Ignore:
Timestamp:
Apr 12, 2017, 3:54:28 PM (7 years ago)
Author:
Rob Schluntz <rschlunt@…>
Branches:
ADT, aaron-thesis, arm-eh, ast-experimental, cleanup-dtors, deferred_resn, demangler, enum, forall-pointer-decay, jacob/cs343-translation, jenkins-sandbox, master, new-ast, new-ast-unique-expr, new-env, no_list, persistent-indexer, pthread-emulation, qualifiedEnum, resolv-new, with_gc
Children:
e869e434
Parents:
eaa2f3a1
Message:

thesis updates based on Peter's feedback

File:
1 edited

Legend:

Unmodified
Added
Removed
  • doc/rob_thesis/ctordtor.tex

    reaa2f3a1 r0eb18557  
    77
    88Since \CFA is a true systems language, it does not provide a garbage collector.
    9 As well, \CFA is not an object-oriented programming language, i.e., structures cannot have routine members.
     9As well, \CFA is not an object-oriented programming language, \ie, structures cannot have routine members.
    1010Nevertheless, one important goal is to reduce programming complexity and increase safety.
    1111To that end, \CFA provides support for implicit pre/post-execution of routines for objects, via constructors and destructors.
     
    3030Next, @x@ is assigned the value of @y@.
    3131In the last line, @z@ is implicitly initialized to 0 since it is marked @static@.
    32 The key difference between assignment and initialization being that assignment occurs on a live object (i.e., an object that contains data).
     32The key difference between assignment and initialization being that assignment occurs on a live object (\ie, an object that contains data).
    3333It is important to note that this means @x@ could have been used uninitialized prior to being assigned, while @y@ could not be used uninitialized.
    3434Use of uninitialized variables yields undefined behaviour, which is a common source of errors in C programs.
     
    7979
    8080In \CFA, a constructor is a function with the name @?{}@.
    81 Like other operators in \CFA, the name represents the syntax used to call the constructor, e.g., @struct S = { ... };@.
     81Like other operators in \CFA, the name represents the syntax used to call the constructor, \eg, @struct S = { ... };@.
    8282Every constructor must have a return type of @void@ and at least one parameter, the first of which is colloquially referred to as the \emph{this} parameter, as in many object-oriented programming-languages (however, a programmer can give it an arbitrary name).
    8383The @this@ parameter must have a pointer type, whose base type is the type of object that the function constructs.
     
    114114In other words, a default constructor is a constructor that takes a single argument: the @this@ parameter.
    115115
    116 In \CFA, a destructor is a function much like a constructor, except that its name is \lstinline!^?{}! and it take only one argument.
    117 A destructor for the @Array@ type can be defined as such.
     116In \CFA, a destructor is a function much like a constructor, except that its name is \lstinline!^?{}! and it takes only one argument.
     117A destructor for the @Array@ type can be defined as:
    118118\begin{cfacode}
    119119void ^?{}(Array * arr) {
     
    167167}
    168168\end{cfacode}
     169
    169170In \CFA, constructors are called implicitly in initialization contexts.
    170171\begin{cfacode}
    171172Array x, y = { 20, 0xdeadbeef }, z = y;
    172173\end{cfacode}
    173 
    174 In \CFA, constructor calls look just like C initializers, which allows them to be inserted into legacy C code with minimal code changes, and also provides a very simple syntax that veteran C programmers are familiar with.
    175 One downside of reusing C initialization syntax is that it isn't possible to determine whether an object is constructed just by looking at its declaration, since that requires knowledge of whether the type is managed at that point.
     174Constructor calls look just like C initializers, which allows them to be inserted into legacy C code with minimal code changes, and also provides a very simple syntax that veteran C programmers are familiar with.
     175One downside of reusing C initialization syntax is that it is not possible to determine whether an object is constructed just by looking at its declaration, since that requires knowledge of whether the type is managed at that point in the program.
    176176
    177177This example generates the following code
     
    246246\end{cfacode}
    247247Finally, constructors and destructors support \emph{operator syntax}.
    248 Like other operators in \CFA, the function name mirrors the use-case, in that the first $N$ arguments fill in the place of the question mark.
     248Like other operators in \CFA, the function name mirrors the use-case, in that the question marks are placeholders for the first $N$ arguments.
    249249This syntactic form is similar to the new initialization syntax in \CCeleven, except that it is used in expression contexts, rather than declaration contexts.
    250250\begin{cfacode}
     
    272272Like other operators, the function name @?{}@ matches its operator syntax.
    273273For example, @(&x){}@ calls the default constructor on the variable @x@, and produces @&x@ as a result.
    274 A key example for this capability is the use of constructor expressions to initialize the result of a call to standard C routine @malloc@.
     274A key example for this capability is the use of constructor expressions to initialize the result of a call to @malloc@.
    275275\begin{cfacode}
    276276struct X { ... };
    277277void ?{}(X *, double);
    278 X * x = malloc(sizeof(X)){ 1.5 };
     278X * x = malloc(){ 1.5 };
    279279\end{cfacode}
    280280In this example, @malloc@ dynamically allocates storage and initializes it using a constructor, all before assigning it into the variable @x@.
    281281If this extension is not present, constructing dynamically allocated objects is much more cumbersome, requiring separate initialization of the pointer and initialization of the pointed-to memory.
    282282\begin{cfacode}
    283 X * x = malloc(sizeof(X));
     283X * x = malloc();
    284284x{ 1.5 };
    285285\end{cfacode}
     
    291291struct X *_tmp_ctor;
    292292struct X *x = ?{}(  // construct result of malloc
    293   _tmp_ctor=malloc(sizeof(struct X)), // store result of malloc
     293  _tmp_ctor=malloc_T(sizeof(struct X), _Alignof(struct X)), // store result of malloc
    294294  1.5
    295295), _tmp_ctor; // produce constructed result of malloc
     
    297297It should be noted that this technique is not exclusive to @malloc@, and allows a user to write a custom allocator that can be idiomatically used in much the same way as a constructed @malloc@ call.
    298298
    299 It is also possible to use operator syntax with destructors.
    300 Unlike constructors, operator syntax with destructors is a statement and thus does not produce a value, since the destructed object is invalidated by the use of a destructor.
    301 For example, \lstinline!^(&x){}! calls the destructor on the variable @x@.
     299It should be noted that while it is possible to use operator syntax with destructors, destructors invalidate their argument, thus operator syntax with destructors is a statement and does not produce a value.
    302300
    303301\subsection{Function Generation}
     
    376374The field constructors are constructors that consume a prefix of the structure's member-list.
    377375That is, $N$ constructors are built of the form @void ?{}(S *, T$_{\text{M}_0}$)@, @void ?{}(S *, T$_{\text{M}_0}$, T$_{\text{M}_1}$)@, ..., @void ?{}(S *, T$_{\text{M}_0}$, T$_{\text{M}_1}$, ..., T$_{\text{M}_{N-1}}$)@, where members are copy constructed if they have a corresponding positional argument and are default constructed otherwise.
    378 The addition of field constructors allows structures in \CFA to be used naturally in the same ways as used in C (i.e., to initialize any prefix of the structure), e.g., @A a0 = { b }, a1 = { b, c }@.
     376The addition of field constructors allows structures in \CFA to be used naturally in the same ways as used in C (\ie, to initialize any prefix of the structure), \eg, @A a0 = { b }, a1 = { b, c }@.
    379377Extending the previous example, the following constructors are implicitly generated for @A@.
    380378\begin{cfacode}
     
    429427
    430428\subsection{Using Constructors and Destructors}
    431 Implicitly generated constructor and destructor calls ignore the outermost type qualifiers, e.g. @const@ and @volatile@, on a type by way of a cast on the first argument to the function.
     429Implicitly generated constructor and destructor calls ignore the outermost type qualifiers, \eg @const@ and @volatile@, on a type by way of a cast on the first argument to the function.
    432430For example,
    433431\begin{cfacode}
     
    448446Here, @&s@ and @&s2@ are cast to unqualified pointer types.
    449447This mechanism allows the same constructors and destructors to be used for qualified objects as for unqualified objects.
    450 This applies only to implicitly generated constructor calls.
     448This rule applies only to implicitly generated constructor calls.
    451449Hence, explicitly re-initializing qualified objects with a constructor requires an explicit cast.
    452450
     
    489487Instead, @a2->x@ is initialized to @0@ as if it were a C object, because of the explicit initializer.
    490488
    491 In addition to freedom, \ateq provides a simple path to migrating legacy C code to \CFA, in that objects can be moved from C-style initialization to \CFA gradually and individually.
     489In addition to freedom, \ateq provides a simple path for migrating legacy C code to \CFA, in that objects can be moved from C-style initialization to \CFA gradually and individually.
    492490It is worth noting that the use of unmanaged objects can be tricky to get right, since there is no guarantee that the proper invariants are established on an unmanaged object.
    493491It is recommended that most objects be managed by sensible constructors and destructors, except where absolutely necessary.
     
    503501  {
    504502    void ?{}(S * s, int i) { s->x = i*2; } // locally hide autogen constructors
    505     S s4;  // error
    506     S s5 = { 3 };  // okay
    507     S s6 = { 4, 5 };  // error
     503    S s4;  // error, no default constructor
     504    S s5 = { 3 };  // okay, local constructor
     505    S s6 = { 4, 5 };  // error, no field constructor
    508506    S s7 = s5; // okay
    509507  }
     
    513511In this example, the inner scope declares a constructor from @int@ to @S@, which hides the default constructor and field constructors until the end of the scope.
    514512
    515 When defining a constructor or destructor for a struct @S@, any members that are not explicitly constructed or destructed are implicitly constructed or destructed automatically.
     513When defining a constructor or destructor for a structure @S@, any members that are not explicitly constructed or destructed are implicitly constructed or destructed automatically.
    516514If an explicit call is present, then that call is taken in preference to any implicitly generated call.
    517515A consequence of this rule is that it is possible, unlike \CC, to precisely control the order of construction and destruction of sub-objects on a per-constructor basis, whereas in \CC sub-object initialization and destruction is always performed based on the declaration order.
     
    597595In practice, however, there could be many objects that can be constructed from a given @int@ (or, indeed, any arbitrary parameter list), and thus a complete solution to this problem would require fully exploring all possibilities.
    598596
    599 More precisely, constructor calls cannot have a nesting depth greater than the number of array components in the type of the initialized object, plus one.
     597More precisely, constructor calls cannot have a nesting depth greater than the number of array dimensions in the type of the initialized object, plus one.
    600598For example,
    601599\begin{cfacode}
     
    609607  { {14 }, { 15 } }   // a2[1]
    610608};
    611 A a3[4] = {
    612   { { 11 }, { 12 } },  // error
     609A a3[4] = { // 1 dimension => max depth 2
     610  { { 11 }, { 12 } },  // error, three levels deep
    613611  { 80 }, { 90 }, { 100 }
    614612}
     
    622620\label{sub:implicit_dtor}
    623621Destructors are automatically called at the end of the block in which the object is declared.
    624 In addition to this, destructors are automatically called when statements manipulate control flow to leave a block in which the object is declared, e.g., with return, break, continue, and goto statements.
     622In addition to this, destructors are automatically called when statements manipulate control flow to leave a block in which the object is declared, \eg, with return, break, continue, and goto statements.
    625623The example below demonstrates a simple routine with multiple return statements.
    626624\begin{cfacode}
     
    747745Exempt from these rules are intrinsic and built-in functions.
    748746It should be noted that unmanaged objects are subject to copy constructor calls when passed as arguments to a function or when returned from a function, since they are not the \emph{target} of the copy constructor call.
    749 That is, since the parameter is not marked as an unmanaged object using \ateq, it will be copy constructed if it is returned by value or passed as an argument to another function, so to guarantee consistent behaviour, unmanaged objects must be copy constructed when passed as arguments.
    750 This is an important detail to bear in mind when using unmanaged objects, and could produce unexpected results when mixed with objects that are explicitly constructed.
     747That is, since the parameter is not marked as an unmanaged object using \ateq, it is be copy constructed if it is returned by value or passed as an argument to another function, so to guarantee consistent behaviour, unmanaged objects must be copy constructed when passed as arguments.
     748These semantics are important to bear in mind when using unmanaged objects, and could produce unexpected results when mixed with objects that are explicitly constructed.
    751749\begin{cfacode}
    752750struct A;
     
    763761identity(z);  // copy construct z into x
    764762\end{cfacode}
    765 Note that @z@ is copy constructed into a temporary variable to be passed as an argument, which is also destructed after the call.
     763Note that unmanaged argument @z@ is logically copy constructed into managed parameter @x@; however, the translator must copy construct into a temporary variable to be passed as an argument, which is also destructed after the call.
     764A compiler could by-pass the argument temporaries since it is in control of the calling conventions and knows exactly where the called-function's parameters live.
    766765
    767766This generates the following
     
    859858This transformation provides @f@ with the address of the return variable so that it can be constructed into directly.
    860859It is worth pointing out that this kind of signature rewriting already occurs in polymorphic functions that return by value, as discussed in \cite{Bilson03}.
    861 A key difference in this case is that every function would need to be rewritten like this, since types can switch between managed and unmanaged at different scope levels, e.g.
     860A key difference in this case is that every function would need to be rewritten like this, since types can switch between managed and unmanaged at different scope levels, \eg
    862861\begin{cfacode}
    863862struct A { int v; };
     
    874873Furthermore, it is not possible to overload C functions, so using @extern "C"@ to declare functions is of limited use.
    875874
    876 It would be possible to regain some control by adding an attribute to structs that specifies whether they can be managed or not (perhaps \emph{manageable} or \emph{unmanageable}), and to emit an error in the case that a constructor or destructor is declared for an unmanageable type.
    877 Ideally, structs should be manageable by default, since otherwise the default case becomes more verbose.
     875It would be possible to regain some control by adding an attribute to structures that specifies whether they can be managed or not (perhaps \emph{manageable} or \emph{unmanageable}), and to emit an error in the case that a constructor or destructor is declared for an unmanageable type.
     876Ideally, structures should be manageable by default, since otherwise the default case becomes more verbose.
    878877This means that in general, function signatures would have to be rewritten, and in a select few cases the signatures would not be rewritten.
    879878\begin{cfacode}
     
    886885C h();  // rewritten void h(C *);
    887886\end{cfacode}
    888 An alternative is to instead make the attribute \emph{identifiable}, which states that objects of this type use the @this@ parameter as an identity.
     887An alternative is to make the attribute \emph{identifiable}, which states that objects of this type use the @this@ parameter as an identity.
    889888This strikes more closely to the visible problem, in that only types marked as identifiable would need to have the return value moved into the parameter list, and every other type could remain the same.
    890889Furthermore, no restrictions would need to be placed on whether objects can be constructed.
     
    10151014
    10161015\subsection{Global Initialization}
    1017 In standard C, global variables can only be initialized to compile-time constant expressions.
    1018 This places strict limitations on the programmer's ability to control the default values of objects.
     1016In standard C, global variables can only be initialized to compile-time constant expressions, which places strict limitations on the programmer's ability to control the default values of objects.
    10191017In \CFA, constructors and destructors are guaranteed to be run on global objects, allowing arbitrary code to be run before and after the execution of the main routine.
    10201018By default, objects within a translation unit are constructed in declaration order, and destructed in the reverse order.
    10211019The default order of construction of objects amongst translation units is unspecified.
    1022 It is, however, guaranteed that any global objects in the standard library are initialized prior to the initialization of any object in the user program.
     1020It is, however, guaranteed that any global objects in the standard library are initialized prior to the initialization of any object in a user program.
    10231021
    10241022This feature is implemented in the \CFA translator by grouping every global constructor call into a function with the GCC attribute \emph{constructor}, which performs most of the heavy lifting \cite[6.31.1]{GCCExtensions}.
     
    10531051%   https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html#C_002b_002b-Attributes
    10541052% suggestion: implement this in CFA by picking objects with a specified priority and pulling them into their own init functions (could even group them by priority level -> map<int, list<ObjectDecl*>>) and pull init_priority forward into constructor and destructor attributes with the same priority level
    1055 GCC provides an attribute @init_priority@, which allows specifying the relative priority for initialization of global objects on a per-object basis in \CC.
     1053GCC provides an attribute @init_priority@ in \CC, which allows specifying the relative priority for initialization of global objects on a per-object basis.
    10561054A similar attribute can be implemented in \CFA by pulling marked objects into global constructor/destructor-attribute functions with the specified priority.
    10571055For example,
     
    10761074In standard C, it is possible to mark variables that are local to a function with the @static@ storage class.
    10771075Unlike normal local variables, a @static@ local variable is defined to live for the entire duration of the program, so that each call to the function has access to the same variable with the same address and value as it had in the previous call to the function.
    1078 Much like global variables, in C @static@ variables can only be initialized to a \emph{compile-time constant value} so that a compiler is able to create storage for the variable and initialize it at compile-time.
     1076Much like global variables, @static@ variables can only be initialized to a \emph{compile-time constant value} so that a compiler is able to create storage for the variable and initialize it at compile-time.
    10791077
    10801078Yet again, this rule is too restrictive for a language with constructors and destructors.
    1081 Instead, \CFA modifies the definition of a @static@ local variable so that objects are guaranteed to be live from the time control flow reaches their declaration, until the end of the program, since the initializer expression is not necessarily a compile-time constant, but can depend on the current execution state of the function.
    1082 Since standard C does not allow access to a @static@ local variable before the first time control flow reaches the declaration, this restriction does not preclude any valid C code.
     1079Since the initializer expression is not necessarily a compile-time constant and can depend on the current execution state of the function, \CFA modifies the definition of a @static@ local variable so that objects are guaranteed to be live from the time control flow reaches their declaration, until the end of the program.
     1080Since standard C does not allow access to a @static@ local variable before the first time control flow reaches the declaration, this change does not preclude any valid C code.
    10831081Local objects with @static@ storage class are only implicitly constructed and destructed once for the duration of the program.
    10841082The object is constructed when its declaration is reached for the first time.
     
    10901088Since the parameter to @atexit@ is a parameter-less function, some additional tweaking is required.
    10911089First, the @static@ variable must be hoisted up to global scope and uniquely renamed to prevent name clashes with other global objects.
    1092 Second, a function is built which calls the destructor for the newly hoisted variable.
     1090If necessary, a local structure may need to be hoisted, as well.
     1091Second, a function is built that calls the destructor for the newly hoisted variable.
    10931092Finally, the newly generated function is registered with @atexit@, instead of registering the destructor directly.
    10941093Since @atexit@ calls functions in the reverse order in which they are registered, @static@ local variables are guaranteed to be destructed in the reverse order that they are constructed, which may differ between multiple executions of the same program.
     
    11561155void f(T);
    11571156\end{cfacode}
    1158 This allows easily specifying constraints that are common to all complete object types very simply.
    1159 
    1160 Now that \CFA has constructors and destructors, more of a complete object's behaviour can be specified by than was previously possible.
     1157This allows easily specifying constraints that are common to all complete object-types very simply.
     1158
     1159Now that \CFA has constructors and destructors, more of a complete object's behaviour can be specified than was previously possible.
    11611160As such, @otype@ has been augmented to include assertions for a default constructor, copy constructor, and destructor.
    11621161That is, the previous example is now equivalent to
    11631162\begin{cfacode}
    1164 forall(dtype T | sized(T) | { T ?=?(T *, T); void ?{}(T *); void ?{}(T *, T); void ^?{}(T *); })
     1163forall(dtype T | sized(T) |
     1164  { T ?=?(T *, T); void ?{}(T *); void ?{}(T *, T); void ^?{}(T *); })
    11651165void f(T);
    11661166\end{cfacode}
    1167 This allows @f@'s body to create and destroy objects of type @T@, and pass objects of type @T@ as arguments to other functions, following the normal \CFA rules.
    1168 A point of note here is that objects can be missing default constructors (and eventually other functions through deleted functions), so it is important for \CFA programmers to think carefully about the operations needed by their function, as to not over-constrain the acceptable parameter types.
     1167These additions allow @f@'s body to create and destroy objects of type @T@, and pass objects of type @T@ as arguments to other functions, following the normal \CFA rules.
     1168A point of note here is that objects can be missing default constructors (and eventually other functions through deleted functions), so it is important for \CFA programmers to think carefully about the operations needed by their function, as to not over-constrain the acceptable parameter types and prevent potential reuse.
Note: See TracChangeset for help on using the changeset viewer.