Ignore:
File:
1 edited

Legend:

Unmodified
Added
Removed
  • doc/generic_types/generic_types.tex

    ra95310e3 r22444f4  
    130130
    131131The C programming language is a foundational technology for modern computing with millions of lines of code implementing everything from commercial operating-systems to hobby projects. This installation base and the programmers producing it represent a massive software-engineering investment spanning decades and likely to continue for decades more.
    132 TIOBE~\cite{TIOBE} ranks the top 5 most popular programming languages as: Java 16\%, \Textbf{C 7\%}, \Textbf{\CC 5\%}, \CS 4\%, Python 4\% = 36\%, where the next 50 languages are less than 3\% each with a long tail. The top 3 rankings over the past 30 years are:
     132The \citet{TIOBE} ranks the top 5 most popular programming languages as: Java 16\%, \Textbf{C 7\%}, \Textbf{\CC 5\%}, \CS 4\%, Python 4\% = 36\%, where the next 50 languages are less than 3\% each with a long tail. The top 3 rankings over the past 30 years are:
    133133\lstDeleteShortInline@
    134134\begin{center}
     
    149149Nonetheless, C, first standardized over thirty years ago, lacks many features that make programming in more modern languages safer and more productive.
    150150
    151 \CFA (pronounced ``C-for-all'', and written \CFA or Cforall) is an evolutionary extension of the C programming language that aims to add modern language features to C while maintaining both source compatibility with C and a familiar programming model for programmers. The four key design goals for \CFA~\citep{Bilson03} are:
     151\CFA (pronounced ``C-for-all'', and written \CFA or Cforall) is an evolutionary extension of the C programming language that aims to add modern language features to C while maintaining both source compatibility with C and a familiar programming model for programmers. Four key design goals were set out in the original design of \CFA~\citep{Bilson03}:
    152152(1) The behaviour of standard C code must remain the same when translated by a \CFA compiler as when translated by a C compiler;
    153153(2) Standard C code must be as fast and as small when translated by a \CFA compiler as when translated by a C compiler;
    154154(3) \CFA code must be at least as portable as standard C code;
    155155(4) Extensions introduced by \CFA must be translated in the most efficient way possible.
    156 These goals ensure existing C code-bases can be converted to \CFA incrementally with minimal effort, and C programmers can productively generate \CFA code without training beyond the features being used. In its current implementation, \CFA is compiled by translating it to the GCC-dialect of C~\citep{GCCExtensions}, allowing it to leverage the portability and code optimizations provided by GCC, meeting goals (1)-(3). Ultimately, a compiler is necessary for advanced features and optimal performance.
    157 
    158 This paper identifies shortcomings in existing approaches to generic and variadic data types in C-like languages and presents a design for generic and variadic types avoiding those shortcomings. Specifically, the solution is both reusable and type-checked, as well as conforming to the design goals of \CFA with ergonomic use of existing C abstractions. The new constructs are empirically compared with both standard C and \CC; the results show the new design is comparable in performance.
     156These goals ensure existing C code-bases can be converted to \CFA incrementally and with minimal effort, and C programmers can productively generate \CFA code without training beyond the features they wish to employ. In its current implementation, \CFA is compiled by translating it to the GCC-dialect of C~\citep{GCCExtensions}, allowing it to leverage the portability and code optimizations provided by GCC, meeting goals (1)-(3). Ultimately, a compiler is necessary for advanced features and optimal performance.
     157
     158\CFA has been previously extended with polymorphic functions and name overloading (including operator overloading) by \citet{Bilson03}, and deterministically-executed constructors and destructors by \citet{Schluntz17}. This paper builds on those contributions, identifying shortcomings in existing approaches to generic and variadic data types in C-like languages and presenting a design for generic and variadic types avoiding those shortcomings. Specifically, the solution is both reusable and type-checked, as well as conforming to the design goals of \CFA with ergonomic use of existing C abstractions. The new constructs are empirically compared with both standard C and \CC; the results show the new design is comparable in performance.
    159159
    160160
     
    224224Call-site inferencing and nested functions provide a localized form of inheritance. For example, @qsort@ only sorts in ascending order using @<@. However, it is trivial to locally change this behaviour:
    225225\begin{lstlisting}
    226 {
    227         int ?<?( double x, double y ) { return x `>` y; }       $\C{// override behaviour}$
     226{   int ?<?( double x, double y ) { return x `>` y; }   $\C{// override behaviour}$
    228227        qsort( vals, size );                                    $\C{// descending sort}$
    229228}
     
    258257\begin{lstlisting}
    259258trait summable( otype T ) {
    260         void ?{}( T *, zero_t );                                $\C{// constructor from 0 literal}$
     259        void ?{}(T*, zero_t);                                   $\C{// constructor from 0 literal}$
    261260        T ?+?( T, T );                                                  $\C{// assortment of additions}$
    262261        T ?+=?( T *, T );
     
    264263        T ?++( T * );
    265264};
    266 forall( otype T `| summable( T )` ) T sum( T a[$\,$], size_t size ) {  // use trait
    267         `T` total = { `0` };                                    $\C{// instantiate T from 0 by calling its constructor}$
     265forall( otype T | summable( T ) )
     266  T sum( T a[$\,$], size_t size ) {
     267        `T` total = { `0` };                                    $\C{// instantiate T from 0 but calling its constructor}$
    268268        for ( unsigned int i = 0; i < size; i += 1 )
    269269                total `+=` a[i];                                        $\C{// select appropriate +}$
     
    860860Cyclone also provides capabilities for polymorphic functions and existential types~\citep{Grossman06}, similar in concept to \CFA's @forall@ functions and generic types. Cyclone existential types can include function pointers in a construct similar to a virtual function table, but these pointers must be explicitly initialized at some point in the code, a tedious and potentially error-prone process. Furthermore, Cyclone's polymorphic functions and types are restricted in that they may only abstract over types with the same layout and calling convention as @void*@, in practice only pointer types and @int@ - in \CFA terms, all Cyclone polymorphism must be dtype-static. This design provides the efficiency benefits discussed in Section~\ref{sec:generic-apps} for dtype-static polymorphism, but is more restrictive than \CFA's more general model.
    861861
    862 Apple's Objective-C \citep{obj-c-book} is another industrially successful set of extensions to C. The Objective-C language model is a fairly radical departure from C, adding object-orientation and message-passing. Objective-C implements variadic functions using the C @va_arg@ mechanism, and did not support type-checked generics until recently \citep{xcode7}, historically using less-efficient and more error-prone runtime checking of object types instead. The GObject framework \citep{GObject} also adds object-orientation with runtime type-checking and reference-counting garbage-collection to C; these are much more intrusive feature additions than those provided by \CFA, in addition to the runtime overhead of reference-counting. The Vala programming language \citep{Vala} compiles to GObject-based C, and so adds the burden of learning a separate language syntax to the aforementioned demerits of GObject as a modernization path for existing C code-bases.
    863 
    864 Go \citep{Go} and Rust \citep{Rust} are both modern, compiled languages with abstraction features similar to \CFA traits, \emph{interfaces} in Go and \emph{traits} in Rust. However, both languages represent dramatic departures from C in terms of language model, and neither has the same level of compatibility with C as \CFA. Go is a garbage-collected language, imposing the associated runtime overhead, and complicating foreign-function calls with the necessity of accounting for data transfer between the managed Go runtime and the unmanaged C runtime. Furthermore, while generic types and functions are available in Go, they are limited to a small fixed set provided by the compiler, with no language facility to define more. Rust is not garbage-collected, and thus has a lighter-weight runtime that is more easily interoperable with C. It also possesses much more powerful abstraction capabilities for writing generic code than Go. On the other hand, Rust's borrow-checker, while it does provide strong safety guarantees, is complex and difficult to learn, and imposes a distinctly idiomatic programming style on Rust. \CFA, with its more modest safety features, is significantly easier to port C code to, while maintaining the idiomatic style of the original source.
     862Apple's Objective-C \citep{obj-c-book} is another industrially successful set of extensions to C. The Objective-C language model is a fairly radical departure from C, adding object-orientation and message-passing. Objective-C implements variadic functions using the C @va_arg@ mechanism, and did not support type-checked generics until recently \citep{xcode7}, historically using less-efficient and more error-prone runtime checking of object types instead. The GObject framework \citep{GObject} also adds object-orientation with runtime type-checking and reference-counting garbage-collection to C; these are much more intrusive feature additions than those provided by \CFA, in addition to the runtime overhead of reference-counting. The Vala programming language \citep{Vala} compiles to GObject-based C, and so adds the burden of learning a separate language syntax to the aforementioned demerits of GObject as a modernization path for existing C code-bases. Java \citep{Java8} has had generic types and variadic functions since Java~5; Java's generic types are type-checked at compilation and type-erased at runtime, similar to \CFA's, though in Java each object carries its own table of method pointers, while \CFA passes the method pointers separately so as to maintain a C-compatible struct layout. Java variadic functions are simply syntactic sugar for an array of a single type, and therefore less useful than \CFA's heterogeneously-typed variadic functions. Java is also a garbage-collected, object-oriented language, with the associated resource usage and C-interoperability burdens.
     863
     864D \citep{D}, Go \citep{Go}, and Rust \citep{Rust} are modern, compiled languages with abstraction features similar to \CFA traits, \emph{interfaces} in D and Go and \emph{traits} in Rust. However, each language represents dramatic departures from C in terms of language model, and none has the same level of compatibility with C as \CFA. D and Go are garbage-collected languages, imposing the associated runtime overhead. The necessity of accounting for data transfer between the managed Go runtime and the unmanaged C runtime complicates foreign-function interface between Go and C. Furthermore, while generic types and functions are available in Go, they are limited to a small fixed set provided by the compiler, with no language facility to define more. D restricts garbage collection to its own heap by default, while Rust is not garbage-collected, and thus has a lighter-weight runtime that is more easily interoperable with C. Rust also possesses much more powerful abstraction capabilities for writing generic code than Go. On the other hand, Rust's borrow-checker, while it does provide strong safety guarantees, is complex and difficult to learn, and imposes a distinctly idiomatic programming style on Rust. \CFA, with its more modest safety features, is significantly easier to port C code to, while maintaining the idiomatic style of the original source.
    865865
    866866\section{Conclusion \& Future Work}
Note: See TracChangeset for help on using the changeset viewer.