#include "Resolver.h" #include "AlternativeFinder.h" #include "Alternative.h" #include "RenameVars.h" #include "ResolveTypeof.h" #include "SynTree/Statement.h" #include "SynTree/Type.h" #include "SynTree/Expression.h" #include "SynTree/Initializer.h" #include "SymTab/Indexer.h" #include "utility.h" #include using namespace std; namespace ResolvExpr { class Resolver : public SymTab::Indexer { public: Resolver() : SymTab::Indexer( false ), switchType( 0 ) {} virtual void visit( FunctionDecl *functionDecl ); virtual void visit( ObjectDecl *functionDecl ); virtual void visit( TypeDecl *typeDecl ); virtual void visit( ExprStmt *exprStmt ); virtual void visit( IfStmt *ifStmt ); virtual void visit( WhileStmt *whileStmt ); virtual void visit( ForStmt *forStmt ); virtual void visit( SwitchStmt *switchStmt ); virtual void visit( ChooseStmt *switchStmt ); virtual void visit( CaseStmt *caseStmt ); virtual void visit( ReturnStmt *returnStmt ); virtual void visit( SingleInit *singleInit ); virtual void visit( ListInit *listInit ); private: std::list< Type * > functionReturn; Type *initContext; Type *switchType; }; void resolve( std::list< Declaration * > translationUnit ) { Resolver resolver; acceptAll( translationUnit, resolver ); #if 0 for ( std::list< Declaration * >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) { (*i)->print( std::cerr ); (*i)->accept( resolver ); } // for #endif } Expression *resolveInVoidContext( Expression *expr, const SymTab::Indexer &indexer ) { TypeEnvironment env; return resolveInVoidContext( expr, indexer, env ); } namespace { void finishExpr( Expression *expr, const TypeEnvironment &env ) { expr->set_env( new TypeSubstitution ); env.makeSubstitution( *expr->get_env() ); } Expression *findVoidExpression( Expression *untyped, const SymTab::Indexer &indexer ) { global_renamer.reset(); TypeEnvironment env; Expression *newExpr = resolveInVoidContext( untyped, indexer, env ); finishExpr( newExpr, env ); return newExpr; } Expression *findSingleExpression( Expression *untyped, const SymTab::Indexer &indexer ) { TypeEnvironment env; AlternativeFinder finder( indexer, env ); finder.find( untyped ); #if 0 if ( finder.get_alternatives().size() != 1 ) { std::cout << "untyped expr is "; untyped->print( std::cout ); std::cout << std::endl << "alternatives are:"; for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) { i->print( std::cout ); } // for } // if #endif assert( finder.get_alternatives().size() == 1 ); Alternative &choice = finder.get_alternatives().front(); Expression *newExpr = choice.expr->clone(); finishExpr( newExpr, choice.env ); return newExpr; } bool isIntegralType( Type *type ) { if ( dynamic_cast< EnumInstType * >( type ) ) { return true; } else if ( BasicType *bt = dynamic_cast< BasicType * >( type ) ) { return bt->isInteger(); } else { return true; } // if } Expression *findIntegralExpression( Expression *untyped, const SymTab::Indexer &indexer ) { TypeEnvironment env; AlternativeFinder finder( indexer, env ); finder.find( untyped ); #if 0 if ( finder.get_alternatives().size() != 1 ) { std::cout << "untyped expr is "; untyped->print( std::cout ); std::cout << std::endl << "alternatives are:"; for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) { i->print( std::cout ); } // for } // if #endif Expression *newExpr = 0; const TypeEnvironment *newEnv = 0; for ( AltList::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) { if ( i->expr->get_results().size() == 1 && isIntegralType( i->expr->get_results().front() ) ) { if ( newExpr ) { throw SemanticError( "Too many interpretations for switch control expression", untyped ); } else { newExpr = i->expr->clone(); newEnv = &i->env; } // if } // if } // for if ( !newExpr ) { throw SemanticError( "Too many interpretations for switch control expression", untyped ); } // if finishExpr( newExpr, *newEnv ); return newExpr; } } void Resolver::visit( ObjectDecl *objectDecl ) { Type *new_type = resolveTypeof( objectDecl->get_type(), *this ); objectDecl->set_type( new_type ); initContext = new_type; SymTab::Indexer::visit( objectDecl ); } void Resolver::visit( TypeDecl *typeDecl ) { if ( typeDecl->get_base() ) { Type *new_type = resolveTypeof( typeDecl->get_base(), *this ); typeDecl->set_base( new_type ); } // if SymTab::Indexer::visit( typeDecl ); } void Resolver::visit( FunctionDecl *functionDecl ) { #if 0 std::cout << "resolver visiting functiondecl "; functionDecl->print( std::cout ); std::cout << std::endl; #endif Type *new_type = resolveTypeof( functionDecl->get_type(), *this ); functionDecl->set_type( new_type ); std::list< Type * > oldFunctionReturn = functionReturn; functionReturn.clear(); for ( std::list< DeclarationWithType * >::const_iterator i = functionDecl->get_functionType()->get_returnVals().begin(); i != functionDecl->get_functionType()->get_returnVals().end(); ++i ) { functionReturn.push_back( (*i)->get_type() ); } // for SymTab::Indexer::visit( functionDecl ); functionReturn = oldFunctionReturn; } void Resolver::visit( ExprStmt *exprStmt ) { if ( exprStmt->get_expr() ) { Expression *newExpr = findVoidExpression( exprStmt->get_expr(), *this ); delete exprStmt->get_expr(); exprStmt->set_expr( newExpr ); } // if } void Resolver::visit( IfStmt *ifStmt ) { Expression *newExpr = findSingleExpression( ifStmt->get_condition(), *this ); delete ifStmt->get_condition(); ifStmt->set_condition( newExpr ); Visitor::visit( ifStmt ); } void Resolver::visit( WhileStmt *whileStmt ) { Expression *newExpr = findSingleExpression( whileStmt->get_condition(), *this ); delete whileStmt->get_condition(); whileStmt->set_condition( newExpr ); Visitor::visit( whileStmt ); } void Resolver::visit( ForStmt *forStmt ) { Expression *newExpr; if ( forStmt->get_condition() ) { newExpr = findSingleExpression( forStmt->get_condition(), *this ); delete forStmt->get_condition(); forStmt->set_condition( newExpr ); } // if if ( forStmt->get_increment() ) { newExpr = findVoidExpression( forStmt->get_increment(), *this ); delete forStmt->get_increment(); forStmt->set_increment( newExpr ); } // if Visitor::visit( forStmt ); } template< typename SwitchClass > void handleSwitchStmt( SwitchClass *switchStmt, SymTab::Indexer &visitor ) { Expression *newExpr; newExpr = findIntegralExpression( switchStmt->get_condition(), visitor ); delete switchStmt->get_condition(); switchStmt->set_condition( newExpr ); visitor.Visitor::visit( switchStmt ); } void Resolver::visit( SwitchStmt *switchStmt ) { handleSwitchStmt( switchStmt, *this ); } void Resolver::visit( ChooseStmt *switchStmt ) { handleSwitchStmt( switchStmt, *this ); } void Resolver::visit( CaseStmt *caseStmt ) { Visitor::visit( caseStmt ); } void Resolver::visit( ReturnStmt *returnStmt ) { if ( returnStmt->get_expr() ) { CastExpr *castExpr = new CastExpr( returnStmt->get_expr() ); cloneAll( functionReturn, castExpr->get_results() ); Expression *newExpr = findSingleExpression( castExpr, *this ); delete castExpr; returnStmt->set_expr( newExpr ); } // if } void Resolver::visit( SingleInit *singleInit ) { if ( singleInit->get_value() ) { CastExpr *castExpr = new CastExpr( singleInit->get_value(), initContext->clone() ); Expression *newExpr = findSingleExpression( castExpr, *this ); delete castExpr; singleInit->set_value( newExpr ); } // if // singleInit->get_value()->accept( *this ); } void Resolver::visit( ListInit *listInit ) { if ( ArrayType *at = dynamic_cast(initContext) ) { initContext = at->get_base(); Visitor::visit( listInit ); } else if ( StructInstType *st = dynamic_cast(initContext) ) { StructDecl *baseStruct = st->get_baseStruct(); std::list::iterator iter1( baseStruct->get_members().begin() ); std::list::iterator iter2( listInit->begin_initializers() ); for ( ; iter1 != baseStruct->get_members().end() && iter2 != listInit->end_initializers(); ++iter2 ) { if ( (*iter2)->get_designators().empty() ) { DeclarationWithType *dt = dynamic_cast( *iter1 ); initContext = dt->get_type(); (*iter2)->accept( *this ); ++iter1; } else { StructDecl *st = baseStruct; iter1 = st->get_members().begin(); std::list::iterator iter3( (*iter2)->get_designators().begin() ); for ( ; iter3 != (*iter2)->get_designators().end(); ++iter3 ) { NameExpr *key = dynamic_cast( *iter3 ); assert( key ); for ( ; iter1 != st->get_members().end(); ++iter1 ) { if ( key->get_name() == (*iter1)->get_name() ) { (*iter1)->print( cout ); cout << key->get_name() << endl; ObjectDecl *fred = dynamic_cast( *iter1 ); assert( fred ); StructInstType *mary = dynamic_cast( fred->get_type() ); assert( mary ); st = mary->get_baseStruct(); iter1 = st->get_members().begin(); break; } // if } // for } // for ObjectDecl *fred = dynamic_cast( *iter1 ); assert( fred ); initContext = fred->get_type(); (*listInit->begin_initializers())->accept( *this ); } // if } // for } else if ( UnionInstType *st = dynamic_cast(initContext) ) { DeclarationWithType *dt = dynamic_cast( *st->get_baseUnion()->get_members().begin() ); initContext = dt->get_type(); (*listInit->begin_initializers())->accept( *this ); } // if } } // namespace ResolvExpr