/* The "validate" phase of translation is used to take a syntax tree and convert it into a standard form that aims to be as regular in structure as possible. Some assumptions can be made regarding the state of the tree after this pass is complete, including: - No nested structure or union definitions; any in the input are "hoisted" to the level of the containing struct or union. - All enumeration constants have type EnumInstType. - The type "void" never occurs in lists of function parameter or return types; neither do tuple types. A function taking no arguments has no argument types, and tuples are flattened. - No context instances exist; they are all replaced by the set of declarations signified by the context, instantiated by the particular set of type arguments. - Every declaration is assigned a unique id. - No typedef declarations or instances exist; the actual type is substituted for each instance. - Each type, struct, and union definition is followed by an appropriate assignment operator. - Each use of a struct or union is connected to a complete definition of that struct or union, even if that definition occurs later in the input. */ #include #include #include "Validate.h" #include "SynTree/Visitor.h" #include "SynTree/Mutator.h" #include "SynTree/Type.h" #include "SynTree/Statement.h" #include "Indexer.h" #include "SynTree/TypeSubstitution.h" #include "FixFunction.h" #include "ImplementationType.h" #include "utility.h" #include "UniqueName.h" #include "AddVisit.h" #define debugPrint( x ) if ( doDebug ) { std::cout << x; } namespace SymTab { class HoistStruct : public Visitor { public: static void hoistStruct( std::list< Declaration * > &translationUnit ); std::list< Declaration * > &get_declsToAdd() { return declsToAdd; } virtual void visit( StructDecl *aggregateDecl ); virtual void visit( UnionDecl *aggregateDecl ); virtual void visit( CompoundStmt *compoundStmt ); virtual void visit( IfStmt *ifStmt ); virtual void visit( WhileStmt *whileStmt ); virtual void visit( ForStmt *forStmt ); virtual void visit( SwitchStmt *switchStmt ); virtual void visit( ChooseStmt *chooseStmt ); virtual void visit( CaseStmt *caseStmt ); virtual void visit( CatchStmt *catchStmt ); private: HoistStruct(); template< typename AggDecl > void handleAggregate( AggDecl *aggregateDecl ); std::list< Declaration * > declsToAdd; bool inStruct; }; class Pass1 : public Visitor { typedef Visitor Parent; virtual void visit( EnumDecl *aggregateDecl ); virtual void visit( FunctionType *func ); }; class Pass2 : public Indexer { typedef Indexer Parent; public: Pass2( bool doDebug, const Indexer *indexer ); private: virtual void visit( StructInstType *structInst ); virtual void visit( UnionInstType *unionInst ); virtual void visit( ContextInstType *contextInst ); virtual void visit( StructDecl *structDecl ); virtual void visit( UnionDecl *unionDecl ); virtual void visit( TypeInstType *typeInst ); const Indexer *indexer; typedef std::map< std::string, std::list< StructInstType * > > ForwardStructsType; typedef std::map< std::string, std::list< UnionInstType * > > ForwardUnionsType; ForwardStructsType forwardStructs; ForwardUnionsType forwardUnions; }; class Pass3 : public Indexer { typedef Indexer Parent; public: Pass3( const Indexer *indexer ); private: virtual void visit( ObjectDecl *object ); virtual void visit( FunctionDecl *func ); const Indexer *indexer; }; class AddStructAssignment : public Visitor { public: static void addStructAssignment( std::list< Declaration * > &translationUnit ); std::list< Declaration * > &get_declsToAdd() { return declsToAdd; } virtual void visit( StructDecl *structDecl ); virtual void visit( UnionDecl *structDecl ); virtual void visit( TypeDecl *typeDecl ); virtual void visit( ContextDecl *ctxDecl ); virtual void visit( FunctionDecl *functionDecl ); virtual void visit( FunctionType *ftype ); virtual void visit( PointerType *ftype ); virtual void visit( CompoundStmt *compoundStmt ); virtual void visit( IfStmt *ifStmt ); virtual void visit( WhileStmt *whileStmt ); virtual void visit( ForStmt *forStmt ); virtual void visit( SwitchStmt *switchStmt ); virtual void visit( ChooseStmt *chooseStmt ); virtual void visit( CaseStmt *caseStmt ); virtual void visit( CatchStmt *catchStmt ); AddStructAssignment() : functionNesting( 0 ) {} private: template< typename StmtClass > void visitStatement( StmtClass *stmt ); std::list< Declaration * > declsToAdd; std::set< std::string > structsDone; unsigned int functionNesting; // current level of nested functions }; class EliminateTypedef : public Mutator { public: static void eliminateTypedef( std::list< Declaration * > &translationUnit ); private: virtual Declaration *mutate( TypedefDecl *typeDecl ); virtual TypeDecl *mutate( TypeDecl *typeDecl ); virtual DeclarationWithType *mutate( FunctionDecl *funcDecl ); virtual ObjectDecl *mutate( ObjectDecl *objDecl ); virtual CompoundStmt *mutate( CompoundStmt *compoundStmt ); virtual Type *mutate( TypeInstType *aggregateUseType ); virtual Expression *mutate( CastExpr *castExpr ); std::map< std::string, TypedefDecl * > typedefNames; }; void validate( std::list< Declaration * > &translationUnit, bool doDebug, const Indexer *indexer ) { Pass1 pass1; Pass2 pass2( doDebug, indexer ); Pass3 pass3( indexer ); EliminateTypedef::eliminateTypedef( translationUnit ); HoistStruct::hoistStruct( translationUnit ); acceptAll( translationUnit, pass1 ); acceptAll( translationUnit, pass2 ); AddStructAssignment::addStructAssignment( translationUnit ); acceptAll( translationUnit, pass3 ); } void validateType( Type *type, const Indexer *indexer ) { Pass1 pass1; Pass2 pass2( false, indexer ); Pass3 pass3( indexer ); type->accept( pass1 ); type->accept( pass2 ); type->accept( pass3 ); } template< typename Visitor > void acceptAndAdd( std::list< Declaration * > &translationUnit, Visitor &visitor, bool addBefore ) { std::list< Declaration * >::iterator i = translationUnit.begin(); while ( i != translationUnit.end() ) { (*i)->accept( visitor ); std::list< Declaration * >::iterator next = i; next++; if ( ! visitor.get_declsToAdd().empty() ) { translationUnit.splice( addBefore ? i : next, visitor.get_declsToAdd() ); } i = next; } } void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) { HoistStruct hoister; acceptAndAdd( translationUnit, hoister, true ); } HoistStruct::HoistStruct() : inStruct( false ) { } void filter( std::list< Declaration * > &declList, bool (*pred)( Declaration * ), bool doDelete ) { std::list< Declaration * >::iterator i = declList.begin(); while ( i != declList.end() ) { std::list< Declaration * >::iterator next = i; ++next; if ( pred( *i ) ) { if ( doDelete ) { delete *i; } declList.erase( i ); } i = next; } } bool isStructOrUnion( Declaration *decl ) { return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ); } template< typename AggDecl > void HoistStruct::handleAggregate( AggDecl *aggregateDecl ) { if ( inStruct ) { // Add elements in stack order corresponding to nesting structure. declsToAdd.push_front( aggregateDecl ); Visitor::visit( aggregateDecl ); } else { inStruct = true; Visitor::visit( aggregateDecl ); inStruct = false; } // Always remove the hoisted aggregate from the inner structure. filter( aggregateDecl->get_members(), isStructOrUnion, false ); } void HoistStruct::visit( StructDecl *aggregateDecl ) { handleAggregate( aggregateDecl ); } void HoistStruct::visit( UnionDecl *aggregateDecl ) { handleAggregate( aggregateDecl ); } void HoistStruct::visit( CompoundStmt *compoundStmt ) { addVisit( compoundStmt, *this ); } void HoistStruct::visit( IfStmt *ifStmt ) { addVisit( ifStmt, *this ); } void HoistStruct::visit( WhileStmt *whileStmt ) { addVisit( whileStmt, *this ); } void HoistStruct::visit( ForStmt *forStmt ) { addVisit( forStmt, *this ); } void HoistStruct::visit( SwitchStmt *switchStmt ) { addVisit( switchStmt, *this ); } void HoistStruct::visit( ChooseStmt *switchStmt ) { addVisit( switchStmt, *this ); } void HoistStruct::visit( CaseStmt *caseStmt ) { addVisit( caseStmt, *this ); } void HoistStruct::visit( CatchStmt *cathStmt ) { addVisit( cathStmt, *this ); } void Pass1::visit( EnumDecl *enumDecl ) { // Set the type of each member of the enumeration to be EnumConstant for( std::list< Declaration * >::iterator i = enumDecl->get_members().begin(); i != enumDecl->get_members().end(); ++i ) { ObjectDecl *obj = dynamic_cast< ObjectDecl * >( *i ); assert( obj ); obj->set_type( new EnumInstType( Type::Qualifiers( true, false, false, false ), enumDecl->get_name() ) ); } Parent::visit( enumDecl ); } namespace { template< typename DWTIterator > void fixFunctionList( DWTIterator begin, DWTIterator end, FunctionType *func ) { // the only case in which "void" is valid is where it is the only one in the list; then // it should be removed entirely // other fix ups are handled by the FixFunction class if ( begin == end ) return; FixFunction fixer; DWTIterator i = begin; *i = (*i )->acceptMutator( fixer ); if ( fixer.get_isVoid() ) { DWTIterator j = i; ++i; func->get_parameters().erase( j ); if ( i != end ) { throw SemanticError( "invalid type void in function type ", func ); } } else { ++i; for( ; i != end; ++i ) { FixFunction fixer; *i = (*i )->acceptMutator( fixer ); if ( fixer.get_isVoid() ) { throw SemanticError( "invalid type void in function type ", func ); } } } } } void Pass1::visit( FunctionType *func ) { // Fix up parameters and return types fixFunctionList( func->get_parameters().begin(), func->get_parameters().end(), func ); fixFunctionList( func->get_returnVals().begin(), func->get_returnVals().end(), func ); Visitor::visit( func ); } Pass2::Pass2( bool doDebug, const Indexer *other_indexer ) : Indexer( doDebug ) { if ( other_indexer ) { indexer = other_indexer; } else { indexer = this; } } void Pass2::visit( StructInstType *structInst ) { Parent::visit( structInst ); StructDecl *st = indexer->lookupStruct( structInst->get_name() ); // it's not a semantic error if the struct is not found, just an implicit forward declaration if ( st ) { assert( ! structInst->get_baseStruct() || structInst->get_baseStruct()->get_members().empty() || ! st->get_members().empty() ); structInst->set_baseStruct( st ); } if ( ! st || st->get_members().empty() ) { // use of forward declaration forwardStructs[ structInst->get_name() ].push_back( structInst ); } } void Pass2::visit( UnionInstType *unionInst ) { Parent::visit( unionInst ); UnionDecl *un = indexer->lookupUnion( unionInst->get_name() ); // it's not a semantic error if the union is not found, just an implicit forward declaration if ( un ) { unionInst->set_baseUnion( un ); } if ( ! un || un->get_members().empty() ) { // use of forward declaration forwardUnions[ unionInst->get_name() ].push_back( unionInst ); } } void Pass2::visit( ContextInstType *contextInst ) { Parent::visit( contextInst ); ContextDecl *ctx = indexer->lookupContext( contextInst->get_name() ); if ( ! ctx ) { throw SemanticError( "use of undeclared context " + contextInst->get_name() ); } for( std::list< TypeDecl * >::const_iterator i = ctx->get_parameters().begin(); i != ctx->get_parameters().end(); ++i ) { for( std::list< DeclarationWithType * >::const_iterator assert = (*i )->get_assertions().begin(); assert != (*i )->get_assertions().end(); ++assert ) { if ( ContextInstType *otherCtx = dynamic_cast< ContextInstType * >(*assert ) ) { cloneAll( otherCtx->get_members(), contextInst->get_members() ); } else { contextInst->get_members().push_back( (*assert )->clone() ); } } } applySubstitution( ctx->get_parameters().begin(), ctx->get_parameters().end(), contextInst->get_parameters().begin(), ctx->get_members().begin(), ctx->get_members().end(), back_inserter( contextInst->get_members() ) ); } void Pass2::visit( StructDecl *structDecl ) { if ( ! structDecl->get_members().empty() ) { ForwardStructsType::iterator fwds = forwardStructs.find( structDecl->get_name() ); if ( fwds != forwardStructs.end() ) { for( std::list< StructInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) { (*inst )->set_baseStruct( structDecl ); } forwardStructs.erase( fwds ); } } Indexer::visit( structDecl ); } void Pass2::visit( UnionDecl *unionDecl ) { if ( ! unionDecl->get_members().empty() ) { ForwardUnionsType::iterator fwds = forwardUnions.find( unionDecl->get_name() ); if ( fwds != forwardUnions.end() ) { for( std::list< UnionInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) { (*inst )->set_baseUnion( unionDecl ); } forwardUnions.erase( fwds ); } } Indexer::visit( unionDecl ); } void Pass2::visit( TypeInstType *typeInst ) { if ( NamedTypeDecl *namedTypeDecl = lookupType( typeInst->get_name() ) ) { if ( TypeDecl *typeDecl = dynamic_cast< TypeDecl * >( namedTypeDecl ) ) { typeInst->set_isFtype( typeDecl->get_kind() == TypeDecl::Ftype ); } } } Pass3::Pass3( const Indexer *other_indexer ) : Indexer( false ) { if ( other_indexer ) { indexer = other_indexer; } else { indexer = this; } } void forallFixer( Type *func ) { // Fix up assertions for( std::list< TypeDecl * >::iterator type = func->get_forall().begin(); type != func->get_forall().end(); ++type ) { std::list< DeclarationWithType * > toBeDone, nextRound; toBeDone.splice( toBeDone.end(), (*type )->get_assertions() ); while ( ! toBeDone.empty() ) { for( std::list< DeclarationWithType * >::iterator assertion = toBeDone.begin(); assertion != toBeDone.end(); ++assertion ) { if ( ContextInstType *ctx = dynamic_cast< ContextInstType * >( (*assertion )->get_type() ) ) { for( std::list< Declaration * >::const_iterator i = ctx->get_members().begin(); i != ctx->get_members().end(); ++i ) { DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *i ); assert( dwt ); nextRound.push_back( dwt->clone() ); } delete ctx; } else { FixFunction fixer; *assertion = (*assertion )->acceptMutator( fixer ); if ( fixer.get_isVoid() ) { throw SemanticError( "invalid type void in assertion of function ", func ); } (*type )->get_assertions().push_back( *assertion ); } } toBeDone.clear(); toBeDone.splice( toBeDone.end(), nextRound ); } } } void Pass3::visit( ObjectDecl *object ) { forallFixer( object->get_type() ); if ( PointerType *pointer = dynamic_cast< PointerType * >( object->get_type() ) ) { forallFixer( pointer->get_base() ); } Parent::visit( object ); object->fixUniqueId(); } void Pass3::visit( FunctionDecl *func ) { forallFixer( func->get_type() ); Parent::visit( func ); func->fixUniqueId(); } static const std::list< std::string > noLabels; void AddStructAssignment::addStructAssignment( std::list< Declaration * > &translationUnit ) { AddStructAssignment visitor; acceptAndAdd( translationUnit, visitor, false ); } template< typename OutputIterator > void makeScalarAssignment( ObjectDecl *srcParam, ObjectDecl *dstParam, DeclarationWithType *member, OutputIterator out ) { ObjectDecl *obj = dynamic_cast( member ); // PAB: unnamed bit fields are not copied if ( obj != NULL && obj->get_name() == "" && obj->get_bitfieldWidth() != NULL ) return; UntypedExpr *assignExpr = new UntypedExpr( new NameExpr( "?=?" ) ); UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) ); derefExpr->get_args().push_back( new VariableExpr( dstParam ) ); // do something special for unnamed members Expression *dstselect = new AddressExpr( new MemberExpr( member, derefExpr ) ); assignExpr->get_args().push_back( dstselect ); Expression *srcselect = new MemberExpr( member, new VariableExpr( srcParam ) ); assignExpr->get_args().push_back( srcselect ); *out++ = new ExprStmt( noLabels, assignExpr ); } template< typename OutputIterator > void makeArrayAssignment( ObjectDecl *srcParam, ObjectDecl *dstParam, DeclarationWithType *member, ArrayType *array, OutputIterator out ) { static UniqueName indexName( "_index" ); // for a flexible array member nothing is done -- user must define own assignment if ( ! array->get_dimension() ) return; ObjectDecl *index = new ObjectDecl( indexName.newName(), Declaration::NoStorageClass, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), 0 ); *out++ = new DeclStmt( noLabels, index ); UntypedExpr *init = new UntypedExpr( new NameExpr( "?=?" ) ); init->get_args().push_back( new AddressExpr( new VariableExpr( index ) ) ); init->get_args().push_back( new NameExpr( "0" ) ); Statement *initStmt = new ExprStmt( noLabels, init ); UntypedExpr *cond = new UntypedExpr( new NameExpr( "?get_args().push_back( new VariableExpr( index ) ); cond->get_args().push_back( array->get_dimension()->clone() ); UntypedExpr *inc = new UntypedExpr( new NameExpr( "++?" ) ); inc->get_args().push_back( new AddressExpr( new VariableExpr( index ) ) ); UntypedExpr *assignExpr = new UntypedExpr( new NameExpr( "?=?" ) ); UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) ); derefExpr->get_args().push_back( new VariableExpr( dstParam ) ); Expression *dstselect = new MemberExpr( member, derefExpr ); UntypedExpr *dstIndex = new UntypedExpr( new NameExpr( "?+?" ) ); dstIndex->get_args().push_back( dstselect ); dstIndex->get_args().push_back( new VariableExpr( index ) ); assignExpr->get_args().push_back( dstIndex ); Expression *srcselect = new MemberExpr( member, new VariableExpr( srcParam ) ); UntypedExpr *srcIndex = new UntypedExpr( new NameExpr( "?[?]" ) ); srcIndex->get_args().push_back( srcselect ); srcIndex->get_args().push_back( new VariableExpr( index ) ); assignExpr->get_args().push_back( srcIndex ); *out++ = new ForStmt( noLabels, initStmt, cond, inc, new ExprStmt( noLabels, assignExpr ) ); } Declaration *makeStructAssignment( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting ) { FunctionType *assignType = new FunctionType( Type::Qualifiers(), false ); ObjectDecl *returnVal = new ObjectDecl( "", Declaration::NoStorageClass, LinkageSpec::Cforall, 0, refType->clone(), 0 ); assignType->get_returnVals().push_back( returnVal ); ObjectDecl *dstParam = new ObjectDecl( "_dst", Declaration::NoStorageClass, LinkageSpec::Cforall, 0, new PointerType( Type::Qualifiers(), refType->clone() ), 0 ); assignType->get_parameters().push_back( dstParam ); ObjectDecl *srcParam = new ObjectDecl( "_src", Declaration::NoStorageClass, LinkageSpec::Cforall, 0, refType, 0 ); assignType->get_parameters().push_back( srcParam ); // Routines at global scope marked "static" to prevent multiple definitions is separate translation units // because each unit generates copies of the default routines for each aggregate. FunctionDecl *assignDecl = new FunctionDecl( "?=?", functionNesting > 0 ? Declaration::NoStorageClass : Declaration::Static, LinkageSpec::AutoGen, assignType, new CompoundStmt( noLabels ), true ); assignDecl->fixUniqueId(); for( std::list< Declaration * >::const_iterator member = aggregateDecl->get_members().begin(); member != aggregateDecl->get_members().end(); ++member ) { if ( DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *member ) ) { if ( ArrayType *array = dynamic_cast< ArrayType * >( dwt->get_type() ) ) { makeArrayAssignment( srcParam, dstParam, dwt, array, back_inserter( assignDecl->get_statements()->get_kids() ) ); } else { makeScalarAssignment( srcParam, dstParam, dwt, back_inserter( assignDecl->get_statements()->get_kids() ) ); } } } assignDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) ); return assignDecl; } Declaration *makeUnionAssignment( UnionDecl *aggregateDecl, UnionInstType *refType, unsigned int functionNesting ) { FunctionType *assignType = new FunctionType( Type::Qualifiers(), false ); ObjectDecl *returnVal = new ObjectDecl( "", Declaration::NoStorageClass, LinkageSpec::Cforall, 0, refType->clone(), 0 ); assignType->get_returnVals().push_back( returnVal ); ObjectDecl *dstParam = new ObjectDecl( "_dst", Declaration::NoStorageClass, LinkageSpec::Cforall, 0, new PointerType( Type::Qualifiers(), refType->clone() ), 0 ); assignType->get_parameters().push_back( dstParam ); ObjectDecl *srcParam = new ObjectDecl( "_src", Declaration::NoStorageClass, LinkageSpec::Cforall, 0, refType, 0 ); assignType->get_parameters().push_back( srcParam ); // Routines at global scope marked "static" to prevent multiple definitions is separate translation units // because each unit generates copies of the default routines for each aggregate. FunctionDecl *assignDecl = new FunctionDecl( "?=?", functionNesting > 0 ? Declaration::NoStorageClass : Declaration::Static, LinkageSpec::AutoGen, assignType, new CompoundStmt( noLabels ), true ); assignDecl->fixUniqueId(); UntypedExpr *copy = new UntypedExpr( new NameExpr( "__builtin_memcpy" ) ); copy->get_args().push_back( new VariableExpr( dstParam ) ); copy->get_args().push_back( new AddressExpr( new VariableExpr( srcParam ) ) ); copy->get_args().push_back( new SizeofExpr( refType->clone() ) ); assignDecl->get_statements()->get_kids().push_back( new ExprStmt( noLabels, copy ) ); assignDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) ); return assignDecl; } void AddStructAssignment::visit( StructDecl *structDecl ) { if ( ! structDecl->get_members().empty() && structsDone.find( structDecl->get_name() ) == structsDone.end() ) { StructInstType *structInst = new StructInstType( Type::Qualifiers(), structDecl->get_name() ); structInst->set_baseStruct( structDecl ); declsToAdd.push_back( makeStructAssignment( structDecl, structInst, functionNesting ) ); structsDone.insert( structDecl->get_name() ); } } void AddStructAssignment::visit( UnionDecl *unionDecl ) { if ( ! unionDecl->get_members().empty() ) { UnionInstType *unionInst = new UnionInstType( Type::Qualifiers(), unionDecl->get_name() ); unionInst->set_baseUnion( unionDecl ); declsToAdd.push_back( makeUnionAssignment( unionDecl, unionInst, functionNesting ) ); } } void AddStructAssignment::visit( TypeDecl *typeDecl ) { CompoundStmt *stmts = 0; TypeInstType *typeInst = new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), false ); typeInst->set_baseType( typeDecl ); ObjectDecl *src = new ObjectDecl( "_src", Declaration::NoStorageClass, LinkageSpec::Cforall, 0, typeInst->clone(), 0 ); ObjectDecl *dst = new ObjectDecl( "_dst", Declaration::NoStorageClass, LinkageSpec::Cforall, 0, new PointerType( Type::Qualifiers(), typeInst->clone() ), 0 ); if ( typeDecl->get_base() ) { stmts = new CompoundStmt( std::list< Label >() ); UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) ); assign->get_args().push_back( new CastExpr( new VariableExpr( dst ), new PointerType( Type::Qualifiers(), typeDecl->get_base()->clone() ) ) ); assign->get_args().push_back( new CastExpr( new VariableExpr( src ), typeDecl->get_base()->clone() ) ); stmts->get_kids().push_back( new ReturnStmt( std::list< Label >(), assign ) ); } FunctionType *type = new FunctionType( Type::Qualifiers(), false ); type->get_returnVals().push_back( new ObjectDecl( "", Declaration::NoStorageClass, LinkageSpec::Cforall, 0, typeInst, 0 ) ); type->get_parameters().push_back( dst ); type->get_parameters().push_back( src ); FunctionDecl *func = new FunctionDecl( "?=?", Declaration::NoStorageClass, LinkageSpec::AutoGen, type, stmts, false ); declsToAdd.push_back( func ); } void addDecls( std::list< Declaration * > &declsToAdd, std::list< Statement * > &statements, std::list< Statement * >::iterator i ) { if ( ! declsToAdd.empty() ) { for( std::list< Declaration * >::iterator decl = declsToAdd.begin(); decl != declsToAdd.end(); ++decl ) { statements.insert( i, new DeclStmt( noLabels, *decl ) ); } declsToAdd.clear(); } } void AddStructAssignment::visit( FunctionType *) { // ensure that we don't add assignment ops for types defined // as part of the function } void AddStructAssignment::visit( PointerType *) { // ensure that we don't add assignment ops for types defined // as part of the pointer } void AddStructAssignment::visit( ContextDecl *) { // ensure that we don't add assignment ops for types defined // as part of the context } template< typename StmtClass > inline void AddStructAssignment::visitStatement( StmtClass *stmt ) { std::set< std::string > oldStructs = structsDone; addVisit( stmt, *this ); structsDone = oldStructs; } void AddStructAssignment::visit( FunctionDecl *functionDecl ) { maybeAccept( functionDecl->get_functionType(), *this ); acceptAll( functionDecl->get_oldDecls(), *this ); functionNesting += 1; maybeAccept( functionDecl->get_statements(), *this ); functionNesting -= 1; } void AddStructAssignment::visit( CompoundStmt *compoundStmt ) { visitStatement( compoundStmt ); } void AddStructAssignment::visit( IfStmt *ifStmt ) { visitStatement( ifStmt ); } void AddStructAssignment::visit( WhileStmt *whileStmt ) { visitStatement( whileStmt ); } void AddStructAssignment::visit( ForStmt *forStmt ) { visitStatement( forStmt ); } void AddStructAssignment::visit( SwitchStmt *switchStmt ) { visitStatement( switchStmt ); } void AddStructAssignment::visit( ChooseStmt *switchStmt ) { visitStatement( switchStmt ); } void AddStructAssignment::visit( CaseStmt *caseStmt ) { visitStatement( caseStmt ); } void AddStructAssignment::visit( CatchStmt *cathStmt ) { visitStatement( cathStmt ); } bool isTypedef( Declaration *decl ) { return dynamic_cast< TypedefDecl * >( decl ); } void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) { EliminateTypedef eliminator; mutateAll( translationUnit, eliminator ); filter( translationUnit, isTypedef, true ); } Type *EliminateTypedef::mutate( TypeInstType *typeInst ) { std::map< std::string, TypedefDecl * >::const_iterator def = typedefNames.find( typeInst->get_name() ); if ( def != typedefNames.end() ) { Type *ret = def->second->get_base()->clone(); ret->get_qualifiers() += typeInst->get_qualifiers(); delete typeInst; return ret; } return typeInst; } Declaration *EliminateTypedef::mutate( TypedefDecl *tyDecl ) { Declaration *ret = Mutator::mutate( tyDecl ); typedefNames[ tyDecl->get_name() ] = tyDecl; if ( AggregateDecl *aggDecl = dynamic_cast< AggregateDecl * >( tyDecl->get_base() ) ) { tyDecl->set_base( 0 ); delete tyDecl; return aggDecl; } else { return ret; } } TypeDecl *EliminateTypedef::mutate( TypeDecl *typeDecl ) { std::map< std::string, TypedefDecl * >::iterator i = typedefNames.find( typeDecl->get_name() ); if ( i != typedefNames.end() ) { typedefNames.erase( i ) ; } return typeDecl; } DeclarationWithType *EliminateTypedef::mutate( FunctionDecl *funcDecl ) { std::map< std::string, TypedefDecl * > oldNames = typedefNames; DeclarationWithType *ret = Mutator::mutate( funcDecl ); typedefNames = oldNames; return ret; } ObjectDecl *EliminateTypedef::mutate( ObjectDecl *objDecl ) { std::map< std::string, TypedefDecl * > oldNames = typedefNames; ObjectDecl *ret = Mutator::mutate( objDecl ); typedefNames = oldNames; return ret; } Expression *EliminateTypedef::mutate( CastExpr *castExpr ) { std::map< std::string, TypedefDecl * > oldNames = typedefNames; Expression *ret = Mutator::mutate( castExpr ); typedefNames = oldNames; return ret; } CompoundStmt *EliminateTypedef::mutate( CompoundStmt *compoundStmt ) { std::map< std::string, TypedefDecl * > oldNames = typedefNames; CompoundStmt *ret = Mutator::mutate( compoundStmt ); std::list< Statement * >::iterator i = compoundStmt->get_kids().begin(); while ( i != compoundStmt->get_kids().end() ) { std::list< Statement * >::iterator next = i; ++next; if ( DeclStmt *declStmt = dynamic_cast< DeclStmt * >( *i ) ) { if ( dynamic_cast< TypedefDecl * >( declStmt->get_decl() ) ) { delete *i; compoundStmt->get_kids().erase( i ); } } i = next; } typedefNames = oldNames; return ret; } } // namespace SymTab