasize them because languages (most notably ML) often lack them
because they usually make full type inference undecidable [Wells 1999;
Henglein 1993; Kfoury et al. 1993]. Cyclone provides convenient mechanisms
for eliding type information without supporting full inference. As such, it easily
supports these more expressive features, which become more important when
using type variables for safe memory management [Grossman et al. 2002] and
multithreading [Grossman 2003b].


3.2 Existential Quantification


Cyclone struct types can existentially quantify over types, as in this example:


struct T { <α>
α env;
int (*f)(α);


};


In English, this reads as “given a value of type struct T, there exists a type
α such that the env field has type α and the f field is a function expecting an
argument of type α.” The scope of α is the field definitions. A common use of such
types is a library interface that lets clients register call-backs to execute when
some event occurs. Different clients can register call-backs that use different
types for α, which is more flexible than the library writer choosing a type that
all call-backs process. When the library calls the f field of a struct T value,
the only argument it can use is the env field of the same struct because it is
the only value known to have the type the function expects. In short, we have a
much stronger interface than using void* for the type of env and the argument
type of f.


Existential types describe first-class abstract types [Mitchell and Plotkin
1988]. For example, we can describe a simple abstraction for integer sets with
this type:


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







436 • D. Grossman


struct IntSet { <α>
α elts;
void (*add)(α,int);
void (*remove)(α,int);
bool (*is member)(α,int);
struct IntSet* (*filter)(α, bool(*f)(int));


};


The elts field stores the data necessary for implementing the operations. Ex-
istential quantification ensures clients do not assume any particular type for
elts, so the implementation of each set remains abstract. For example, we can
create a set that stores its elements in a list and another set that stores its el-
ements in an array to which elts points. The abstract types are first-class: we
can choose among set implementations at run-time. Moreover, we can put sets
using lists and sets using arrays together, such as in an array with elements of
type struct IntSet.


Most programming languages do not have existential types per se. Rather,
they have first-class function closures or first-class objects (in the sense of object-
oriented programming). These features have well-known similarities with ex-
istential types. They all have types that do not constrain private state (fields of
existentially bound types, free variables of a first-class function, private fields
of an object). Indeed, a language without any first-class data hiding construct is
impoverished, but any one suffices for encoding simple forms of the others. For
example, we can use existential types to encode closures [Minamide et al. 1996]
and some forms of objects [Bruce et al. 1999]. Many of the difficult complica-
tions in Cyclone arise from existential types (we have to modify the examples
of this section to support manual memory management [Grossman et al. 2002]
or thread-local data [Grossman 2003b]), but the problems would remain if we
replaced them with another data-hiding feature. In essence, all such features
allow the type of reachable data (via a field or free variable) not to appear in
the type of the enclosing construct (closure, object, or package). This hiding
means we cannot use the syntax of the enclosing construct’s type to restrict the
reachable data unless we “leak” more information in some way, such as a kind
system or an effect system.


Cyclone provides existential types rather than closures or objects because
they give programmers more control over data representation. Compiling clo-
sures or objects efficiently involves space and time tradeoffs that can depend on
the program [Appel 1992; Abadi and Cardelli 1996]. At the C level, we prefer a
powerful type system in which programmers can make such tradeoffs.


We now present the term-level constructs for creating and using values of
existential types. We call such values existential packages. When creating an
existential package, we must choose types for the existentially bound type vari-
ables, and the fields must have the right types for our choice. We call the types
the witness types for the existential package. They serve a similar purpose to
the types used to instantiate a polymorphic function. Witness types do not exist
at run-time.


To simplify checking that packages are created correctly, users must cre-
ate them via constructor expressions, as in this example, which uses struct T


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 437


defined above:


int deref(int * x) { return *x; }
int twice(int x) { return 2*x; }
int i;
struct T makeT(bool b) {
if(b)
return T{<int*> .env=&i, .f=deref};


return T{<int> .env=i, .f=twice};
}


If the code executes the body of the if-statement, we use int* for the witness
type of the returned value, else we use int. The return type is just struct T
(a “flat” multiword object); the witness type is not part of it. We never allow
inconsistent fields: For the given types of i and deref, there is no τ such that
T{<τ> .env=i, .f=deref} is well typed.


To use an existential package, Cyclone provides pattern matching to unpack
(often called open) the package, as in this example:
int useT(struct T pkg) {
let T{<β> .env=e, .f=fn} = pkg;
return fn(e);


}
The pattern binds e and fn to (copies of) the env and f fields of pkg. It also
introduces the type variable β. The scope of β, e, and fn is the rest of the code
block (in the example, the rest of the function). The types of e and fn are β


and int (*)(β) (a function from β to int), respectively, so the call fn(e) type-
checks. Within its scope, we can use β like any other type. For example, we
could write β x = id<β>(e);.


We require reading the fields of a package with pattern matching (instead of
individual field projections), in the same way as we require building a package
all at once. For the most part, not allowing the “.” and “->” operators for exis-
tential types simplifies type-checking. When creating a package, we can check
for the correct witness types. When using a package, it clearly defines the types
of the fields and the scope of the introduced type variables. We can unpack a
package more than once, but the unpacked values will have types using differ-
ent type variables (the type system properly distinguishes each binding occur-
rence), so we could not use, for example, the function pointer from one unpack
with the environment from the other.


3.3 Type Constructors


Type constructors with type parameters let us concisely describe families of
types. Applying a type constructor to a list of types produces a type. For example,
we can use this type constructor to describe linked lists:


struct List<α> {
α hd;
struct List<α> * tl;


};
The type constructor struct List is a type-level function: Given a type, it pro-
duces a type. So the types struct List<int>, struct List<int*>, and struct


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







438 • D. Grossman


List<struct List<int>*> are different. The type α is the formal parameter; its
scope is the field definitions. Because the tl field has type struct List<α>*, all
types that struct List produces describe homogeneous lists (i.e., all elements
have the same type).


Type constructors can encode more sophisticated idioms. We can use this
type constructor to describe lists where the elements alternate between two
types:


struct ListAlt<α,β> {
α hd;
struct ListAlt<β,α> * tl;


};


Building and using values of types that type constructors produce is straight-
forward. For example, to make a struct List<int>, we put an int in the hd
field and a struct List<int>* in the tl field. If x has type struct List<int>,
then x.hd and x.tl have types int and struct List<int>*, respectively.


The conventional use of type constructors is to describe a “container type”
and then write a library of polymorphic functions for the type. For example,
these prototypes describe generic routines for linked lists4:


int length<α>(struct List<α>*);
bool cmp<α,β>(bool f(α,β), struct List<α>*, struct List<β>*);
struct List<α>* append<α>(struct List<α>*, struct List<α>*);
struct List<β>* map<α,β>(β f(α), struct List<α>*);


Type constructors and existential quantification also interact well. For ex-
ample, struct Fn is a type constructor for encoding function closures:


struct Fn<α,β> { <γ >
β (*f)(γ , α);
γ env;


};


This constructor describes functions from α to β with an environment of some
abstract type γ . Different values of type struct Fn<τ1,τ2> can have environ-
ments of different types. A library can provide polymorphic functions for oper-
ations on closures, such as application, composition, currying, and uncurrying.


Parameters for typedef provide a related convenience. The parameters to
a typedef are bound in the type definition. We must apply such a typedef to
produce a type, as in this example:


typedef struct List<α> * list t<α>;


The rightmost α is the binding occurrence. As in C, typedef is transparent: a
use is equivalent to its definition. So list t<int> is just an abbreviation for
struct List<int>*.


4In practice, we also provide versions of cmp and map taking environment arguments, as in our
earlier app10 example.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 439


3.4 Default Annotations


We have added universal quantification, existential quantification, and type
constructors so that programmers can encode a large class of idioms for reusable
code without resorting to unchecked casts. So far, we have focused on the type
system’s expressiveness without describing features that reduce the burden on
programmers. We now present these techniques.


First, in function definitions and function prototypes at the top level (i.e.,
not within a function body or type definition), the outermost function implicitly
universally quantifies over any free type variables. So instead of writing


α id<α>(α x);
list t<β> map<α,β>(β f(α), list t<α>);


we can write


α id(α x);
list t<β> map(β f(α), list t<α>);


Because instantiation of polymorphic functions is typically implicit, the order
of the type variables rarely matters. If explicit instantiation is necessary, ex-
plicit quantification is too. Explicit quantification is also necessary for first-class
polymorphism:


void f(void g<α>(α), int x, int *y);


Omitting the quantification would make f polymorphic instead of g.
Second, instantiation of polymorphic functions and selection of witness types


can be implicit. The type-checker infers the correct instantiation or witness from
the types of the arguments or field initializers, respectively. Some examples are


struct T { <α> α env; int (*f)(α); };
struct T f(list t<α> lst) {
id(7);
map(id,lst);
return T{.env=7, .f=id};


}


Polymorphic recursion poses no problem because function types are explicit.
Inference does not require immediately applying a function, as this example
shows:


void f() {
int (*idint)(int) = id;
idint(7);


}


In fact, type inference uses unification within function bodies such that all
explicit type annotations are optional. Although the implemented inference
procedure is incomplete (a function may typecheck only if some explicit types
are present), in practice we can omit almost all explicit types in function bodies.
Every occurrence of a polymorphic function is implicitly instantiated; delaying
the instantiation requires explicit syntax, as in this example:


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







440 • D. Grossman


void f(int x) {
α (*idvar)<α>(α) = id<>; // do not instantiate yet
idvar(x); // instantiate with int
idvar(&x); // instantiate with int*


}
Third, unpacking does not require explicit type variables. The type-checker


can create the correct number of type variables and gives terms the appropriate
types. We can write


int useT(struct T pkg) {
let T{.env=e, .f=fn} = pkg;
return fn(e);


}
The type-checker creates a type variable β with the same scope that a user-
provided type variable would have.


Fourth, we can omit explicit applications of type constructors or apply them
to too few types. In function bodies, unification infers omitted arguments. In
other cases (function prototypes, function argument types, etc.) the type-checker
fills in omitted arguments with fresh type variables. So these declarations are
equivalent:


int length(list t<α>);
int length(list t);


In practice, we need explicit type variables only to indicate that multiple terms
have the same unknown type. There is no reason for the programmer to create
type variables for types that occur only once, such as the element type for
length, so the type-checker creates names and fills them in. We do not mean
that type constructors are types, just that application can be implicit.


None of the rules for omitting explicit type annotations require the type-
checker to perform interprocedural analysis. Every function has a complete type
determined only from its prototype, not its body, so the type-checker can process
each function body without reference to any other. Even earlier declarations of
the function are relevant only in that the types must be equivalent.5


4. COMPLICATIONS


This section considers features of Cyclone (largely inherited from C) that com-
plicate sound, efficient implementation of quantified types. The features include
nonuniform data sizes (Section 4.1), multiple calling conventions (Section 4.2),
mutable data (Sections 4.3 and 4.4), and static variables (Section 4.5).


4.1 Size


Different values in C and Cyclone can have different sizes. For example, we
expect a struct with three int fields to be larger than a struct with two int
fields. Conventionally, all values of the same type have the same size, and we call
the size of values of a type the size of the type. C implementations have latitude


5We do not allow a prototype to be less general than the corresponding definition.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 441


in choosing type sizes (to accommodate architecture restrictions like native-
word size and alignment constraints), but sizes are compile-time constants.


However, not all sizes are known because C has abstract struct declarations
(also known as incomplete structs), such as “struct T;”. To enable efficient
code generation, C greatly restricts where such types can appear. For example,
if struct T is abstract, C forbids this declaration:


struct T2 {
struct T x;
int y;


};


The implementation would not know how much space to allocate for a variable
of type struct T2 (or struct T). If s has type struct T2*, there is no simple,
efficient way to compile s->y. In short, because the size of abstract types is
unknown, C permits only pointers to them.


In Cyclone, type variables are abstract types, so we confront the same prob-
lems. Cyclone provides two solutions, which we explain after introducing the
kind system that describes them. Kinds classify types just like types classify
terms. We consider only two kinds, A (for “any”) and B (for “boxed”). Every type
has kind A. Pointer types and int also have kind B. We consistently assume,
unlike C, that int has the same size and calling convention as void*. Saying int
is just more concise than saying, “an integral type represented like a pointer.”


The two solutions for type variables correspond to type variables of kind B and
type variables of kind A. A type variable’s binding occurrence usually specifies
its kind with α:B or α:A, and the default is B.6 All the examples in Section 3 used
type variables of kind B. Simple rules dictate the restrictions kinds impose:


—A universally quantified type variable of kind B can be instantiated only with
a type of kind B.


—An existentially quantified type variable of kind B can have witness types
only of kind B.


—If α has kind A, then α is subject to the same restrictions as abstract struct
types in C. It must occur under pointers and one cannot dereference pointers
of type α*.


—The type variables introduced in an existential unpack do not specify kinds.
Instead, the ith type variable has the same kind as the ith existentially
quantified type variable in the type of the package unpacked.


Less formally, type variables of kind B classify types that we can convert to
void* in C. We forbid instantiating such a type variable α with a struct type
for the same reasons C forbids casting a struct type to void*. Type variables
of kind A are less common because of the restrictions on their use, but here is
an example:


6In Cyclone, the default kind is sometimes A, depending on how the type variable is used, but we
use simpler default rules here.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







442 • D. Grossman


struct T1<α:A> { α *x; α *y; };
void swap<α:A>(struct T1<α> *p) {


α * tmp = p->x;
p->x = p->y;
p->y = tmp;


}
Because swap quantifies over a type of kind A, we can instantiate swap with any
type.


A final addition makes type variables of kind A more useful. The unary
type constructor sizeof t describes the size of a type: the only value of type
sizeof t<τ> is sizeof(τ). As in C, we allow sizeof(τ) only where the compiler
knows the size of τ (i.e., all abstract types are under pointers).


One purpose of sizeof t is to give Cyclone types to primitive library routines
we can write in C, such as this function for copying memory:


void mem copy<α:A>(α* dest, α* src, sizeof t<α> sz);


Disappointingly, it is impossible to implement mem_copy in Cyclone, but we can
provide a safe interface to a C implementation. Implementing mem copy requires
a loop that copies an α value in pieces and Cyclone’s type system does not permit
such operations, nor could it verify that the result is a value of type α.


4.2 Calling Convention


We do not give float kind B, which deserves explanation because we could
assume that float has the same size as void*, as we did with int. Many ar-
chitectures use a different calling convention for floating-point arguments. If
float had kind B, then we could not have one implementation of a polymorphic
function while using native calling conventions, as this example demonstrates:


float f1(float x) { return x; }
α f2(α x) { return x; }
void f3(bool b) {
float (*f)(float) = b ? f1 : f2;
f(0.0);


}
As Section 7 describes, the ML community has explored many solutions for
giving float kind B. None preserve data representation (a float being just a
floating-point number) without secret function arguments or a possibly expo-
nential increase in the amount of compiled code. In Cyclone, we prefer to expose
this problem to programmers; they can encode the solutions manually.


4.3 Polymorphic References


Safety demands that the expressiveness gained via type variables does not let a
program view data at the wrong type. Mutable locations are a notorious source
of errors in safe-language design, and most locations in Cyclone are mutable. In
this section and the next, we describe potential pitfalls and how Cyclone avoids
them.


Cyclone does not have polymorphic references, which allow programs like
this:


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 443


void bad(int *p) {
(∀α.(α*)) x = NULL<>; // not legal Cyclone, but could be
x<int*> = &p; // not legal Cyclone, and should not be
*(x<int>) = -1;
*p = 123; // violates safety


}
We can give the Cyclone keyword NULL any pointer type (i.e., any type of the
form τ*), so it is tempting to give it the polymorphic type ∀α.(α∗). By not instan-
tiating it, we can give x the same type. But by assigning to an instantiation of
x (i.e., x<int*> = &p), we put a nonpolymorphic value in x. Hence, the second
instantiation (x<int>) is wrong and leads to a safety violation.


Note that the second and third statements both instantiate polymorphic
types, but the second statement uses type instantiation as a left expression
(the first subexpression of assignment) and the third as a right expression (the
only subexpression of pointer dereference). So unless we allow e<t> to be a left
expression (if e is a left expression), bad fails to typecheck.7 In fact, Section 6
proves that a language with distinct left and right expression evaluation is
sound if type instantiation is not a left expression. That is, this restriction is
sufficient.


The simplicity and directness of this approach is possible exactly because left
and right expressions are distinct, unlike in ML where the fact that a location is
mutated is hidden behind a function type (specifically := which has type ’a ref
* ’a -> unit). This approach also has a theoretical justification: models of the
polymorphic lambda calculus can treat type application as subtyping [Mitchell
1988] and writing to a location requires contravariance in the location’s type.


In practice, the actual Cyclone language enforces a more restrictive, trivial-
to-check property than forbidding type application as a left expression: the only
polymorphic values are functions and functions are immutable. Hence any type
instantiation is a reference to immutable code, so a fortiori no type instantia-
tion could be the left subexpression of an assignment. Our formalism therefore
justifies Cyclone’s soundness while proving a much more general result.


Section 7 discusses how other languages avoid polymorphic references.


4.4 Mutable Existential Packages


Prior work has not carefully studied the interaction of existential types with fea-
tures like mutation and C’s address-of (&) operator. Orthogonality suggests that
existential types in Cyclone should permit mutation and acquiring the address
of fields, just as ordinary struct types do. Moreover, such abilities are genuinely
useful. For example, a server accepting call-backs can use mutation to reuse the
same memory for different call-backs that expect data of different types. Using
& to introduce aliasing is also useful. As a small example, given a value v of
type struct T {<α> α x; α y;}; and a polymorphic function void swap(β*,
β*) for swapping two locations’ contents, we would like to permit a call like
swap(&v.x, &v.y). Unfortunately, these features create a subtle unsoundness.


7Removing the second statement makes bad attempt to dereference a NULL pointer. Cyclone has
types for compile-time NULL-checking, but the type shown causes a checked run-time exception.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







444 • D. Grossman


The first feature—mutating a location holding a package to hold a different
package with a different witness type—is supported naturally. After all, if p1
and p2 both have type struct T, then, as in C, p1=p2 copies the fields of p1 into
the fields of p2. Note that the assignment can change p2’s witness type, as in
this example:


struct T {<α> void (*f)(int, α); α env;};
void ignore(int x, int y) {}
void assign(int x, int *y) { *y = x; }
void f(int* ptr) {
struct T p1 = T{<int> .f=ignore, .env=-1};
struct T p2 = T{<int*> .f=assign .env=ptr};
p2 = p1;


}
Because we forbid access to existential-package fields with the “.” or “->”


operators, we do not yet have a way to acquire the address of a package field.
We need this feature for the swap example above. To use pattern matching to
acquire field addresses, Cyclone provides reference patterns: The pattern *id
matches any location and binds id to the location’s address.8 Continuing our
example, we could use a reference pattern pointlessly:


let T{<β> .f=g, .env=*arg} = p2;
g(37,*arg);


Here arg is an alias for &p2.env, but arg has the opened type, in this case β*.
At this point, we have created existential packages, used assignment to mod-


ify memory that has an existential type, and used reference patterns to get
aliases of fields. It appears that we have a smooth integration of several fea-
tures that are natural for a language at the C level of abstraction. Unfortunately,
these features conspire to violate type safety:


void f(int* ptr) {
struct T p1 = T{<int> .f=ignore, .env=-1};
struct T p2 = T{<int*> .f=assign .env=ptr};
let T{<β> .f=g, .env=*arg} = p2;
p2 = p1;
g(37,*arg);


}
The call g(37,*arg) executes assign with 37 and -1—we are passing an int
where we expect an int*, allowing us to write to an arbitrary address.


What went wrong in the type system? We used β to express an equality
between one of g’s parameter types and the type of value at which arg points.
But after the assignment, which changes p2’s witness type, this equality is false.


We have developed two solutions. The first solution forbids using reference
patterns to match against fields of existential packages. Other uses of reference
patterns are sound because assignment to a package mutates only the fields of
the package. We call this solution “no aliases at the opened type.” The second


8Reference patterns also allow mutating fields of discriminated-union variants, which is why we
originally added them to Cyclone.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 445


solution forbids assigning to an existential package (or an aggregate value that
has an existential package as a field). We call this solution “no witness changes.”


These solutions are independent: Either suffices and we could use different
solutions for different existential packages. That is, for each existential-type
declaration we could let the programmer decide which restriction the compiler
enforces. The current implementation supports only “no aliases at the opened
type” because we believe it is more useful, but both solutions are easy to enforce.


To emphasize the exact source of the problem, we mention some aspects that
are not problematic. First, pointers to witness types are not a problem. For
example, given struct T2 {<α> void f(int, α); α* env;}; and the pattern
T2{<β> .f=g,.env=arg}, an intervening assignment changes a package’s wit-
ness type but does not change the type of the value at which arg points. Second,
assignment to a pointer to an existential package is not a problem because it
changes which package a pointer refers to, but does not change any package’s
witness type. Third, it is well known that the typing rule for opening an exis-
tential package must forbid the introduced type variable from occurring in the
type assigned to the term in which the type variable is in scope. In our case,
this term is a statement, which has no type (or a unit type if you prefer), so this
condition is trivially satisfied.


Multithreading introduces a similar problem: the existential unpack is un-
sound if the witness can change in between the binding of g and arg. We must
exclude a witness change while binding a package’s fields [Grossman 2003b].


4.5 Static Variables


In C and Cyclone, a static variable is essentially a global variable that is only
in one function’s scope. Although such variables are syntactically declared in
a function body, their initializers cannot refer to the enclosing function’s argu-
ments. In Cyclone, we similarly disallow a static variable’s type to refer to the
function’s type parameters. In other words, the type must not contain free type
variables. It is nonsensical and unsound to do otherwise.


5. LIMITATIONS


Type variables have proven incredibly useful in Cyclone. Providing compile-
time equalities of unknown types gives us a safe, flexible way to describe generic
code, first-class abstract types, and container types. Kind restrictions that make
perfect sense for a C-level language avoid run-time overhead. Nonetheless, any
sound, decidable system must prevent certain safe idioms. This section de-
scribes the most noticeable limitations, their impact, and how future extensions
could relax them.


5.1 Kind Distinction


Cyclone’s kind distinction is no more burdensome than in C, where abstract
types must occur under pointers and struct types cannot be converted to void*.
Some of the inconvenience is inherent to exposing data representation; it is
infeasible to support polymorphism over types of different sizes and calling
conventions without imposing run-time cost or duplicating code. Nonetheless,


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







446 • D. Grossman


C provides little support for abstract types, so it is fairly easy to be “as good as
C.”


One cannot, for example, write a function that works for all arrays with ele-
ments that are eight bytes. Adding more descriptive kinds is straightforward.
For example, A8 could describe all types τ such that sizeof(τ)==8 so long as
the types have the same alignment constraints, calling convention, etc. Sub-
kinding would make A8 a subkind of A. However, sizeof(τ) is implementation-
dependent, so portable code cannot assume its value. Typed assembly languages
can have such kinds because all sizes are known [Morrisett et al. 1999a; Crary
2003].


We could relax the rules about where abstract types appear by duplicat-
ing code for every type at which it is instantiated. This approach is closer to
C++ templates [Stroustrup 2000]. It is a valuable alternative for widely used,
performance-critical libraries, such as hashtables, where a level of indirection
can prove costly. However, it is difficult to maintain separate compilation. Poly-
morphic recursion is also a problem if we cannot bound the amount of gener-
ated code. For example, this program needs an amount of code that cannot be
bounded at compile-time:


struct T<α:A> {α x; α y; }; // not legal Cyclone
void f<α:A>(struct T<α> t) {
struct T<struct T<α>> bigger = T{.x=t, .y=t};
if(flip a coin()) f(bigger);


}


In ongoing work, Cyclone’s designers are relaxing the type system to allow
struct types where the last field has unknown size. Doing so avoids well-known
shortcomings of the C type system, but makes it difficult to compile Cyclone to
C while supporting operations such as getting the address of the last field. For
now, we relegate this important extension to future work.


5.2 Quantified-Type Formation


Restricting where programmers can introduce type quantifiers (universal quan-
tification only on function types and existential quantification only on struct
types as in the Cyclone implementation) is usually not restrictive. To see why,
consider this small formal grammar for types that is less restrictive:


τ ::= α | int | τ → τ | τ × τ | τ∗ | ∃α.τ | ∀α.τ


Types can be type variables, int, function types, pair types (i.e., anonymous
struct types), pointer types, existential types, or universal types. Unlike the
Cyclone implementation, this grammar does not restrict the form of quantified
types. We argue informally why the generality is not very useful:


—∀α.α should not describe any value; no value should have every type. ∃α.α


could describe any value (ignoring kind distinctions), but expressions of this
type are unusable. For ∀α.β and ∃α.β, we can just use β.


—For ∀α.int and ∃α.int, we can just use int.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 447


—Cyclone provides ∀α.τ1 → τ2. For ∃α.τ1 → τ2, if α appears in τ1, expressions
of this type are unusable because we cannot call the function. Otherwise, we
can just use τ1 → ∃α.τ2.


—Cyclone provides the analogue of ∃α.τ1 × τ2. For ∀α.τ1 × τ2, a similar value
of type (∀α.τ1) × (∀α.τ2) is strictly more useful. Constructing such a similar
value is easy because type-checking expressions of type τ1 (respectively τ2)
does not exploit the type of τ2 (respectively τ1). Furthermore, by using a type
constructor (e.g., T = λα.(τ1 × τ2)) one can introduce a type equality and
quantify over the constructor’s argument type (e.g., the β in T<β>).


—For ∀α.(τ∗) and ∃α.(τ∗), we can just use (∀α.τ )∗ and (∃α.τ )∗, respectively. Note
that ∀α.(τ∗) should not describe pointers to mutable values.


—For ∃α.∀β.τ , if ∃α.τ is not useful then neither is ∃α.∀β.τ . If ∃α.τ is useful (i.e.,
τ is a product type), then ∀β.τ is not useful, so we can replace ∃α.∀β.τ with
∃α.τ . The argument for ∀β.∃α.τ is analogous.


However, it would be useful to allow ∀α.τ1 + τ2, where τ1 + τ2 is a (disjoint)
sum type, especially in conjunction with abstract types. That way, if a value v
has a closed type τ1 and inl injects a value into a sum type, then we could give
inl(v) type ∀α.τ1 + τ2, allowing different instantiations of the quantified type to
“share” inl(v). However, for the reasons in Section 4.3, we cannot give a mutable
location the type ∀α.τ1 + τ2.


Finally, types of the form ∃α.τ1 + τ2 are less useful than (∃α.τ1) + (∃α.τ2) for
reasons dual to the situation for ∀α.τ1 × τ2.


5.3 Bounded Quantification


Though not discussed in this article, Cyclone has sound forms of subtyping,
such as letting a pointer to a struct be subsumed to a pointer to the first field
of the struct.9 Therefore, bounded quantification would make the type system
more expressive by allowing type constraints on polymorphic functions, as in
this example:


α f(void g(τ), α x : α<τ) {
g(x);
return x;


}


The constraint α<τ requires any instantiation of f’s type to use a subtype of
τ . In the body of f, we can soundly assume the constraint holds, so we use
subsumption to type-check the function call. Without bounded quantification,
the most permissive type for f would give x and the result the type τ . But then
callers of f using a strict subtype of τ could not assume that the result of the
call had the subtype.


Although Cyclone has constraints for other issues such as memory lifetimes,
we have not had enough practical need for bounded quantification to incorporate
it. Section 7 discusses some known problems with bounded quantification.


9If the struct is an existential type, this subsumption is not allowed.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







448 • D. Grossman


5.4 Uncontrolled Aliasing


The inability of the Cyclone type system to express restrictions on aliases to
locations causes Cyclone to forbid some safe programs. For example, given a
pointer to a value of type α, it is safe to store a value of type β at the pointed-to
location “temporarily,” provided that no code expecting an α reads the location
before it again holds an α (and provided sizeof(β)≤sizeof(α)). If no aliases
to the location exist, this property is much easier to check statically. As an-
other example, we can allow reference patterns for fields of mutable existential
packages, provided no (witness-changing) mutation occurs before the variable
bound with the reference pattern is dereferenced.


Recent extensions to Cyclone describe unaliased data [Hicks et al. 2004], but
these extensions have been exploited only for memory deallocation, not relaxing
restrictions related to type variables.


More generally, systems using linear of affine types offer complementary
benefits: they allow programs that “change” the type of data, but they restrict
aliasing relationships among variables. Both approaches are extremely useful;
this article essentially investigates the expressiveness of a polymorphic type
system that does not restrict aliasing.


5.5 Parametricity


The well-known concept of parametricity [Strachey 1967; Reynolds 1983;
Wadler 1989] ensures the behavior of code cannot depend on the instantiation
of type variables. As a simple example, in the polymorphic lambda calculus, a
term with the type ∀α∀β.(α × β) → (β × α) must behave like the function that
given (e0, e1) returns (e1, e0). However, Pierce and Sangiorgi [2000] presented a
very clever trick showing that languages with mutable references (such as ML)
can violate parametricity. Unsurprisingly, a variant of the trick works in Cy-
clone. In previous work [Grossman et al. 2000], we argued that the true source
of the trick is aliasing of values at more and less abstract types (e.g., a value
available at types α* and int*). Clients of polymorphic functions may be able to
avoid such aliasing, but the Cyclone type system provides no support in check-
ing they have done so. As such, the benefits of strong typing in Cyclone follow
primarily from memory safety and abstract interfaces, not parametricity.


5.6 Package-Field Access


Forbidding direct access to existential-package fields is inconvenient. Perhaps
a simple flow analysis could infer the unpacking implicit in field access without
violating soundness. This convenience is particularly important when porting
C code.


5.7 Partial Instantiation


Partial instantiation of type constructors and polymorphic functions is some-
times less convenient than we have suggested. The instantiation is in order,
which means the type-constructor and function creator determines what par-
tial applications are allowed. (The same shortcoming exists at the term level in


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 449


functional languages with currying.) Moreover, the partial applications shown
earlier are just shorthand for implicit full applications. But sometimes it is
necessary to instantiate a universal type partially and delay the rest of the in-
stantiation. The Cyclone implementation actually supports such a true partial
instantiation via special syntax.


6. FORMALISM


To investigate the soundness of the features presented, especially in the pres-
ence of the complications described in Section 4.4, we develop a formal ab-
stract machine and a type system for it. This machine defines programs that
manipulate a heap of mutable locations holding integers or pointers. The ma-
chine gets “stuck” if a program tries to dereference an integer. The type system
has universal and existential types (with both solutions from Section 4.4). To
keep the model tractable, we omit type constructors and memory management.
The theorem in Section 6.4 ensures well-typed programs never lead to stuck
machines.


Before proceeding, we emphasize the most novel aspects of the formalism:


(1) Like Cyclone and C, we distinguish left expressions and right expressions.
The definitions for these classes of terms are mutually inductive. For sim-
plicity, we treat statements as right expressions and a function implicitly
returns the value to which its body evaluates. See the author’s disserta-
tion [Grossman 2003a] for a model with distinct statements including a
nonlocal return.


(2) We allow aliasing of mutable fields (e.g., &x.i. j ) and assignment to aggre-
gate values (e.g., x.i=e where x.i is itself an aggregate). This feature com-
plicates the rules for accessing, mutating, and type-checking aggregates.


(3) We classify types with kinds B and A. The type system prohibits programs
that would need to know the size of a type variable of kind A.


(4) To support both our solutions for mutable existential packages, the syntax
distinguishes two styles of existential types. The type system defines the
set of “assignable” types to disallow some witness changes. Moreover, the
type-safety proof requires the type system to maintain the witness types for
packages used in reference patterns. Otherwise, the induction hypothesis
would not be strong enough to show that evaluation preserves typing.


Section 6.1, 6.2, and 6.3 present the abstract machine’s syntax, evaluation
rules, and type system, respectively. In practice, we need to type-check only
source programs, but proving type safety requires extending the type system
to type-check program states. Table I summarizes all judgments defined in
subsequent sections.


6.1 Syntax


Figure 1 presents the language’s syntax. We model execution with a state com-
prising a heap for data and an expression for control. We represent heap ad-
dresses with variables, so the heap maps variables to values. We write · for the


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







450 • D. Grossman


Table I. Summary of Judgments


H; e
l→ H ′; e′ One-step left-expression evaluation


H; e
r→ H ′; e′ One-step right-expression evaluation


e[τ/α] τ ′[τ/α] Type-substitution (through expressions and types)
get(v1, p, v2) Path-getting: at path p in v1 is v2
set(v1, p, v2, v3) Path-setting: putting v2 at path p in v1 makes v3
� 	k τ : κ Kinding of types, disallowing types of unknown size
� 	ak τ : κ Kinding of types, allowing types of unknown size
� 	asgn τ “Assignable” types
� 	wf 	 	wf ϒ 	wf C Well-formedness (disallows free type variables)
C 	t e : τ Typing of expressions
	lval e “Valid” left expressions
ϒ ; xp′ 	 gettype(τ1, p, τ2) Path-getting: at path p in τ1 is τ2, using ϒ(xp′ p1) if p = p1up2
ϒ ; 	 	h H : 	′ Typing of heaps
H 	refp ϒ “ϒ-checking”: H has packages with the witness types thatϒ claims
	prog H; e State typing: implies heap- and expression-typing, and ϒ-checking


Fig. 1. Formal syntax.


empty heap and assume implicit reordering of elements (so heaps act as partial
maps).


Expressions include integers (i), function definitions (λx : τ1. e), universal
quantification (�α:κ.e), pointer creations (&e), pointer dereferences (∗e), pairs
((e1, e2)), field accesses (e.i), assignments (e1 = e2), function calls (e1(e2)), type
instantiations (e[τ ]), and existential packages (pack τ ′, e as ∃φα:κ.τ ). In this
package creation, τ ′ is the witness type.


Expressions also include statement-like forms for sequential composition
(e1; e2), conditionals (if e1 e2 e3), and loops (while e1 e2). A variable binding (let x =
e1; e2) extends the heap with a binding for x that is in scope in e2. We can assume
x is unique because the binding is α-convertible. Because memory management
is not our concern, the dynamic semantics never contracts the heap. There are
two forms for destructing existential packages: open e1 as α, x; e2 binds x to a
copy of the contents of the evaluation of e1, whereas open e1 as α, ∗x; e2 binds x
to a pointer to the contents of the evaluation of e1. The latter form corresponds


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 451


to reference patterns. For simplicity, it produces a pointer to the entire contents,
not a particular field. In both forms, x is bound in e2.


Finally, instead of variables (x), we write variables with paths (p), so the
expression form is xp. If p is the empty path (·), then xp is like a variable x, and
we write x as short-hand for x·. There is no need for nonempty paths in source
programs. Because values may be pairs or packages, we use paths to refer to
parts of values. A path is just a sequence of 0, 1, and u. As defined in the next
section, 0 and 1 refer to pair components and u refers to the value inside an
existential package. We write p1 p2 for the sequence that is p1 followed by p2. We
blur the distinction between sequences and sequence elements as convenient.
So 0p means the path beginning with 0 and continuing with p and p0 means
the path ending with 0 after p.


The valid left expressions are a subset of the valid right expressions. The
type system enforces the restriction. The expression under the & operator, the
left side of an assignment, and e1 in open e1 as α, ∗x; e2 must be valid left
expressions.


Types include type variables (α), a base type (int), products (τ1 ×τ2), pointers
(τ∗), existentials (∃φα:κ.τ ), and universals (∀α:κ.τ ). Quantified types are equal
up to systematic renaming of the bound type variable (α-conversion). Compared
to Cyclone, we have replaced struct types with “anonymous” product types
(pairs) and eliminated user-defined type constructors. Type-variable bindings
include an explicit kind, κ. Because aliasing is relevant, all pointers are explicit.
In particular, a value of a product type is a record, not a pointer to a record.
To distinguish our two approaches to existential types, we annotate ∃ with δ


(allowing witness changes) or & (allowing aliases at the opened type).
As technical points, we treat the parts of a typing context (�, 	, and ϒ) as


implicitly reorderable (and as partial maps) where convenient. When we write
	, x:τ , we assume x 
∈ Dom(	). We write 		′ (and similarly for � and ϒ) for the
union of two contexts with disjoint domains, implicitly assuming disjointedness.


Some (less interesting) inference rules for the dynamic and static seman-
tics include multiple conclusions, which is just a convenient abbreviation for
multiple rules with the same hypotheses. That is, the notation


P1


P2
P3


is shorthand for
P1


P2 and
P1


P3.


6.2 Dynamic Semantics


Several deterministic relations define the (small-step, operational) dynamic se-
mantics. A program state H; e becomes H ′; e′ if the rules in Figure 2 establish
H; e


r→ H ′; e′. The relations H; e
r→ H ′; e′ and H; e


l→ H ′; e′ are interdepen-
dent because left and right expressions can contain each other. The relations
in Figure 3 describe how paths direct the access and mutation of values. Type
substitution gives operational meaning to e[τ ] and open. Types play no es-
sential run-time role, so we can view substitution as an effectless operation
useful for proving type preservation. We now describe the definitions in more
detail.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







452 • D. Grossman


Fig. 2. Dynamic semantics, expressions.


The get and set relations handle the details of reading and mutating locations
(DR1 and DR2). Rules DR3 and DR4 eliminate pointers and pairs, respectively.
Rules DR5 eliminates function calls, using let to pass the argument. Rule DR6
uses type substitution for instantiation.


Rule DR7 is the only rule that extends the heap. Because let x = v; e is α-
convertible, we can assume x does not already name a heap location. Bindings
exist forever, so an expression like let x = v; &x is reasonable. Rules DR8–11 are
unsurprising rules for reducing loops, sequences, and conditionals. Rule DR12
uses let to simplify the results of opening an existential package. In the result,
α is not in scope, so we substitute the package’s witness type for α. Rule DR13
also uses let, but it binds the variable to the address of the package’s contents.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 453


Fig. 3. Dynamic semantics, heap objects.


To keep type-checking syntax-directed, we append u to the path. That way, we
refer to the package’s contents, not the package. The get relation, described
below, is used here only to acquire the witness type, which we substitute.


Rules DR14–15 are congruence rules for evaluating parts of larger terms.
Putting multiple conclusions in one rule is just for conciseness. Evaluation
order is left-to-right. Rule DR14 indicates the left expression positions. The
interesting distinction is that in open e1 as α, x; e2, the expression e1 is a right
expression, but in open e1 as α, ∗x; e2, it is a left expression.


Left expressions evaluate to something of the form xp. We need few rules
because the type system restricts the form of left expressions. The only inter-
esting rule is DL1, which appends a field projection to the path. To contrast left
expressions and right expressions, compare the results of DL2 and DR3. For
left expressions, the result is a terminal form, but for right expressions, rule
DR1 applies.


The get relation defines how we use paths to access nested values—as exam-
ples, get((v0, v1), 1, v1) and get(pack τ ′, v as ∃&α:κ.τ , u, v). That is, we use u to
get a package’s contents, which we never do if the witness might change. The
set relation defines the use of paths to update parts of values: set(v1, p, v2, v3)
means updating the part of v1 corresponding to p with v2 produces v3—for ex-
ample, set((v1, ((v2, v3), v4)), 10, (v5, v6), (v1, ((v5, v6), v4))).


Type substitution (in types, terms, and contexts) is straightforward. We re-
place free occurrences of the type variable with the type. Binding occurrences
occur in quantified types, open, and polymorphic-function definitions.


As an example, here is a variation of the previous unsoundness example. We
use assignment instead of function pointers, but the idea is the same. For now,
we do not specify the style of the existential types.


(1) let xzero = 0;
(2) let xpzero = &xzero;
(3) let xpkg = pack int∗, (&xpzero, xpzero) as ∃φα:B.α∗ × α;
(4) open xpkg as β, ∗xpr;
(5) let xfst = (∗xpr).0;
(6) xpkg = pack int, (xpzero, xzero) as ∃φα:B.α∗ × α ;
(7) ∗xfst = (∗xpr).1 ;
(8) ∗xpzero = xzero


Lines (1)–(5) allocate values in the heap. After line (3), location xpkg contains
pack int∗, (&xpzero·, &xzero·) as ∃φα:B.α∗ × α. Line (4) substitutes int∗ for β and


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







454 • D. Grossman


Fig. 4. Typing, expressions.


location xpr contains &xpkgu. After line (6), xfst contains &xpzero· and xpkg contains
pack int, (&xzero, 0) as ∃φα:B.α∗ × α. Hence line (7) assigns 0 to xpzero, which
causes line (8) to be stuck because there is no H, H ′, and e′ for which H; ∗0


l→
H ′; e′.


To complete the example, we need to choose δ or & for each φ. Fortunately,
as the next section explains, no choice produces a well-typed program.


The type information associated with packages and paths keeps type-
checking syntax-directed. We could define an erasure function over heaps that
replaces pack τ ′, v as ∃φα:κ.τ with v and removes u from paths. It should be
straightforward to prove that erasure and evaluation commute (treating open
like let).


6.3 Static Semantics


Because program execution begins with an empty heap, a source program is just
an expression e. To allow e, we require ·; ·; · 	t e : τ (for some type τ ), using the
rules in Figure 4. These rules ensure terms are never used with inappropriate
operations and never refer to undefined variables.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 455


Fig. 5. Typing, heap objects.


Fig. 6. Kinding and context well-formedness.


The strangest part of the typing judgment for expressions (	t in Figure 4) is
ϒ , which is irrelevant in source programs. As described below, it captures the
invariant that packages used in terms of the form open e as α, ∗x; s are never
mutated. In particular, ϒ holds the witness types of packages that have been
opened with open e as α, ∗x; s. The 	t rules use 	lval to restrict the form of left
expressions and the gettype relation (Figure 5) to type-check paths. The latter
is the static analogue of the get relation.


Type-checking also restricts what types appear where, using the judgments
in Figure 6. The 	ak and 	wf judgments primarily ensure type variables are in
scope. The 	k kinding judgment forbids abstract types except under pointer
types. It is reassuring that 	ak is easy to define in terms of 	k. The restric-
tion 	k prevents manipulating terms of unknown size, although formalizing
this restriction is unnecessary: The dynamic semantics for the formal machine
could accommodate such terms. The 	asgn judgment describes types of mutable
expressions.


We do not need the judgments in Figure 7 for source programs. They describe
the invariant used to prove type safety. For a valid source program e, 	prog ·; e.


We now describe the judgments in more detail.
If � 	k τ : κ, then given the type variables in �, type τ has kind κ and its


size is known. To prevent types of unknown size, we cannot derive �, α:A 	k


α : κ, but we can derive �, α:A 	k α∗ : B. For simplicity, we assume function
types have known size, unlike in Cyclone. We can imagine implementing all
function definitions with values of the same size (e.g., pointers to code), so
this simplification is justifiable. Some types are not subject to the known-size


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







456 • D. Grossman


Fig. 7. Typing, states.


restriction, such as τ in e[τ ]. But we still require � 	ak τ : κ; we can derive
�, α:A 	ak α : κ. The types for which � 	asgn τ have known size and any types of
the form ∃&α:κ ′.τ occur under pointers.


We cannot give quantified types kind B, but we argued earlier that doing
so is not useful. We exploit this fact in the rules for 	asgn: it is too lenient to
allow �, α:B 	asgn α if we might instantiate α with a type of the form ∃&α:κ ′.τ .
A more complicated kind system could distinguish assignable box kinds and
unassignable box kinds (the former being a subkind of the latter).


Well-formed contexts (the 	wf judgments) have only closed types of known
size. Because ϒ is used only to describe heaps, no � is necessary for 	wf ϒ .


We now describe the type-checking rules for expressions. To type-check xp,
SR1 uses the gettype relation to derive a type from the type of x and the form
of p. We can use u to acquire the contents of an existential package only if
the package has a type of the form ∃&α:κ.τ . Such types are not assignable,
so no mutation can interfere. Furthermore, to use u, the path to the package
must be in ϒ . We use ϒ to remember the witness types of all packages that
have been unpacked with an expression of the form open e as α, ∗x; s. These
witnesses cannot change, so it is sound to use ϒ(xp). Before a program executes,
no packages have been unpacked, so ϒ is ·. In fact, there is no need for gettype
at all in source programs because we can forbid nonempty paths. SR2 prevents
dereferencing a pointer to a value of unknown size. SR3–6 hold no surprises.
SR7 ensures that e1 is a valid left expression and its type is assignable. SR8
requires a left expression of the address-of operator’s subexpression. SR9 is the
normal rule for function call. SR10–13 are conventional for quantified types
and functions. We use the 	ak judgment because types for instantiations and
witnesses can have unknown size. Unlike C and Cyclone, we do not require
that functions are closed (modulo global variables) nor do we require that they
appear at top-level.


The typing rules for the statement-like forms are unsurprising, particularly
SR14–SR17. Rules SR18–SR19 allow the two forms of existential unpacks. As
expected, they extend � and 	 and the type of the bound term variable depends
on the form of the unpack (τ ′ in SR18 and τ ′∗ in SR19). The reuse of α in the type
of e is not a restriction because existential types α-convert. The e in SR19 must
be a valid left expression, so we requires 	lval e1. The type of e in SR19 cannot
have the form ∃δα:κ.τ ; this is the essence of the restriction on such types. Finally,
the kinding assumption in SR18 and SR19 is a technical point to ensure that α


is not free in τ , which is always possible by α-conversion of the open expression.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 457


As in C and Cyclone, the legal left expressions (defined with 	lval) are locations,
dereferences, and fields of left expressions.


The judgment 	prog H; e defines the invariant that establishes type safety.
First, the heap must type-check without any free variables or any type vari-


ables. It is also this judgment that would fail to be preserved under evaluation
if e[τ ] could be a left expression: If we heap variable x had type ∀α.κτ1, then
x[τ ] = v could change the type of x in the heap. Note that 	; ϒ 	h H : 	 al-
lows mutually recursive functions in the heap; other cyclic data is impossible
without recursive types.


Second, if ϒ(xp) = τ , then the value in the location that xp describes has
to be an existential package with witness type τ , and the package’s type must
indicate that the witness will not change. If the witness could change, then the
mapping from xp to τ in ϒ would not be preserved under evaluation, which
in turn would break type preservation for expressions of the form xpu. So the
Preservation Lemma in the Appendix establishes that no mapping in ϒ ever
changes.


Third, e must type-check under the assumptions 	 and ϒ that describe the
heap.


6.4 Type Safety


The appendix proves this result:


Definition 1. State H; e is stuck if e is not a value and there are no H ′ and
e′ such that H; e


r→ H ′; e′.


THEOREM TYPE SAFETY. If ·; ·; · 	t e : τ and ·; e
r→∗


H ′; e′ (where
r→∗


is the
reflexive, transitive closure of


r→), then H ′; e′ is not stuck.


Informally, well-typed programs can continue evaluating until they termi-
nate (though they may not terminate).


7. RELATED WORK


This section discussed the most closely related work on quantified types, low-
level type systems, and safe C-like languages.


7.1 Universal Quantification


The seminal theoretical foundation for quantified types in programming lan-
guages is the polymorphic lambda calculus, also called System F, which Girard
[1989] and Reynolds [1974] invented independently. Many general-purpose
programming languages, most notably Standard ML [Milner et al. 1997],
O’Caml [Chailloux et al. 2000; Leroy 2002a], Haskell [Jones and Hughes 1999],
and GJ [Bracha et al. 1998], use quantified types and type constructors to allow
code reuse.


Higher-level languages generally do not restrict the types that a type variable
can represent. A polymorphic function can be instantiated at any type, includ-
ing records and floating-point types. Simpler implementations add a level of
indirection for all records and floating-point numbers to avoid code duplication.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







458 • D. Grossman


Sophisticated analyses and compiler intermediate languages can avoid some
unnecessary levels of indirection [Morrisett 1995; Tarditi 1996; Leroy 1992,
1997; Wells et al. 2002]. In the extreme, ML’s lack of polymorphic recursion
lets whole-program compilers monomorphize the code, essentially duplicating
polymorphic functions for each type at which they are instantiated [Cejtin et al.
2000; Benton et al. 1998]. The amount of generated code appears tolerable in
practice. C++ [Stroustrup 2000] defines template instantiation in terms of code
duplication, making template functions closer to advanced macros than para-
metric polymorphism.


An example of a simple compromise is the current O’Caml implementa-
tion [Leroy 2002b]: records and arrays of floating-point numbers do not use
indirection for the numbers. Polymorphic code accessing an array must check
at run-time whether the array holds floating-point numbers or not, so run-time
type information is necessary.


Without first-class polymorphism or polymorphic recursion, ML and Haskell
enjoy full type inference: programs never need explicit type information. Type
inference is undecidable if we add first-class polymorphism or polymorphic re-
cursion [Wells 1999; Henglein 1993; Kfoury et al. 1993]. Haskell 98 [Jones and
Hughes 1999] includes polymorphic recursion, but requires explicit types for
functions that use it. Because these languages encourage using many functions,
conventional wisdom considers Cyclone’s approach of requiring explicit types
for all function definitions intolerable. However, room for compromise between
inference and more powerful type systems exists, as proposals for ML exten-
sions and additions to Haskell implementations demonstrate [Garrigue and
Rémy 1999; Botlan and Rémy 2003; Pierce and Turner 1998; The Hugs 98 User
Manual 2002; The GHC Team 2003].


Section 5 described how bounded quantification for types could increase
Cyclone’s expressiveness. The type theory for bounded quantification has
received considerable attention, particularly because of its role in encoding
some object-oriented idioms [Bruce et al. 1999]. An important negative result
concerns bounded quantification’s interaction with subtyping: it is sound to
consider ∀α ≤ τ1.τ2 a subtype of ∀α ≤ τ3.τ4 if τ3 is a subtype of τ1 and τ2 is
a subtype of τ4. However, together with other conventional subtyping rules,
this rule for subtyping universal types makes the subtyping question (given
two types, is one a subtype of the other) undecidable [Pierce 1991]. A common
compromise is to require equal bounds (τ1 = τ3 in our example) [Cardelli and
Wegner 1985]. Another possibility is to require explicit subtyping proofs (or
hints about proofs) in source programs.


The problem with polymorphic references discussed in Section 4.4 has
received much attention from the ML community [Tofte 1990; Wright and
Felleisen 1994; Harper 1994]. A commitment to full type inference and an ad-
vanced module system with abstract types complicate the problem. So-called
“weak type variable” solutions, which make a kind distinction with respect to
mutation, have fallen out of favor. Instead, a simple “value restriction” suffices.
Essentially, a binding cannot receive a universal type unless it is initialized
with a syntactic value, such as a variable (which is immutable) or a func-
tion. This solution interacts well with type inference and appears tolerable in


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 459


practice. In Cyclone, default mutability and more explicit typing makes the
solution of forbidding type instantiation in left expressions seem natural.


7.2 Existential Quantification


Explicit existential types have not been used as much in programming lan-
guages. Mitchell and Plotkin’s [1988] seminal work showed how constructs for
abstract types, such as the rep types in CLU clusters [Liskov et al. 1984] and the
abstype declarations in Standard ML [Milner et al. 1997] are really existential
types. Encodings of closures [Minamide et al. 1996] and objects [Bruce et al.
1999] using existential types suggest that the lack of explicit existential types
in many languages is in some sense an issue of terminology. Current Haskell
implementations [The Hugs 98 User Manual 2002; The GHC Team 2003] in-
clude existential types for “first-class” values, as suggested by Läufer [1996].
In all the above work, existential packages are immutable, so the problem from
Section 4.4 is irrelevant.


Other lower-level typed languages have included existential types, but have
not encountered the same unsoundness problem. For example, Typed Assembly
Language [Morrisett et al. 1999b] does not have a way to create an alias of
an opened type, as with Cyclone’s reference patterns. There is also no way to
change the type of a value in the heap—assigning to an existential package
means making a pointer refer to a different heap record. Xanadu [Xi 2000], a
C-like language with compile-time reasoning about integer values, also does
not have aliases at the opened type. Roughly, int is short-hand for ∃α:Int.int(α)
and uses of int values implicitly include the necessary open expressions. Such
a use copies the value, so aliasing is not a problem. It appears that witness types
can change because mutating a heap-allocated int would change its witness.


Languages with linear existential types can provide a solution different than
the ones presented in this work. In these systems, there is only one reference
to an existential package, so a fortiori there are no aliases at the opened type.
Walker and Morrisett [2000] exploited this invariant to define open such that it
does not introduce any new bindings. Instead, it mutates the location holding
the package to hold the package’s contents. Without run-time type information,
such an open has no actual effect. The Vault system [DeLine and Fähndrich
2001] also has linear existential types. Formally, opening a Vault existential
package introduces a new binding. In practice, the Vault type-checker infers
where to put open and pack terms and how to rewrite terms using the bindings
that open statements introduce.


7.3 Interacting with Types of Unknown Size


The Typed Assembly Language implementation [Morrisett et al. 1999a] for the
IA-32 architecture has a more powerful kind system than Cyclone, though the
details are not widely known. For each number i, there is a kind Mi describing
types of memory objects consuming i bytes. These kinds are subkinds of M,
which corresponds to kind A in Cyclone. At the assembly level, padding and
alignment are explicit, so giving types these more descriptive kinds is more
appropriate. However, the fine granularity of assembly-language instructions


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







460 • D. Grossman


make it difficult for the type system to allow safe use of an abstract value. For
example, given a pointer to a value of type α of kind M12, we might like to push
a copy of the pointed to value onto the stack. Doing so requires adjusting the
stack pointer by 12 bytes and executing multiple move instructions for the parts
of the abstract value. It is unclear if the details for allowing such operations
were ever implemented.


The GHC Haskell implementation [The GHC Team 2003] provides alterna-
tive forms of floating-point numbers and records that do not have a level of
indirection. Their uses are more restricted than in Cyclone. Not only do val-
ues of these types essentially have kind A in a language without type variables
of kind A, but unboxed records can appear only in certain syntactic positions.
Nonetheless, these extensions give enough control over data representation to
improve performance for certain applications.


7.4 Safe C-Level Languages


There has been remarkably little work on quantified types for C-like languages.
Smith and Volpano [1996, 1998] described an integration of universal types with
C. Their formal development had some similarities with our work, but they did
not consider struct types. Therefore, they had no need for existential types.
Similarly, Cforall [Ditchfield 1994] supports polymorphic functions, but its aim
is to remain closer to C (still permitting unsafe programs).


As discussed above, Vault [DeLine and Fähndrich 2001] has quantified types,
but the emphasis is on controlling aliasing to permit type-state changes. Al-
though Vault is intended for low-level systems where manual resource manage-
ment is important, its approach to data representation is like that of high-level
languages (roughly, everything is a pointer).


Other approaches to achieving C-level safety have not used quantified types.
By implementing C as though it was a high-level language (e.g., by tagging
each data object with its type), it is possible to detect illegal type casts (or sub-
sequent dereferences) when they occur [Austin et al. 1994; Necula et al. 2002;
Loginov et al. 2001]. This technique makes it difficult to interoperate with
legacy systems, but it can be done [Jones and Kelly 1997; Condit et al. 2003].
For improved performance, static analysis can eliminate the need for most tags,
but polymorphic libraries still suffer in performance. A more draconian solution
can simply forbid casts between different pointer types, essentially prohibiting
generic code [Kowshik et al. 2002], which may be reasonable in some appli-
cation domains. Constraint-based inference techniques can analyze casts in C
programs to determine whether the source and destination types are proper
subtypes [Chandra and Reps 1999]. Cyclone takes a more explicit approach,
requiring some explicit annotations (other than just void*) and rejecting pro-
grams not in the type system.


The author’s dissertation [Grossman 2003a] has a much more extensive dis-
cussion of techniques and tools designed to find safety violations in C programs.


8. CONCLUSIONS


Adapting quantified types to the C level has proven extremely useful, but
it has required careful design to restrict types of unknown size, prevent


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 461


polymorphic references, and allow mutable data hiding constructs (via exis-
tential types). A formal language that combines C’s distinction between left
expressions and right expressions with quantified types has increased our con-
fidence that Cyclone is sound. While any language designer mixing mutation
and polymorphism should proceed with utmost caution, this work should pro-
vide important warnings while still indicating that the result is worth the effort.


APPENDIX


This appendix proves the theorem of Section 6.4. The proof follows the syntactic
approach that Wright and Felleisen [1994] advocate. The key lemmas are


—Preservation. If 	prog H; e and H; e
r→ H ′; e′, then 	prog H ′; e′.


—Progress. If 	prog H; e, then e is a value or there exists H ′ and e′ such that
H; e


r→ H ′; e′.


Given these lemmas (which we strengthen to prove them inductively due to
left expressions), the type-safety proof is straightforward: By induction on the
number of steps n taken to reach H ′; e′, we know 	prog H ′; e′. (For n = 0, we can
prove 	prog ·; e given the theorem’s assumptions with 	 = · and ϒ = ·. For n > 0,
induction and preservation suffice.) Hence progress ensures H ′; e′ is not stuck.


Proving these lemmas requires several auxiliary lemmas. We state the lem-
mas and prove them “bottom-up” (presenting and proving lemmas before using
them) after giving a “top-down” overview of the proof.


Preservation follows from the Preservation Lemma (terms can type-check
after taking a step) and progress follows from the Progress Lemma. The Sub-
stitution Lemmas provide the usual results that appropriate type substitutions
preserve the necessary properties of terms (and types contained in them), which
we need for the cases of the Preservation Lemma that employ substitution. The
Canonical Forms Lemma provides the usual arguments for the Progress Lemma
when we must determine the form of a value given its type.


Because the judgments for terms rely on judgments for heap objects (namely
get, set, and gettype), the proofs of Preservation and Progress require corre-
sponding lemmas for heap objects. The Heap-Object Safety Lemmas fill this
need. Lemmas 1 and 2 are obvious facts. Lemma 3 amounts to preservation
and progress for the get relation (informally, if gettype indicates a value of
some type is at some path, then get produces a value of the type), as well as
progress for the set relation (informally, given a legal path, we can change what
value is at the end of it). We prove these results together because the proofs
require the same reasoning about paths. Lemma 5 amounts to preservation
for the set relation. The interesting part is showing that the 	asgn judgment pre-
serves the correctness of the ϒ in the context, which means no witnesses for
&-style packages changed. Given set(v1, p, v2, v′


1), Lemma 5 proves by induction
the rather obvious fact that the parts of v′


1 that were in v1 (i.e., the parts not
at some path beginning with p) are compatible with ϒ . Lemma 4 provides the
result for the part of v′


1 that is v2 (i.e., the parts at some path beginning with
p). Reference patterns significantly complicate these lemmas.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







462 • D. Grossman


The Path Extension Lemmas let us add path elements on the right of paths.
We must do so, for example, to prove case DL1 of Term Preservation. The proofs
require induction because the heap-object judgments destruct paths from the
left.


The remaining lemmas provide more technical results that the aforemen-
tioned lemmas need. The Typing Well-Formedness Lemmas let us conclude
types and contexts are well-formed given typing derivations, which helps sat-
isfy the assumptions of other lemmas. It is uninteresting because we can add
more hypotheses to the static semantics until the lemmas hold. The Commut-
ing Substitutions Lemma provides a needed fact for the cases of the proof of
Substitution Lemma 8 that have a second type substitution. Safety proofs for
polymorphic languages invariably need a Commuting Substitutions Lemma,
but it is rarely stated explicitly. We need the Useless Substitutions Lemma
only because we use variables for heap locations. The heap does not have free
type variables, so type substitution does not change the 	 and ϒ that describe
it. Finally, the weakening lemmas are conventional devices used to argue that
unchanged subterms (e.g., e1 when (e0, e1) becomes (e′


0, e1)) have the same prop-
erties in extended contexts (e.g., in the context of a larger heap).


LEMMA WEAKENING. Suppose 	wf �; ϒϒ ′; 		′.


(1) If � 	k τ : κ, then ��′ 	k τ : κ. If � 	asgn τκ, then ��′ 	asgn τκ.
(2) If 	wf ϒ , then � 	k ϒ(xp) : A.
(3) If ϒ ; xp 	 gettype(τ, p′, τ ′), then ϒϒ ′; xp 	 gettype(τ, p′, τ ′).
(4) If �; ϒ ; 	 	t e : τ , then �; ϒϒ ′; 		′ 	t e : τ .
(5) If ϒ ; 	 	h H : 	′′, then ϒϒ ′; 		′ 	h H : 	′′.
(6) If H 	refp ϒ , then H H ′ 	refp ϒ .


PROOF


(1) By induction on the assumed derivations.
(2) By induction on the assumed derivation.
(3) By induction on the assumed gettype derivation: xp ∈ Dom(ϒ) implies


(ϒϒ ′)(xp) = ϒ(xp).
(4) By induction on the assumed typing derivation: cases SR12 and SR17–19


can use α-conversion to ensure that x 
∈ Dom(		′). Case SR1 follows from
the part (1) because x ∈ Dom(	) implies (		′)(x) = 	(x).


(5) By induction on the heap-typing derivation, using Weakening Lemma 4.
(6) By induction on the assumed derivation: x ∈ Dom(H) implies (H H ′)(x) =


H(x).


LEMMA USELESS SUBSTITUTIONS. Suppose α 
∈ Dom(�).


(1) If � 	k τ ′ : κ, then τ ′[τ/α] = τ ′.
(2) If � 	wf 	, then 	[τ/α] = 	.
(3) If 	wf ϒ , then (ϒ(xp))[τ/α] = ϒ(xp).


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 463


PROOF. Each part is by induction on the assumed derivation; parts (2) and
(3) use part (1).


LEMMA COMMUTING SUBSTITUTIONS.
If β is not free in τ2, then τ0[τ1/β][τ2/α] = τ0[τ2/α][τ1[τ2/α]/β].


PROOF. By induction on the structure of τ0: if τ0 = α, both substitutions pro-
duce τ2, using the assumption that β is not free in τ2. If τ0 = β, both substitutions
produce τ1[τ2/α]. If τ0 is some other type variable or int, both substitutions are
useless. All other cases follow by induction and the definition of substitution.


LEMMA SUBSTITUTION. Suppose � 	ak τ : κ.


(1) If �, α:κ 	k τ ′ : κ ′, then � 	k τ ′[τ/α] : κ ′.
(2) If �, α:κ 	ak τ ′ : κ ′, then � 	ak τ ′[τ/α] : κ ′.
(3) If �, α:κ 	asgn τ ′, then � 	asgn τ ′[τ/α].
(4) If �, α:κ 	wf 	, then � 	wf 	[τ/α].
(5) If 	wf �, α:κ; ϒ ; 	, then 	wf �; ϒ ; 	[τ/α].
(6) If 	wf ϒ and ϒ ; xp 	 gettype(τ1, p′,τ2), then ϒ ; xp 	 gettype(τ1[τ/α], p′,


τ2[τ/α]).10


(7) If 	lval e, then 	lval e[τ/α].
(8) If �, α:κ; ϒ ; 	 	t e : τ ′, then �; ϒ ; 	[τ/α] 	t e[τ/α] : τ ′[τ/α].


PROOF


(1) By induction on the assumed derivation: the nonaxiom cases are by induc-
tion. The case for τ ′ = int is trivial. The case where τ ′ is a type variable is
trivial unless τ ′ = α. In that case, �(α) = B, so inverting � 	ak τ : κ ensures
� 	k τ : B, as desired. Similarly, the case where τ ′ has the form β∗ is trivial
unless β = α. In that case, if τ is some type variable α′ where �(α′) = A,
then � 	k α′∗ : B as desired. Else inverting � 	ak τ : κ ensures � 	k τ : κ, so
� 	k τ∗ : B (using the introduction rule for pointer types and possibly the
subsumption rule).


(2) By cases on the assumed derivation, using the previous lemma
(3) By induction on the assumed derivation: the nonaxiom cases are by induc-


tion. The cases for int and pointer types are trivial. The case where τ ′ is
a type variable is trivial unless τ ′ = α. In that case, κ = B, so inverting
� 	ak τ : κ ensures � 	k τ : B, as desired.


(4) By induction on the assumed derivation, using Substitution Lemma 1.
(5) Corollary to Substitution Lemma 4.
(6) By induction on the assumed derivation: case p′ = · is trivial. Cases where


p′ is some 0p′′ or 1p′′ are by induction. The remaining case is a derivation


10This lemma is somewhat unnecessary: a state reached from a source program with nonempty
paths can type-check without using the gettype judgment on open types. Put another way, SR1
could require 	(x) to be closed unless p = ·. Rather than prove this, we just include the lemma.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







464 • D. Grossman


of the form:
ϒ ; xpu 	 gettype(τ0[ϒ(xp)/β], p′′, τ2)


ϒ ; xp 	 gettype(∃&β:κ ′.τ0, up′′, τ2)
.


So by induction, ϒ ; xpu 	 gettype(τ0[ϒ(xp)/β][τ/α], p′′, τ2[τ/α]). By α-
conversion we assume β is not free in τ (and β 
= α), so the Commuting
Substitutions Lemma ensures ϒ ; xpu 	 gettype(τ0[τ/α][ϒ(xp)[τ/α]/β], p′′,
τ2[τ/α]). Useless Substitution Lemma 3 ensures ϒ(xp)[τ/α] = ϒ(xp), so
ϒ ; xpu 	 gettype(τ0[τ/α][ϒ(xp)/β], p′′, τ2[τ/α]), from which we can derive
ϒ ; xp 	 gettype(∃&β:κ ′.τ0[τ/α], p′′, τ2[τ/α]), as desired.


(7) By induction on the assumed derivation
(8) By induction on the assumed derivation, proceeding by cases on the last


rule in the derivation: in each case, we satisfy the hypotheses of the rule
after substitution and then use the rule to derive the desired result. So for
most cases, we explain just how to conclude the necessary hypotheses.


SR1. Left, middle, and right hypotheses follow from Substitution
Lemmas 6, 1, and 5, respectively.


SR2. Left hypothesis follows from induction. Right hypothesis follows
from Substitution Lemma 1.


SR3–5. Hypotheses follow from induction.
SR6. Hypothesis follows from Substitution Lemma 5.
SR7. First and third hypotheses follow from induction. Second hypothe-


sis follows from Substitution Lemma 7. Fourth hypothesis follows
from Substitution Lemma 3.


SR8. Left and right hypotheses follow from induction and Substitution
Lemma 7, respectively.


SR9. Hypotheses follow from induction.
SR10. We have a derivation of the form


�, α:κ; ϒ ; 	 	t e : ∀β:κ ′.τ1 �, α:κ 	ak τ0 : κ ′


�, α:κ; ϒ ; 	 	t e[τ0] : τ1[τ0/β]
.


The left hypothesis and induction ensure �; ϒ ; 	 	t e :
∀β:κ ′.τ1[τ/α]. The right hypothesis and Substitution Lemma 2 pro-
vide � 	ak τ0[τ/α] : κ ′. So we can derive �; ϒ ; 	 	t e[τ/α][τ0[τ/α]] :
τ1[τ/α][τ0[τ/α]/β]. The Commuting Substitutions Lemma ensures
the type is what we want.


SR11. We have a derivation of the form
�, α:κ; ϒ ; 	 	t e : τ1[τ0/β] �, α:κ 	ak τ0 : κ ′ �, α:κ 	k ∃φβ:κ ′.τ1 : A


�, α:κ; ϒ ; 	 	t pack τ0, e as ∃φβ:κ ′.τ1 : ∃φβ:κ ′.τ1
.


The left hypothesis and induction ensure �; ϒ; 	[τ/α] 	t e[τ/α] :
τ1[τ0/β][τ/α], which by the Commuting Substitutions Lemma en-
sures �; ϒ ; 	[τ/α] 	t e[τ/α] : τ1[τ/α][τ0[τ/α]/β]. The middle hy-
pothesis and Substitution Lemma 2 ensure � 	ak τ0[τ/α] : κ ′.
The right hypothesis and Substitution Lemma 1 ensure � 	k


∃φβ:κ ′.τ1[τ/α] : A. So we can derive the desired result: �; ϒ ; 	 	t


pack τ0[τ/α], e[τ/α] as ∃φβ:κ ′.τ1[τ/α] : ∃φβ:κ ′.τ1[τ/α].


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 465


SR12. Hypothesis follows from induction.
SR13. Left hypothesis follows from induction (using implicit context re-


ordering). The well-formedness hypothesis follows from Substitu-
tion Lemma 5.


SR14–17. Hypotheses follow from induction.
SR18–19. In both cases, Substitution Lemma 1 provides the kinding hypoth-


esis and induction (and context reordering) provides the typing
hypotheses. SR19 also uses Substitution Lemma 7.


LEMMA TYPING WELL-FORMEDNESS


(1) If 	wf ϒ , ϒ ; xp 	 gettype(τ, p′, τ ′), and � 	k τ : A, then � 	k τ ′ : A.
(2) If �; ϒ ; 	 	t e : τ , then 	wf �; ϒ ; 	 and � 	k τ : A.


PROOF


(1) By induction on the gettype derivation: the case where p′ = · is trivial.
The cases where p′ starts with 0 or 1 are by induction and inversion of the
kinding derivation. In the remaining case, induction applies by inverting
the kinding derivation (to get �, α:κ 	k τ0 : A where τ = ∃&α:κ.τ0), inverting
the gettype derivation (to ensure · 	k ϒ(xp) : κ), Weakening Lemma 2 (to
get � 	k ϒ(xp) : A), and Substitution Lemma 1 (to get � 	k τ0[ϒ(xp)/α] : A).


(2) By induction on the assumed derivation: most cases follow trivially from an
explicit hypothesis or from induction and the definition of � 	k τ : A. Case
SR1 uses the first lemma. Case SR10 uses Substitution Lemma 1. Case
SR12 uses the definition of 	wf �; ϒ ; 	 to determine the function-argument
type has kind A. As usual with existential types, explicit hypotheses in SR18
and SR19 are necessary to avoid a type variable escaping.


LEMMA CANONICAL FORMS. Suppose ·; ϒ ; 	 	t v : τ .


—If τ = int, then v = i for some i.
—If τ = τ0 × τ1, then v = (v0, v1) for some v0 and v1.
—If τ = τ0 → τ1, then v = λx : τ0. s for some x and s.
—If τ = τ ′∗, then v = &xp for some x and p.
—If τ = ∀α:κ.τ ′, then v = �α:κ.e for some e.
—If τ = ∃δα:κ.τ ′, then v = pack τ ′′, v′ as ∃δα:κ.τ ′ for some τ ′′ and v′.
—If τ = ∃&α:κ.τ ′, then v = pack τ ′′, v′ as ∃&α:κ.τ ′ for some τ ′′ and v′.


PROOF. By inspection of the rules for 	t and the form of values


LEMMA PATH EXTENSION


(1) Suppose get(v, p, v′).
If v′ has the form (v0, v1), then get(v, p0, v0) and get(v, p1, v1),
else we cannot derive get(v, pip′, v′′) for any i, p′, and v′′.
If v′ has the form pack τ ′, v0 as ∃&α:κ.τ , then get(v, pu, v0),
else we cannot derive get(v, pup′, v′′) for any p′ and v′′.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







466 • D. Grossman


(2) Suppose ϒ ; xp 	 gettype(τ, p′, τ ′).
If τ ′ =τ0 × τ1, then ϒ ; xp 	 gettype(τ, p′0, τ0) and ϒ ; xp 	 gettype(τ, p′1, τ1).
If τ ′ =∃&α:κ.τ0 and · 	ak ϒ(xp) : κ, then ϒ ; xp 	 gettype(τ, p′u, τ0[ϒ(xp)/α]).


PROOF


(1) By induction on the length of p: if p = ·, then v = v′ and the result follows
from inspection of the get relation (because ·p1 = p1 for all p1). For longer
p, we proceed by cases on the leftmost element of p. In each case, inversion
of the get(v, p, v′) derivation and induction suffice.


(2) By induction on the length of p′: if p′ = ·, then τ = τ ′ and the result
follows from inspection of the gettype relation (because ·p1 = p1 for all p1).
For longer p′, we proceed by cases on the leftmost element of p′. In each
case, inversion of the ϒ ; xp 	 gettype(τ, p′, τ ′) derivation and induction
hypothesis suffice.


LEMMA HEAP-OBJECT SAFETY


(1) There is at most one v2 such that get(v1, p, v2).
(2) If get(v0, p1, v1) and get(v0, p1 p2, v2), then get(v1, p2, v2).
(3) Suppose H 	refp ϒ , ϒ ; 	 	h H : 	, and ·; ϒ ; 	 	t v1 : τ1.


If get(H(x), p1, v1) and ϒ ; xp1 	 gettype(τ1, p2, τ2), then
—There exists a v2 such that get(H(x), p1 p2, v2). Also, ·; ϒ ; 	 	t v2 : τ2.
—For all v′


2, there exists a v′
1 such that set(v1, p2, v′


2, v′
1).


Corollary: If H 	refp ϒ , ϒ ; 	 	h H : 	, and ϒ ; x· 	 gettype(τ1, p2, τ2), then the
conclusions hold with p1 = · and v1 = H(x).


(4) Suppose in addition to the previous lemma’s assumptions, · 	asgn τ2. Then for
all p′, xp1 p2 p′ 
∈ Dom(ϒ).


(5) Suppose in addition to the previous lemma’s assumptions, set(v1, p2, v′
2, v′


1)
and ·; ϒ ; 	 	t v′


2 : τ2. Then ·; ϒ ; 	 	t v′
1 : τ1 and if xp1 p′ ∈ Dom(ϒ), there are


v′′, τ ′′, α, and κ such that get(v′
1, p′, pack ϒ(xp1 p′), v′′ as ∃&α:κ.τ ′′).


Corollary: If H 	refp ϒ , ϒ ; 	 	h H : 	, ϒ ; x· 	 gettype(τ1, p2, τ2), · 	asgn τ2,
set(H(x), p2, v′


2, v′
1), and ·; ϒ ; 	 	t v′


2 : τ2, then the conclusions hold with
p1 = · and v1 = H(x).


PROOF


(1) By induction on the length of p
(2) By induction on the length of p1


(3) By induction on the length of p2: If p2 = ·, the gettype relation ensures
τ1 = τ2 and the get relation ensures get(H(x), p1·, v1). So letting v2 = v1,
the assumption ·; ϒ ; 	 	t v1 : τ1 means ·; ϒ ; 	 	t v2 : τ2. We can trivially
derive set(v1, ·, v′


2, v′
2). For longer paths, we proceed by cases on the leftmost


element:
p2 = 0p3: Inverting the assumption ϒ ; xp1 	 gettype(τ1, 0p3, τ2) provides


ϒ ; xp10 	 gettype(τ10, p3, τ2) where τ1 = τ10 × τ11. Inverting the assump-
tion ·; ϒ ; 	 	t v1 : τ10 × τ11 provides v1 = (v10, v11) and ·; ϒ ; 	 	t v10 : τ10. Ap-
plying Path Extension Lemma 1 to the assumption get(H(x), p1, (v10, v11))


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 467


provides get(H(x), p10, v10). So induction applies to the underlined
results, using p10 for p1, v10 for v1, τ10 for τ1, p3 for p2, and τ2 for
τ2.
Therefore, there exists a v2 such that get(H(x), p10p3, v2) and ·; ϒ ; 	 	t


v2 : τ2, as desired. Moreover, for all v′
2 there exists a v′


10 such that
set(v10, p3, v′


2, v′
10). So we can derive set((v10, v11), 0p3, v′


2, (v′
10, v11)), which


satisfies the desired result (letting v′
1 = (v′


10, v11)).
p2 = 1p3: Analogous to the previous case.
p2 = up3: Inverting the assumption ϒ ; xp1 	 gettype(τ1, up3, τ2) provides


ϒ ; xp1u 	 gettype(τ3[ϒ(xp1)/α], p3, τ2) where τ1 = ∃&α:κ.τ3. Inverting the
assumption ·; ϒ ; 	 	t v1 : ∃&α:κ.τ3 provides ·; ϒ ; 	 	t v3 : τ3[τ4/α] where v1 =
pack τ4, v3 as ∃&α:κ.τ3. Applying Path Extension Lemma 1 to the assump-
tion get(H(x), p1, pack τ4, v3 as ∃&α:κ.τ3) provides get(H(x), p1u, v3).
From get(H(x), p1, pack τ4, v3 as ∃&α:κ.τ3), Heap-Object Safety Lemma 1,
and H 	refp ϒ , we know τ4 = ϒ(xp1). So induction applies to the underlined
results, using p1u for p1, v3 for v1, τ3[ϒ(xp1)/α] for τ1, p3 for p2, and τ2 for
τ2.
Therefore, there exists a v2 such that get(H(x), p1up3, v2) and ·; ϒ ; 	 	t


v2 : τ2, as desired. Moreover, for all v′
2 there exists a v′


3 such that
set(v3, p3, v′


2, v′
3). So we can derive set(pack τ4, v3 as ∃&α:κ.τ3, up3, v′


2,
pack τ4, v′


3 as ∃&α:κ.τ3, which satisfies the desired result (letting v′
1 =


pack τ4, v′
3 as ∃&α:κ.τ3).


The corollary holds because get(H(x), ·, H(x)) and ϒ ; 	 	h H : 	 ensures
·; ϒ ; 	 	t H(x) : τ1.


(4) Heap-Object Safety Lemmas 1 and 3 ensure there is exactly one v2 such that
get(H(x), p1 p2, v2). Furthermore, ·; ϒ ; 	 	t v2 : τ2. We proceed by induction
on the structure of τ2.
If τ2 = int, the Canonical Forms Lemma ensures v2 = i for
some i. Hence Path Extension Lemma 1 ensures we cannot de-
rive get(H(x), p1 p2 p′, v′′) unless p′ = · (and therefore v′′ = i). So
get(H(x), p1 p2 p′, pack τ0, v0 as ∃&α:κ.τ ′


0) is impossible, but it is necessary
for xp1 p2 p′ ∈ Dom(ϒ).
The cases for τ2 = τ3∗, τ2 = τ3 → τ4, τ2 = ∃δα:κ.τ3, and τ2 = ∀α:κ.τ3 are
analogous to the case for int, replacing i with a different form of value.
If τ2 = α or τ2 = ∃&α:κ.τ3, the lemma holds vacuously because we cannot
derive · 	asgn τ2.
If τ2 = τ3 × τ4, the Canonical Forms Lemma ensures v2 = (v3, v4). Hence
Path Extension Lemma 1 ensures we can derive get(H(x), p1 p2 p′, v′′)
only if p′ = ·, p′ = 0p′′, or p′ = 1p′′. If p′ = ·, then get(H(x), p1 p2 p′,
pack τ0, v0 as ∃&α:κ.τ ′


0) is impossible, but it is necessary for xp1 p2 p′ ∈
Dom(ϒ). If p′ = 0p′′, applying Path Extension Lemma 2 to the assump-
tion ϒ ; xp1 	 gettype(τ1, p2, τ2) provides ϒ ; xp1 	 gettype(τ1, p20, τ3). In-
verting the assumption · 	asgn τ3 × τ4 provides · 	asgn τ3. With the underlined
results and the assumptions get(H(x), p1, v1) and ·; ϒ ; 	 	t v1 : τ1, induction
applies (using p20 for p2 and τ3 for τ2), so xp1 p20p′′ 
∈ Dom(ϒ), as desired.
The argument for p′ = 1p′′ is analogous.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







468 • D. Grossman


(5) By induction on the length of p2: If p2 = ·, the set relation ensures v′
1 = v′


2.
and the gettype relation ensures τ2 = τ1. Hence the assumption ·; ϒ ; 	 	t v′


2 :
τ2 means ·; ϒ ; 	 	t v′


1 : τ1. Heap-Object Safety Lemma 4 ensures xp1 · p′ 
∈
Dom(ϒ), so the second conclusion holds vacuously. For longer paths, we
proceed by cases on the leftmost element:
p2 = 0p3. Inverting the assumption ϒ ; xp1 	 gettype(τ1, 0p3, τ2) ensures


ϒ ; xp10 	 gettype(τ10, p3, τ2) where τ1 = τ10 × τ11.
Inverting the assumption set(v1, 0p3, v′


2, v′
1) ensures


set(v10, p3, v′
2, v′


10) where v1 = (v10, v11) and v′
1 = (v′


10, v11).
Path Extension Lemma 1 and the assumption get(H(x), p1, (v10, v11))
ensure
get(H(x), p10, v10).
Inverting the assumption ·; ϒ ; 	 	t (v10, v11) : τ10 × τ11 ensures
·; ϒ ; 	 	t v10 : τ10.
With the underlined results and the assumptions ·; ϒ ; 	 	t v′


2 : τ2 and
· 	asgn τ2, induction applies (using p10 for p1, p3 for p2, v10 for v1, τ10 for τ1,
τ2 for τ2, v′


2 for v′
2, and v′


10 for v′
1).


Hence ·; ϒ ; 	 	t v′
10 : τ10 and if xp10p′′ ∈ Dom(ϒ), then


get(v′
10, p′′, pack ϒ(xp10p′′), v′′ as ∃&α:κ.τ ′′).


So we can derive ·; ϒ ; 	 	t (v′
10, v11) : τ10 × τ11, as desired.


If xp1 p′ ∈ Dom(ϒ), then H 	refp ϒ provides get(H(x), p1 p′,
pack ϒ(xp1 p′), v′′ as ∃&α:κ.τ ′′). Because get(H(x), p1, (v10, v11)), Path Ex-
tension Lemma 1 ensures that p′ has the form ·, 0p′′, or 1p′′. Heap-Object
Safety Lemma 1 precludes p′ = ·. If p′ = 0p′′, the induction provides
the result we need. If p′ = 1p′′, applying Heap-Object Safety Lemma 2
provides
get((v10, v11), 1p′′, pack ϒ(xp1 p′), v′′ as ∃&α:κ.τ ′′), which by inversion
provides get(v11, p′′, pack ϒ(xp1 p′), v′′ as ∃&α:κ.τ ′′). So we can derive
get((v′


10, v11), 1p′′, pack ϒ(xp1 p′), v′′ as ∃&α:κ.τ ′′), as desired.
p2 = 1p3. Analogous to the previous case.
p2 = up3. Inverting the assumption ϒ ; xp1 	 gettype(τ1, up3, τ2) ensures


ϒ ; xp1u 	 gettype(τ3[ϒ(xp1)/α], p3, τ2) where τ1 = ∃&α:κ.τ3. Invert-
ing the assumption set(v1, up3, v′


2, v′
1) ensures set(v3, p3, v′


2, v′
3) where


v1 = pack τ4, v3 as ∃&α:κ.τ3 and v′
1 = pack τ4, v′


3 as ∃&α:κ.τ3.
Path Extension Lemma 1 and the assumption get(H(x), p1,
pack τ4, v3 as ∃&α:κ.τ3) ensure get(H(x), p1u, v3). Inverting the
assumption ·; ϒ ; 	 	t pack τ4, v3 as ∃&α:κ.τ3 : ∃&α:κ.τ3 ensures
·; ϒ ; 	 	t v3 : τ3[τ4/α]. From get(H(x), p1, pack τ4, v3 as ∃&α:κ.τ3), Heap-
Object Safety Lemma 1, and H 	refp ϒ , we know τ4 = ϒ(xp1).
With the underlined results and the assumptions ·; ϒ ; 	 	t v′


2 : τ2 and
· 	asgn τ2, induction applies (using p1u for p1, p3 for p2, v3 for v1, τ3[ϒ(xp1)/α]
for τ1, τ2 for τ2, v′


2 for v′
2, and v′


3 for v′
1).


Hence ·; ϒ ; 	 	t v′
3 : τ3[ϒ(xp1)/α] and if xp1up′′ ∈ Dom(ϒ), then


get(v′
3, p′′, pack ϒ(xp1up′′), v′′ as ∃&α:κ.τ ′′). So we can derive


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 469


·; ϒ ; 	 	t pack τ4, v′
3 as ∃&α:κ.τ3 : ∃&α:κ.τ3, as desired. If xp1 p′ ∈ Dom(ϒ),


then H 	refp ϒ provides get(H(x), p1 p′, pack ϒ(xp1 p′), v′′ as ∃&α:κ.τ ′′).
Because get(H(x), p1, pack τ4, v3 as ∃&α:κ.τ3), Path Extension Lemma 1
ensures that p′ has the form · or up′′. The case p′ = · is trivial because
get(v′


1, ·, v′
1) (the witness type did not change, so it is not a problem for


xp1 ∈ Dom(ϒ)). The case up′′ follows from induction. The corollary holds
because get(H(x), ·, H(x)) and ϒ ; 	 	h H : 	 ensures ·; ϒ ; 	 	t H(x) : τ1.


Definition Extension. 	2 (or ϒ2) extends 	1 (or ϒ1) if there exists a 	3 (or
ϒ3) such that 	2 = 	1	3 (or ϒ2 = ϒ1ϒ3).


LEMMA PRESERVATION. Suppose ϒ ; 	 	h H : 	, H 	refp ϒ , and ·; ϒ ; 	 	t e : τ .


—If 	lval e and H; e
l→ H ′; e′, then there exist 	′ and ϒ ′ extending 	 and ϒ such


that ϒ ′; 	′ 	h H ′ : 	′, H ′ 	refp ϒ ′, ·; ϒ ′; 	′ 	t e′ : τ , and 	lval e′.
—If H; e


r→ H ′; e′, then there exist 	′ and ϒ ′ extending 	 and ϒ such that
ϒ ′; 	′ 	h H ′ : 	′, H ′ 	refp ϒ ′, and ·; ϒ ′; 	′ 	t e′ : τ .


PROOF. The proof is by simultaneous induction on the assumed derivations
that the term can take a (left or right) step, proceeding by cases on the last rule
used. Except where noted, we use H ′ = H, 	′ = 	, and ϒ ′ = ϒ .


DL1. Inverting ·; ϒ ; 	 	t xp.i : τ provides ϒ ; x· 	 gettype(	(x), p, τ0 × τ1)
(where τ = τi), · 	k 	(x) : A, and 	wf ·; ϒ ; 	. Thus Path Exten-
sion Lemma 2 provides ϒ ; x· 	 gettype(	(x), pi, τi), so SR1 ensures
·; ϒ ; 	 	t xpi : τi. SL1 provides 	lval xpi.


DL2. Inverting ·; ϒ ; 	 	t ∗&xp : τ provides ·; ϒ ; 	 	t xp : τ and SL1 provides
	lval xp.


DL3. Inverting ·; ϒ ; 	 	t e1.i : τ provides ·; ϒ ; 	 	t e1 : τ0 × τ1 (where τ = τi).
So induction applies to H; e1


l→ H ′; e′
1, ensuring ϒ ′; 	′ 	h H ′ : 	′,


H ′ 	refp ϒ ′, ·; ϒ ′; 	′ 	t e′
1 : τ , and 	lval e′


1. So SR3–4 and SL3 ensure
·; ϒ ′; 	′ 	t e′ : τ , and 	lval e′ where e′ = e′


1.i.
DL4. Inverting ·; ϒ ; 	 	t ∗e1 : τ provides ·; ϒ ; 	 	t e1 : τ∗ and · 	k e1 : A.


So induction applies to H; e1
r→ H ′; e′


1, ensuring ϒ ′; 	′ 	h H ′ : 	′,
H ′ 	refp ϒ ′, and ·; ϒ ′; 	′ 	t e′


1 : τ . So SR2 and SL2 ensure ·; ϒ ′; 	′ 	t e′ : τ ,
and 	lval e′ where e′ = ∗e′


1.
DR1. Inverting ·; ϒ ; 	 	t xp : τ ensures ϒ ; x· 	 gettype(	(x), p, τ ). So


Heap-Object Safety Lemmas 1 and 3 provide ·; ϒ ; 	 	t v : τ .
DR2. Inverting ·; ϒ ; 	 	t xp = v : τ provides ϒ ; x· 	 gettype(	(x), p, τ ),


· 	asgn τ , and ·; ϒ ; 	 	t v : τ . Heap-Object Safety Lemma 5 provides
·; ϒ ; 	 	t v′ : 	(x) and all xp′ ∈ Dom(ϒ) are still correct in the sense
of H 	refp ϒ . So letting H ′ = H[x �→ v′′], 	′ = 	, and ϒ ′ = ϒ , we can
derive the needed results.


DR3. Inverting ·; ϒ ; 	 	t ∗&xp : τ provides ·; ϒ ; 	 	t xp : τ .
DR4. Inverting ·; ϒ ; 	 	t (v0, v1).i : τi provides ·; ϒ ; 	 	t vi : τi.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







470 • D. Grossman


DR5. Inverting ·; ϒ ; 	 	t (λx : τ1. e1)(v) : τ provides ·; ϒ ; 	 	t v : τ1
and ·; ϒ ; 	, x:τ1 	t e1 : τ . So SR17 lets us derive ·; ϒ ; 	 	t (let x = v; s) :
τ .


DR6. Inverting ·; ϒ ; 	 	t (�α:κ.e)[τ1] : τ2[τ1/α] provides α:κ; ϒ ; 	 	t e : τ2
and · 	ak τ1 : κ. So Substitution Lemma 8 provides ·; ϒ ; 	[τ1/α] 	t


e[τ1/α] : τ2[τ1/α]. Because 	wf ·; ϒ ; 	, Useless Substitution Lemma 2
ensures 	[τ1/α] = 	. So ·; ϒ ; 	 	t e[τ1/α] : τ2[τ1/α].


DR7. Inverting ·; ϒ ; 	 	t let x = v; e1 : τ provides ·; ϒ ; 	, x:τ ′ 	t e1 : τ and
·; ϒ ; 	 	t v : τ ′. Let H ′ = H, x �→ v, 	′ = 	, x:τ ′, and ϒ ′ = ϒ . The
Typing Well-Formedness Lemma provides · 	k τ ′ : A and 	wf ·; ϒ ; 	,
so 	wf ·; ϒ ′; 	′. So Weakening Lemma 5 provides ϒ ′; 	′ 	h H : 	, so
·; ϒ ; 	 	t v : τ ′ provides ϒ ′; 	′ 	h H ′ : 	′. Weakening Lemma 6 provides
H ′ 	refp ϒ ′. The underlined results are our obligations.


DR8. Inverting ·; ϒ ; 	 	t while e1 e2 : int provides ·; ϒ ; 	 	t e2 : τ and
·; ϒ ; 	 	t e1 : int. Typing Well-Formedness Lemma provides 	wf


·; ϒ ; 	. With these results, SR6 and SR14–16 let us derive ·; ϒ ; 	 	t


if e1 (e2; while e1 e2) 0 : int.
DR9–11. In each case, inverting ·; ϒ ; 	 	t e : τ provides ·; ϒ ; 	 	t e′ : τ .


DR12. Inverting ·; ϒ ; 	 	t open (pack τ ′, v as ∃φα:κ.τ ) as α, x; e1 : τ ′′


provides
α:κ; ϒ ; 	, x:τ 	t e1 : τ ′′, ·; ϒ ; 	 	t v : τ [τ ′/α], · 	ak τ ′ : κ, and
· 	k τ ′′ : A. So Substitution Lemma 8 provides ·; ϒ ; 	[τ ′/α], x:τ [τ ′/α] 	t


e1[τ ′/α] : τ ′′[τ ′/α]. Applying Useless Substitution Lemmas 1 and
2 (using Typing Well-Formedness Lemma for 	wf ·; ϒ ; 	) provides
·; ϒ ; 	, x:τ [τ ′/α] 	t e1[τ ′/α] : τ ′′. So SR17 lets us derive ·; ϒ ; 	 	t


let x = v; e1[τ ′/α] : τ ′′, as desired.
DR13. Inverting ·; ϒ ; 	 	t open xp as α, ∗x ′; e1 : τ provides α:κ; ϒ ; 	, x ′:τ ′∗ 	t


e1 : τ , ϒ ; x· 	 gettype(	(x), p, ∃&α:κ.τ ′), and · 	k τ : A. So inverting
DR13 provides get(H(x), p, pack τ ′′, v as ∃&α:κ.τ ′). So Heap-Object
Safety Lemmas 1 and 3 provide ·; ϒ ; 	 	t pack τ ′′, v as ∃&α:κ.τ ′ :
∃&α:κ.τ ′. Inverting this result provides ·; ϒ ; 	 	t v : τ ′[τ ′′/α]
and · 	ak τ ′′ : κ. So Substitution Lemma 8 provides
·; ϒ ; (	[τ ′′/α]), x ′:(τ ′∗)[τ ′′/α] 	t e1[τ ′′/α] : τ [τ ′′/α]. Applying Use-
less Substitution Lemmas 1 and 2 (using Typing Well-Formedness
Lemma for 	wf ·; ϒ ; 	) provides ·; ϒ ; 	, x:(τ ′∗)[τ ′′/α] 	t e1[τ ′′/α] : τ .
Let 	′ = 	 and H ′ = H. If xp ∈ Dom(ϒ), let ϒ ′ = ϒ , else let
ϒ ′ = ϒ, xp:τ ′′. If xp ∈ Dom(ϒ), then the hypothesis of DR13,
H 	refp ϒ , and Heap-Object Safety Lemma 1 ensure ϒ(xp) = τ ′′.
Applying Weakening Lemma 3 to ϒ ; x· 	 gettype(	(x), p, ∃&α:κ.τ ′)
ensures ϒ ′; x· 	 gettype(	(x), p, ∃&α:κ.τ ′). Applying Path Extension
Lemma 2 to this result ensures ϒ ′; x· 	 gettype(	(x), pu, τ ′[τ ′′/α]). So
SR1, SR8, and SL1 let us derive ·; ϒ ′; 	′ 	t &xpu : τ ′[τ ′′/α]. Applying
Weakening Lemma 4 to ·; ϒ ; 	, x:(τ ′∗)[τ ′′/α] 	t e1[τ ′′/α] : τ ensures
·; ϒ ′; 	′, x:(τ ′∗)[τ ′′/α] 	t e1[τ ′′/α] : τ . So SR17 lets us derive the de-
sired result: ·; ϒ ′; 	′ 	t let x ′ = &xpu; e1[τ ′′/α] : τ .


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 471


DR14–15. The argument for each conclusion is analogous, so we describe them
generally. With the hypothesis H; e1


r→ H ′; e′ (or H; e1
l→ H ′; e′


1) and
inversion of the typing derivation for e, we know e1 is well typed (and
for DR14 also 	lval e1). So induction ensures there are extensions 	′


and ϒ ′ such that ϒ ′; 	′ 	h H ′ : 	′, H 	refp ϒ ′, and e′
1 has the same type


under ·; ϒ ′; 	′ that e1 has under ·; ϒ ; 	 (and for DR14 also 	lval e′
1). So


using Weakening Lemma 4 to type-check unchanged subexpressions
of e under ϒ ′ and 	′, we can derive ·; ϒ ′; 	′ 	t e′ : τ . For binding forms
(let and open), α-conversion (of x) ensures 	′, x:τ ′ makes sense.


LEMMA PROGRESS. Suppose ϒ ; 	 	h H : 	, H 	refp ϒ , and ·; ϒ ; 	 	t e : τ .


—If 	lval e, then e is some xp or there exists an H ′ and e′ such that H; e
l→ H ′; e′.


—Either e is some value v or there exists an H ′ and e′ such that H; e
r→ H ′; e′.


PROOF. The proof is by induction on the assumed typing derivation, pro-
ceeding by cases on the last rule used. Except where noted, the first conclusion
holds vacuously (i.e., 
	lval e).


SR1. The first conclusion holds because e = xp. For the second, Heap-
Object Safety Lemma 3 provides get(H(x), p, v) for some v, so DR1
applies.


SR2. By induction, if e′ (where e = ∗e′) is not a value, it can take a step,
so we use DL4 for the first conclusion and DR15 for the second. Else
e′ is a value with a pointer type, so the Canonical Forms Lemma
provides it has the form &xp. So DL2 applies for the first conclusion
and DR3 for the second.


SR3. Let e = e′.0. For the first conclusion, induction ensures either e′ = xp
(so DL1 applies) or e′ can take a step (so DL3 applies). For the second
conclusion, induction ensures e′ is a value (so the Canonical Forms
Lemma ensures it has the form (v0, v1) and DR4 applies) or e′ can
take a step (so DR15 applies).


SR4. Analogous to the previous case
SR5. Let e = (e0, e1). If e0 is not a value, or e0 is but e1 is not, then induction


ensures the nonvalue can take a step, so DR15 applies. Else e is a
value.


SR6. e is a value.
SR7. Let e = (e1 = e2). If e1 is not some xp, then induction ensures e1


can take a (left) step, so DR14 applies. Else if e2 is not a value, then
induction ensures e2 can take a step, so DR15 applies. Else the typing
derivation and Heap-Object Safety Lemma 3 provide the hypothesis
to DR2.


SR8. By induction, if e′ (where e = &e′) is not some xp, it can take a (left)
step, so DR14 applies. Else e is a value.


SR9. Let e = e1(e2). By induction, if e1 is not a value or e1 is a value and
e2 is not, then the nonvalue can take a step and DR15 applies. Else,


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







472 • D. Grossman


e1 is a value with a function type, so the Canonical Forms Lemma
ensures DR5 applies.


SR10. Let e = e′[τ ]. By induction, if e′ is not a value, it can take step,
so DR15 applies. Else it is a value with a universal type, so the
Canonical Forms Lemma ensures it is a polymorphic value. So DR6
applies.


SR11. By induction, if the expression inside the package is not a value, it
can take a step, so DR15 applies. Else e is a value.


SR12–13. e is a value.
SR14. By induction, either e1 can take a step (so DR15 applies) or e1 is some


v (so DR9 applies).
SR15. By induction, if e is not a value, it can take a step, so DR15 applies.


Else e is a value of type int, so the Canonical Forms Lemma ensures
DR10 or DR11 applies.


SR16. DR8 applies.
SR17. Let e = let x = e1; e2. By induction, if e1 is not a value, it can take a


step, so DR15 applies. Else DR7 applies.
SR18. Let e = open e1 as α, x; e2. By induction, if e1 is not a value, it can


take a step, so DR15 applies. Else e1 is a value with an existential
type, so the Canonical Forms Lemma ensures it is an existential
package. So DR12 applies.


SR19. Let e = open e1 as α, ∗x; e2. By induction, if e1 is not of the form xp,
it can take a (left) step, so DR14 applies. Else e1 has the form xp and
ϒ ; x· 	 gettype(	(x), p, ∃&α:κ.τ ′). So Heap-Object Safety Lemma 3
provides there exists some v such that get(H(x), p, v) and ·; ϒ ; 	 	t


v : ∃&α:κ.τ ′. So the Canonical Forms Lemma provides v has the form
pack τ ′′, v′ as ∃&α:κ.τ ′. So DR13 applies.


It is straightforward to check that the preservation and progress properties
stated in the proof of the Type Safety Theorem are corollaries to the Preserva-
tion and Progress Lemmas. These lemmas apply given the hypotheses of 	prog P
and the conclusions of the Preservation Lemma suffice to conclude 	prog P ′. The
lemmas are stronger (e.g., the static context is an extension) because of their
inductive proofs.


ACKNOWLEDGMENTS


Cyclone is joint work with many people, most notably Greg Morrisett, Trevor
Jim, and Michael Hicks. In particular, Morrisett was a primary designer and
implementor of quantified types for Cyclone.


REFERENCES


ABADI, M. AND CARDELLI, L. 1996. A Theory of Objects. Springer-Verlag, New York, NY.
APPEL, A. 1992. Compiling with Continuations. Cambridge University Press, Cambridge, U.K.
AUSTIN, T., BREACH, S., AND SOHI, G. 1994. Efficient detection of all pointer and array access errors.


In Proceedings of the ACM Conference on Programming Language Design and Implementation
(Orlando, FL). 290–301.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 473


BENTON, N., KENNEDY, A., AND RUSSELL, G. 1998. Compiling Standard ML to Java bytecodes. In
Proceedings of the 3rd ACM International Conference on Functional Programming (Baltimore,
MD). 129–140.


BOS, H. AND SAMWEL, B. 2002. Safe kernel programming in the OKE. In Proceedings of the 5th
IEEE International Conference on Open Architectures and Network Programming (New York,
NY). 141–152.


BOTLAN, D. L. AND RÉMY, D. 2003. MLF: Raising ML to the power of System-F. In Proceedings of
the ACM International Conference on Functional Programming (Uppsala, Sweden). 27–38.


BRACHA, G., ODERSKY, M., STOUTAMIRE, D., AND WADLER, P. 1998. Making the future safe for the
past: Adding genericity to the Java programming language. In Proceedings of the 13th ACM
Conference on Object-Oriented Programming, Systems, Languages, and Applications (Vancouver,
B.C., Canada). 183–200.


BRUCE, K., CARDELLI, L., AND PIERCE, B. 1999. Comparing object encodings. Inform. Computat. 155,
108–133.


CARDELLI, L. AND WEGNER, P. 1985. On understanding types, data abstraction, and polymorphism.
ACM Comput. Surv. 17, 4, 471–522.


CEJTIN, H., JAGANNATHAN, S., AND WEEKS, S. 2000. Flow-directed closure conversion for typed lan-
guages. In 9th European Symposium on Programming. Lecture Notes in Computer Science, vol.
1782. Springer-Verlag, Berlin, Germany, 56–71.


CHAILLOUX, E., MANOURY, P., AND PAGANO, B. 2000. Développement d’Applications avec Objective
Caml. O’Reilly, Paris, France. An English translation is currently freely available online at
http://caml.inria.fr/oreilly-book/.


CHANDRA, S. AND REPS, T. 1999. Physical type checking for C. In Proceedings of the ACM Workshop
on Program Analysis for Software Tools and Engineering (Toulouse, France). 66–75.


CONDIT, J., HARREN, M., MCPEAK, S., NECULA, G., AND WEIMER, W. 2003. CCured in the real world.
In Proceedings of the ACM Conference on Programming Language Design and Implementation.
San Diego, CA. 232–244.


CRARY, K. 2003. Toward a foundational typed assembly language. In Proceedings of the 30th ACM
Symposium on Principles of Programming Languages (New Orleans, LA). 198–212.


CYCLONE. 2001. Cyclone user’s manual. Tech. rep. 2001-1855. Department of Computer
Science, Cornell University, Ithaca, NY. The current version is available online at
http://www.cs.cornell.edu/projects/cyclone/.


DELINE, R. AND FÄHNDRICH, M. 2001. Enforcing high-level protocols in low-level software. In
Proceedings of the ACM Conference on Programming Language Design and Implementation
(Snowbird, UT). 59–69.


DITCHFIELD, G. 1994. Contextual polymorphism. Ph.D. dissertation. University of Waterloo,
Waterloo, Onto., Canada.


GARRIGUE, J. AND RÉMY, D. 1999. Semi-explicit first-class polymorphism for ML. Inform. Com-
put. 155, 1/2, 134–169.


GIRARD, J.-Y., TAYLOR, P., AND LAFONT, Y. 1989. Proofs and Types. Cambridge University Press,
Cambridge, U.K.


GROSSMAN, D. 2002. Existential types for imperative languages. In 11th European Symposium on
Programming. Lecture Notes in Computer Science, vol. 2305. Springer-Verlag, Berlin, Germany,
21–35.


GROSSMAN, D. 2003a. Safe programming at the C level of abstraction. Ph.D. dissertation. Cornell
University, Ithaca, NY.


GROSSMAN, D. 2003b. Type-safe multithreading in Cyclone. In Proceedings of the ACM Inter-
national Workshop on Types in Language Design and Implementation (New Orleans, LA). 13–
25.


GROSSMAN, D., MORRISETT, G., JIM, T., HICKS, M., WANG, Y., AND CHENEY, J. 2002. Region-based mem-
ory management in Cyclone. In Proceedings of the ACM Conference on Programming Language
Design and Implementation (Berlin, Germany). 282–293.


GROSSMAN, D., ZDANCEWIC, S., AND MORRISETT, G. 2000. Syntactic type abstraction. ACM Trans.
Programm. Lang. Syst. 22, 6 (Nov.), 1037–1080.


HARPER, R. 1994. A simplified account of polymorphic references. Inform. Process. Lett. 51, 4
(Aug.), 201–206.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







474 • D. Grossman


HENGLEIN, F. 1993. Type inference with polymorphic recursion. ACM Trans. Programm. Lang.
Syst. 15, 2 (Apr.), 253–289.


HICKS, M., MORRISETT, G., GROSSMAN, D., AND JIM, T. 2004. Experience with safe manual memory-
management in Cyclone. In Proceedings of the International Symposium on Memory Management
(Vancouver, B.C., Canada).


HICKS, M., NAGARAJAN, A., AND VAN RENESSE, R. 2003. User-specified adaptive scheduling in a
streaming media network. In Proceedings of the 6th IEEE International Conference on Open
Architectures and Network Programming (San Francisco, CA). 87–96.


ISO. 1999. ISO/IEC 9899:1999, International Standard—Programming Languages—C. Inter-
national Standards Organization, Geneva, Switzerland.


JIM, T., MORRISETT, G., GROSSMAN, D., HICKS, M., CHENEY, J., AND WANG, Y. 2002. Cyclone: A safe
dialect of C. In Proceedings of the USENIX Annual Technical Conference (Monterey, CA). 275–
288.


JONES, R. AND KELLY, P. 1997. Backwards-compatible bounds checking for arrays and pointers
in C programs. In Proceedings of the AADEBUG’97. Third International Workshop on Auto-
matic Debugging. Linköping Electronic Articles in Computer and Information Science, vol. 2(9).
Linköping, Sweden.


JONES, S. P. AND HUGHES, J., Eds. 1999. Haskell 98: A Non-Strict, Purely Functional Language.
Available online at http://www.haskell.org/onlinereport/.


KFOURY, A. J., TIURYN, J., AND URZYCZYN, P. 1993. Type reconstruction in the presence of polymor-
phic recursion. ACM Trans. Programm. Lang. Syst. 15, 2 (Apr.), 290–311.


KOWSHIK, S., DHURJATI, D., AND ADVE, V. 2002. Ensuring code safety without runtime checks for
real-time control systems. In Proceedings of the ACM International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (Grenoble, France). 288–297.


LÄUFER, K. 1996. Type classes with existential types. J. Funct. Programm. 6, 3 (May), 485–
517.


LEROY, X. 1992. Unboxed objects and polymorphic typing. In Proceedings of the 19th ACM Sym-
posium on Principles of Programming Languages (Albuquerque, NM). 177–188.


LEROY, X. 1997. The effectiveness of type-based unboxing. In Proceedings of the Workshop on
Types in Compilation (Amsterdam, The Netherlands). Also published as Tech. rep. BCCS-97-03.
Computer Science Department, Boston College, Boston, MA.


LEROY, X. 2002a. The Objective Caml System Release 3.05, Documentation and User’s Manual.
Available online at http://caml.inria.fr/ocaml/htmlman/index.html.


LEROY, X. 2002b. Writing efficient numerical code in Objective Caml. Available online at
http://caml.inria.fr/ocaml/numerical.html.


LISKOV, B. ET AL. 1984. CLU Reference Manual. Springer-Verlag, Berlin, Germany.
LOGINOV, A., YONG, S. H., HORWITZ, S., AND REPS, T. 2001. Debugging via run-time type checking.


In 4th International Conference on Fundamental Approaches to Software Engineering. Lecture
Notes in Computer Science, vol. 2029. Springer-Verlag, Berlin, Germany, 217–232.


MILNER, R., TOFTE, M., HARPER, R., AND MACQUEEN, D. 1997. The Definition of Standard ML (Re-
vised). MIT Press, Cambridge, MA.


MINAMIDE, Y., MORRISETT, G., AND HARPER, R. 1996. Typed closure conversion. In Proceedings of the
23rd ACM Symposium on Principles of Programming Languages (St. Petersburg, FL). 271–283.


MITCHELL, J. 1988. Polymorphic type inference and containment. Inform. Computat. 76, 11–249.
MITCHELL, J. AND PLOTKIN, G. 1988. Abstract types have existential type. ACM Trans. Programm.


Lang. Syst. 10, 3 (July), 470–502.
MORRISETT, G. 1995. Compiling with types. Ph.D. dissertation, Carnegie Mellon University, Pitts-


burgh, PA.
MORRISETT, G., CRARY, K., GLEW, N., GROSSMAN, D., SAMUELS, R., SMITH, F., WALKER, D., WEIRICH, S.,


AND ZDANCEWIC, S. 1999a. TALx86: A realistic typed assembly language. In Proceedings of the
2nd ACM Workshop on Compiler Support for System Software (Atlanta, GA). 25–35. Published
as INRIA Tech. Rep. 0288. (March 1999), Rocquencourt, France.


MORRISETT, G., CRARY, K., GLEW, N., AND WALKER, D. 2002. Stack-based typed assembly language.
J. Funct. Programm. 12, 1 (Jan.), 43–88.


MORRISETT, G., WALKER, D., CRARY, K., AND GLEW, N. 1999b. From System F to typed assembly
language. ACM Trans. Programm. Lang. Syst. 21, 3 (May), 528–569.


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.







Quantified Types in an Imperative Language • 475


NECULA, G., MCPEAK, S., AND WEIMER, W. 2002. CCured: Type-safe retrofitting of legacy code. In
Proceedings of the 29th ACM Symposium on Principles of Programming Languages (Portland,
OR). 128–139.


PATEL, P. AND LEPREAU, J. 2003. Hybrid resource control of active extensions. In Proceedings of
the 6th IEEE International Conference on Open Architectures and Network Programming (San
Francisco, CA). 23–31.


PATEL, P., WHITAKER, A., WETHERALL, D., LEPREAU, J., AND STACK, T. 2003. Upgrading transport
protocols using untrusted mobile code. In Proceedings of the 19th ACM Symposium on Operating
System Principles (New York, NY). 1–14.


PIERCE, B. 1991. Programming with intersection types and bounded polymorphism. Ph.D. dis-
sertation, Carnegie Mellon University, Pittsburgh, PA.


PIERCE, B. AND SANGIORGI, D. 2000. Behavioral equivalence in the polymorphic pi-calculus. J.
Assoc. Comp. Mach. 47, 3, 531–584.


PIERCE, B. AND TURNER, D. 1998. Local type inference. In Proceedings of the 25th ACM Symposium
on Principles of Programming Languages (San Diego, CA). 252–265.


REYNOLDS, J. 1974. Towards a theory of type structure. In Programming Symposium. Lecture
Notes in Computer Science, vol. 19. Springer-Verlag, Berlin, Germany, 408–425.


REYNOLDS, J. 1983. Types, abstraction and parametric polymorphism. In Information Processing
83. Elsevier Science Publishers, Amsterdam, The Netherlands, 513–523.


SMITH, G. AND VOLPANO, D. 1996. Towards an ML-style polymorphic type system for C. In 6th
European Symposium on Programming. Lecture Notes in Computer Science, vol. 1058. Springer-
Verlag, Berlin, Germany, 341–355.


SMITH, G. AND VOLPANO, D. 1998. A sound polymorphic type system for a dialect of C. Sci. Comput.
Programm. 32, 2–3, 49–72.


STRACHEY, C. 1967. Fundamental concepts in programming languages. Unpublished lecture
notes, Summer School in Computer Programming, Copenhagen, Denmark. Eventually published
in 2003 in High. Ord. Symbol. Computat. 13, 1-2, 5–6.


STROUSTRUP, B. 2000. The C++ Programming Language, spec. ed. Addison-Wesley, Reading, MA.
TARDITI, D. 1996. Design and implementation of code optimizations for a type-directed compiler


for Standard ML. Ph.D. dissertation. Carnegie Mellon University, Pittsburgh, PA.
THE GHC TEAM. 2003. The Glasgow Haskell Compiler User’s Guide, Version 6.0. Available online


at http://www.haskell.org/ghc.
THE HUGS 98 USER MANUAL. 2002. The Hugs 98 User Manual. Available online at
http://haskell.cs.yale.edu/hugs.


TOFTE, M. 1990. Type inference for polymorphic references. Inform. Computat. 89, 1–34.
WADLER, P. 1989. Theorems for free! In Proceedings of the 4th International Conference on Func-


tional Programming Languages and Computer Architecture. ACM Press, New York, NY, 347–359.
WALKER, D. AND MORRISETT, G. 2000. Alias types for recursive data structures. In Workshop on


Types in Compilation. Lecture Notes in Computer Science, vol. 2071. Springer-Verlag, Berlin,
Germany, 177–206.


WELLS, J. 1999. Typability and type checking in System F are equivalent and undecidable. Ann.
Pure Appl. Logic 98, 1–3 (June), 111–156.


WELLS, J., DIMOCK, A., MULLER, R., AND TURBAK, F. 2002. A calculus with polymorphic and poly-
variant flow types. J. Funct. Programm. 12, 3 (May), 183–227.


WRIGHT, A. AND FELLEISEN, M. 1994. A syntactic approach to type soundness. Inform. Compu-
tat. 115, 1, 38–94.


XI, H. 2000. Imperative programming with dependent types. In Proceedings of the 15th IEEE
Symposium on Logic in Computer Science (Santa Barbara, CA). 375–387.


Received November 2003; revised December 2004; accepted April 2005


ACM Transactions on Programming Languages and Systems, Vol. 28, No. 3, May 2006.






