/* * This file is part of the Cforall project * * $Id: AlternativeFinder.cc,v 1.36 2005/08/29 20:14:15 rcbilson Exp $ * */ #include #include #include #include #include #include "AlternativeFinder.h" #include "Alternative.h" #include "Cost.h" #include "typeops.h" #include "Unify.h" #include "RenameVars.h" #include "SynTree/Type.h" #include "SynTree/Declaration.h" #include "SynTree/Expression.h" #include "SynTree/Initializer.h" #include "SynTree/Visitor.h" #include "SymTab/Indexer.h" #include "SymTab/Mangler.h" #include "SynTree/TypeSubstitution.h" #include "SymTab/Validate.h" #include "Designators/Processor.h" #include "Tuples/TupleAssignment.h" #include "Tuples/NameMatcher.h" #include "utility.h" //#define DEBUG_COST namespace ResolvExpr { Expression * resolveInVoidContext( Expression *expr, const SymTab::Indexer &indexer, TypeEnvironment &env ) { CastExpr *castToVoid = new CastExpr( expr ); AlternativeFinder finder( indexer, env ); finder.findWithAdjustment( castToVoid ); // it's a property of the language that a cast expression has either 1 or 0 interpretations; // if it has 0 interpretations, an exception has already been thrown. assert( finder.get_alternatives().size() == 1 ); CastExpr *newExpr = dynamic_cast< CastExpr* >( finder.get_alternatives().front().expr ); assert( newExpr ); env = finder.get_alternatives().front().env; return newExpr->get_arg()->clone(); } namespace { void printAlts( const AltList &list, std::ostream &os, int indent = 0 ) { for( AltList::const_iterator i = list.begin(); i != list.end(); ++i ) { i->print( os, indent ); os << std::endl; } } void makeExprList( const AltList &in, std::list< Expression* > &out ) { for( AltList::const_iterator i = in.begin(); i != in.end(); ++i ) { out.push_back( i->expr->clone() ); } } Cost sumCost( const AltList &in ) { Cost total; for( AltList::const_iterator i = in.begin(); i != in.end(); ++i ) { total += i->cost; } return total; } struct PruneStruct { bool isAmbiguous; AltList::iterator candidate; PruneStruct() {} PruneStruct( AltList::iterator candidate ): isAmbiguous( false ), candidate( candidate ) {} }; template< typename InputIterator, typename OutputIterator > void pruneAlternatives( InputIterator begin, InputIterator end, OutputIterator out, const SymTab::Indexer &indexer ) { // select the alternatives that have the minimum conversion cost for a particular set of result types std::map< std::string, PruneStruct > selected; for( AltList::iterator candidate = begin; candidate != end; ++candidate ) { PruneStruct current( candidate ); std::string mangleName; for( std::list< Type* >::const_iterator retType = candidate->expr->get_results().begin(); retType != candidate->expr->get_results().end(); ++retType ) { Type *newType = (*retType)->clone(); candidate->env.apply( newType ); mangleName += SymTab::Mangler::mangle( newType ); delete newType; } std::map< std::string, PruneStruct >::iterator mapPlace = selected.find( mangleName ); if( mapPlace != selected.end() ) { if( candidate->cost < mapPlace->second.candidate->cost ) { /// std::cout << "cost " << candidate->cost << " beats " << target->second.cost << std::endl; selected[ mangleName ] = current; } else if( candidate->cost == mapPlace->second.candidate->cost ) { /// std::cout << "marking ambiguous" << std::endl; mapPlace->second.isAmbiguous = true; } } else { selected[ mangleName ] = current; } } /// std::cout << "there are " << selected.size() << " alternatives before elimination" << std::endl; // accept the alternatives that were unambiguous for( std::map< std::string, PruneStruct >::iterator target = selected.begin(); target != selected.end(); ++target) { if( !target->second.isAmbiguous ) { Alternative &alt = *target->second.candidate; for( std::list< Type* >::iterator result = alt.expr->get_results().begin(); result != alt.expr->get_results().end(); ++result ) { alt.env.applyFree( *result ); } *out++ = alt; } } } template< typename InputIterator, typename OutputIterator > void findMinCost( InputIterator begin, InputIterator end, OutputIterator out ) { AltList alternatives; // select the alternatives that have the minimum parameter cost Cost minCost = Cost::infinity; for( AltList::iterator i = begin; i != end; ++i ) { if( i->cost < minCost ) { minCost = i->cost; i->cost = i->cvtCost; alternatives.clear(); alternatives.push_back( *i ); } else if( i->cost == minCost ) { i->cost = i->cvtCost; alternatives.push_back( *i ); } } std::copy( alternatives.begin(), alternatives.end(), out ); } template< typename InputIterator > void simpleCombineEnvironments( InputIterator begin, InputIterator end, TypeEnvironment &result ) { while( begin != end ) { result.simpleCombine( (*begin++).env ); } } void renameTypes( Expression *expr ) { for( std::list< Type* >::iterator i = expr->get_results().begin(); i != expr->get_results().end(); ++i ) { (*i)->accept( global_renamer ); } } } template< typename InputIterator, typename OutputIterator > void AlternativeFinder::findSubExprs( InputIterator begin, InputIterator end, OutputIterator out ) { while( begin != end ) { AlternativeFinder finder( indexer, env ); finder.findWithAdjustment( *begin ); // XXX either this //Designators::fixDesignations( finder, (*begin++)->get_argName() ); // or XXX this begin++; /// std::cout << "findSubExprs" << std::endl; /// printAlts( finder.alternatives, std::cout ); *out++ = finder; } } AlternativeFinder::AlternativeFinder( const SymTab::Indexer &indexer, const TypeEnvironment &env ) : indexer( indexer ), env( env ) { } void AlternativeFinder::find( Expression *expr, bool adjust ) { expr->accept( *this ); if( alternatives.empty() ) { throw SemanticError( "No reasonable alternatives for expression ", expr ); } for( AltList::iterator i = alternatives.begin(); i != alternatives.end(); ++i ) { if( adjust ) { adjustExprTypeList( i->expr->get_results().begin(), i->expr->get_results().end(), i->env, indexer ); } } /// std::cout << "alternatives before prune:" << std::endl; /// printAlts( alternatives, std::cout ); AltList::iterator oldBegin = alternatives.begin(); pruneAlternatives( alternatives.begin(), alternatives.end(), front_inserter( alternatives ), indexer ); if( alternatives.begin() == oldBegin ) { std::ostrstream stream; stream << "Can't choose between alternatives for expression "; expr->print( stream ); stream << "Alternatives are:"; AltList winners; findMinCost( alternatives.begin(), alternatives.end(), back_inserter( winners ) ); printAlts( winners, stream, 8 ); throw SemanticError( std::string( stream.str(), stream.pcount() ) ); } alternatives.erase( oldBegin, alternatives.end() ); /// std::cout << "there are " << alternatives.size() << " alternatives after elimination" << std::endl; } void AlternativeFinder::findWithAdjustment( Expression *expr ) { find( expr, true ); } template< typename StructOrUnionType > void AlternativeFinder::addAggMembers( StructOrUnionType *aggInst, Expression *expr, const Cost &newCost, const std::string &name ) { std::list< Declaration* > members; aggInst->lookup( name, members ); for( std::list< Declaration* >::const_iterator i = members.begin(); i != members.end(); ++i ) { if( DeclarationWithType *dwt = dynamic_cast< DeclarationWithType* >( *i ) ) { alternatives.push_back( Alternative( new MemberExpr( dwt->clone(), expr->clone() ), env, newCost ) ); renameTypes( alternatives.back().expr ); } else { assert( false ); } } } void AlternativeFinder::visit(ApplicationExpr *applicationExpr) { alternatives.push_back( Alternative( applicationExpr->clone(), env, Cost::zero ) ); } Cost computeConversionCost( Alternative &alt, const SymTab::Indexer &indexer ) { ApplicationExpr *appExpr = dynamic_cast< ApplicationExpr* >( alt.expr ); assert( appExpr ); PointerType *pointer = dynamic_cast< PointerType* >( appExpr->get_function()->get_results().front() ); assert( pointer ); FunctionType *function = dynamic_cast< FunctionType* >( pointer->get_base() ); assert( function ); Cost convCost( 0, 0, 0 ); std::list< DeclarationWithType* >& formals = function->get_parameters(); std::list< DeclarationWithType* >::iterator formal = formals.begin(); std::list< Expression* >& actuals = appExpr->get_args(); for( std::list< Expression* >::iterator actualExpr = actuals.begin(); actualExpr != actuals.end(); ++actualExpr ) { /// std::cout << "actual expression:" << std::endl; /// (*actualExpr)->print( std::cout, 8 ); /// std::cout << "--- results are" << std::endl; /// printAll( (*actualExpr)->get_results(), std::cout, 8 ); std::list< DeclarationWithType* >::iterator startFormal = formal; Cost actualCost; for( std::list< Type* >::iterator actual = (*actualExpr)->get_results().begin(); actual != (*actualExpr)->get_results().end(); ++actual ) { if( formal == formals.end() ) { if( function->get_isVarArgs() ) { convCost += Cost( 1, 0, 0 ); break; } else { return Cost::infinity; } } /// std::cout << std::endl << "converting "; /// (*actual)->print( std::cout, 8 ); /// std::cout << std::endl << " to "; /// (*formal)->get_type()->print( std::cout, 8 ); Cost newCost = conversionCost( *actual, (*formal)->get_type(), indexer, alt.env ); /// std::cout << std::endl << "cost is" << newCost << std::endl; if( newCost == Cost::infinity ) { return newCost; } convCost += newCost; actualCost += newCost; convCost += Cost( 0, polyCost( (*formal)->get_type(), alt.env, indexer ) + polyCost( *actual, alt.env, indexer), 0 ); formal++; } if( actualCost != Cost( 0, 0, 0 ) ) { std::list< DeclarationWithType* >::iterator startFormalPlusOne = startFormal; startFormalPlusOne++; if( formal == startFormalPlusOne ) { // not a tuple type Type *newType = (*startFormal)->get_type()->clone(); alt.env.apply( newType ); *actualExpr = new CastExpr( *actualExpr, newType ); } else { TupleType *newType = new TupleType( Type::Qualifiers() ); for( std::list< DeclarationWithType* >::iterator i = startFormal; i != formal; ++i ) { newType->get_types().push_back( (*i)->get_type()->clone() ); } alt.env.apply( newType ); *actualExpr = new CastExpr( *actualExpr, newType ); } } } if( formal != formals.end() ) { return Cost::infinity; } for( InferredParams::const_iterator assert = appExpr->get_inferParams().begin(); assert != appExpr->get_inferParams().end(); ++assert ) { /// std::cout << std::endl << "converting "; /// assert->second.actualType->print( std::cout, 8 ); /// std::cout << std::endl << " to "; /// assert->second.formalType->print( std::cout, 8 ); Cost newCost = conversionCost( assert->second.actualType, assert->second.formalType, indexer, alt.env ); /// std::cout << std::endl << "cost of conversion is " << newCost << std::endl; if( newCost == Cost::infinity ) { return newCost; } convCost += newCost; convCost += Cost( 0, polyCost( assert->second.formalType, alt.env, indexer ) + polyCost( assert->second.actualType, alt.env, indexer), 0 ); } return convCost; } void makeUnifiableVars( Type *type, OpenVarSet &unifiableVars, AssertionSet &needAssertions ) { for( std::list< TypeDecl* >::const_iterator tyvar = type->get_forall().begin(); tyvar != type->get_forall().end(); ++tyvar ) { unifiableVars[ (*tyvar)->get_name() ] = (*tyvar)->get_kind(); for( std::list< DeclarationWithType* >::iterator assert = (*tyvar)->get_assertions().begin(); assert != (*tyvar)->get_assertions().end(); ++assert ) { needAssertions[ *assert ] = true; } /// needAssertions.insert( needAssertions.end(), (*tyvar)->get_assertions().begin(), (*tyvar)->get_assertions().end() ); } } bool AlternativeFinder::instantiateFunction( std::list< DeclarationWithType* >& formals, /*const*/ AltList &actuals, bool isVarArgs, OpenVarSet& openVars, TypeEnvironment &resultEnv, AssertionSet &resultNeed, AssertionSet &resultHave ) { std::list< TypeEnvironment > toBeDone; simpleCombineEnvironments( actuals.begin(), actuals.end(), resultEnv ); // make sure we don't widen any existing bindings for( TypeEnvironment::iterator i = resultEnv.begin(); i != resultEnv.end(); ++i ) { i->allowWidening = false; } resultEnv.extractOpenVars( openVars ); /* Tuples::NameMatcher matcher( formals ); try { matcher.match( actuals ); } catch ( Tuples::NoMatch &e ) { std::cerr << "Alternative doesn't match: " << e.message << std::endl; } */ std::list< DeclarationWithType* >::iterator formal = formals.begin(); for( AltList::const_iterator actualExpr = actuals.begin(); actualExpr != actuals.end(); ++actualExpr ) { for( std::list< Type* >::iterator actual = actualExpr->expr->get_results().begin(); actual != actualExpr->expr->get_results().end(); ++actual ) { if( formal == formals.end() ) { return isVarArgs; } /// std::cerr << "formal type is "; /// (*formal)->get_type()->print( std::cerr ); /// std::cerr << std::endl << "actual type is "; /// (*actual)->print( std::cerr ); /// std::cerr << std::endl; if( !unify( (*formal)->get_type(), *actual, resultEnv, resultNeed, resultHave, openVars, indexer ) ) { return false; } formal++; } } // Handling of default values while( formal != formals.end() ) { if( ObjectDecl *od = dynamic_cast( *formal ) ) if( SingleInit *si = dynamic_cast( od->get_init() )) // so far, only constant expressions are accepted as default values if ( ConstantExpr *cnstexpr = dynamic_cast(si->get_value()) ) if ( Constant *cnst = dynamic_cast( cnstexpr->get_constant() ) ) if( unify( (*formal)->get_type(), cnst->get_type(), resultEnv, resultNeed, resultHave, openVars, indexer ) ) { // XXX Don't know if this is right actuals.push_back( Alternative( cnstexpr->clone(), env, Cost::zero ) ); formal++; if (formal == formals.end()) break; } return false; } return true; } static const int recursionLimit = 10; void addToIndexer( AssertionSet &assertSet, SymTab::Indexer &indexer ) { for( AssertionSet::iterator i = assertSet.begin(); i != assertSet.end(); ++i ) { if( i->second == true ) { i->first->accept( indexer ); } } } template< typename ForwardIterator, typename OutputIterator > void inferRecursive( ForwardIterator begin, ForwardIterator end, const Alternative &newAlt, OpenVarSet &openVars, const SymTab::Indexer &decls, const AssertionSet &newNeed, int level, const SymTab::Indexer &indexer, OutputIterator out ) { if( begin == end ) { if( newNeed.empty() ) { *out++ = newAlt; return; } else if( level >= recursionLimit ) { throw SemanticError( "Too many recursive assertions" ); } else { AssertionSet newerNeed; /// std::cerr << "recursing with new set:" << std::endl; /// printAssertionSet( newNeed, std::cerr, 8 ); inferRecursive( newNeed.begin(), newNeed.end(), newAlt, openVars, decls, newerNeed, level+1, indexer, out ); return; } } ForwardIterator cur = begin++; if( !cur->second ) { inferRecursive( begin, end, newAlt, openVars, decls, newNeed, level, indexer, out ); } DeclarationWithType *curDecl = cur->first; /// std::cerr << "inferRecursive: assertion is "; /// curDecl->print( std::cerr ); /// std::cerr << std::endl; std::list< DeclarationWithType* > candidates; decls.lookupId( curDecl->get_name(), candidates ); /// if( candidates.empty() ) { std::cout << "no candidates!" << std::endl; } for( std::list< DeclarationWithType* >::const_iterator candidate = candidates.begin(); candidate != candidates.end(); ++candidate ) { /// std::cout << "inferRecursive: candidate is "; /// (*candidate)->print( std::cout ); /// std::cout << std::endl; AssertionSet newHave, newerNeed( newNeed ); TypeEnvironment newEnv( newAlt.env ); OpenVarSet newOpenVars( openVars ); Type *adjType = (*candidate)->get_type()->clone(); adjustExprType( adjType, newEnv, indexer ); adjType->accept( global_renamer ); /// std::cerr << "unifying "; /// curDecl->get_type()->print( std::cerr ); /// std::cerr << " with "; /// adjType->print( std::cerr ); /// std::cerr << std::endl; if( unify( curDecl->get_type(), adjType, newEnv, newerNeed, newHave, newOpenVars, indexer ) ) { /// std::cerr << "success!" << std::endl; SymTab::Indexer newDecls( decls ); addToIndexer( newHave, newDecls ); Alternative newerAlt( newAlt ); newerAlt.env = newEnv; assert( (*candidate)->get_uniqueId() ); Expression *varExpr = new VariableExpr( static_cast< DeclarationWithType* >( Declaration::declFromId( (*candidate)->get_uniqueId() ) ) ); deleteAll( varExpr->get_results() ); varExpr->get_results().clear(); varExpr->get_results().push_front( adjType->clone() ); /// std::cout << "satisfying assertion " << curDecl->get_uniqueId() << " "; /// curDecl->print( std::cout ); /// std::cout << " with declaration " << (*candidate)->get_uniqueId() << " "; /// (*candidate)->print( std::cout ); /// std::cout << std::endl; ApplicationExpr *appExpr = static_cast< ApplicationExpr* >( newerAlt.expr ); // XXX: this is a memory leak, but adjType can't be deleted because it might contain assertions appExpr->get_inferParams()[ curDecl->get_uniqueId() ] = ParamEntry( (*candidate)->get_uniqueId(), adjType->clone(), curDecl->get_type()->clone(), varExpr ); inferRecursive( begin, end, newerAlt, newOpenVars, newDecls, newerNeed, level, indexer, out ); } else { delete adjType; } } } template< typename OutputIterator > void AlternativeFinder::inferParameters( const AssertionSet &need, AssertionSet &have, const Alternative &newAlt, OpenVarSet &openVars, OutputIterator out ) { /// std::cout << "inferParameters: assertions needed are" << std::endl; /// printAll( need, std::cout, 8 ); SymTab::Indexer decls( indexer ); /// std::cout << "============= original indexer" << std::endl; /// indexer.print( std::cout ); /// std::cout << "============= new indexer" << std::endl; /// decls.print( std::cout ); addToIndexer( have, decls ); AssertionSet newNeed; inferRecursive( need.begin(), need.end(), newAlt, openVars, decls, newNeed, 0, indexer, out ); /// std::cout << "declaration 14 is "; /// Declaration::declFromId /// *out++ = newAlt; } template< typename OutputIterator > void AlternativeFinder::makeFunctionAlternatives( const Alternative &func, FunctionType *funcType, AltList &actualAlt, OutputIterator out ) { OpenVarSet openVars; AssertionSet resultNeed, resultHave; TypeEnvironment resultEnv; makeUnifiableVars( funcType, openVars, resultNeed ); if( instantiateFunction( funcType->get_parameters(), actualAlt, funcType->get_isVarArgs(), openVars, resultEnv, resultNeed, resultHave ) ) { ApplicationExpr *appExpr = new ApplicationExpr( func.expr->clone() ); Alternative newAlt( appExpr, resultEnv, sumCost( actualAlt ) ); makeExprList( actualAlt, appExpr->get_args() ); /// std::cout << "need assertions:" << std::endl; /// printAssertionSet( resultNeed, std::cout, 8 ); inferParameters( resultNeed, resultHave, newAlt, openVars, out ); } } void AlternativeFinder::visit(UntypedExpr *untypedExpr) { bool doneInit = false; AlternativeFinder funcOpFinder( indexer, env ); AlternativeFinder funcFinder( indexer, env ); { NameExpr *fname; if ( (fname = dynamic_cast(untypedExpr->get_function())) && ( fname->get_name() == std::string("LabAddress")) ) { alternatives.push_back( Alternative(untypedExpr, env, Cost()) ); return; } } funcFinder.findWithAdjustment( untypedExpr->get_function() ); std::list< AlternativeFinder > argAlternatives; findSubExprs( untypedExpr->begin_args(), untypedExpr->end_args(), back_inserter( argAlternatives ) ); std::list< AltList > possibilities; combos( argAlternatives.begin(), argAlternatives.end(), back_inserter( possibilities ) ); Tuples::TupleAssignSpotter tassign(this); if ( tassign.isTupleAssignment(untypedExpr, possibilities) ) { // take care of possible tuple assignments, or discard expression return; } // else ... AltList candidates; for( AltList::const_iterator func = funcFinder.alternatives.begin(); func != funcFinder.alternatives.end(); ++func ) { /// std::cout << "working on alternative: " << std::endl; /// func->print( std::cout, 8 ); // check if the type is pointer to function PointerType *pointer; if( func->expr->get_results().size() == 1 && ( pointer = dynamic_cast< PointerType* >( func->expr->get_results().front() ) ) ) { if( FunctionType *function = dynamic_cast< FunctionType* >( pointer->get_base() ) ) { for( std::list< AltList >::iterator actualAlt = possibilities.begin(); actualAlt != possibilities.end(); ++actualAlt ) { // XXX //Designators::check_alternative( function, *actualAlt ); makeFunctionAlternatives( *func, function, *actualAlt, std::back_inserter( candidates ) ); } } else if( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( pointer->get_base() ) ) { EqvClass eqvClass; if( func->env.lookup( typeInst->get_name(), eqvClass ) && eqvClass.type ) { if( FunctionType *function = dynamic_cast< FunctionType* >( eqvClass.type ) ) { for( std::list< AltList >::iterator actualAlt = possibilities.begin(); actualAlt != possibilities.end(); ++actualAlt ) { makeFunctionAlternatives( *func, function, *actualAlt, std::back_inserter( candidates ) ); } } } } } else { // seek a function operator that's compatible if( !doneInit ) { doneInit = true; NameExpr *opExpr = new NameExpr( "?()" ); try { funcOpFinder.findWithAdjustment( opExpr ); } catch( SemanticError &e ) { // it's ok if there aren't any defined function ops } /// std::cout << "known function ops:" << std::endl; /// printAlts( funcOpFinder.alternatives, std::cout, 8 ); } for( AltList::const_iterator funcOp = funcOpFinder.alternatives.begin(); funcOp != funcOpFinder.alternatives.end(); ++funcOp ) { // check if the type is pointer to function PointerType *pointer; if( funcOp->expr->get_results().size() == 1 && ( pointer = dynamic_cast< PointerType* >( funcOp->expr->get_results().front() ) ) ) { if ( FunctionType *function = dynamic_cast< FunctionType* >( pointer->get_base() ) ) { for( std::list< AltList >::iterator actualAlt = possibilities.begin(); actualAlt != possibilities.end(); ++actualAlt ) { AltList currentAlt; currentAlt.push_back( *func ); currentAlt.insert( currentAlt.end(), actualAlt->begin(), actualAlt->end() ); makeFunctionAlternatives( *funcOp, function, currentAlt, std::back_inserter( candidates ) ); } } } } } } for( AltList::iterator withFunc = candidates.begin(); withFunc != candidates.end(); ++withFunc ) { Cost cvtCost = computeConversionCost( *withFunc, indexer ); #ifdef DEBUG_COST ApplicationExpr *appExpr = dynamic_cast< ApplicationExpr* >( withFunc->expr ); assert( appExpr ); PointerType *pointer = dynamic_cast< PointerType* >( appExpr->get_function()->get_results().front() ); assert( pointer ); FunctionType *function = dynamic_cast< FunctionType* >( pointer->get_base() ); assert( function ); std::cout << "Case +++++++++++++" << std::endl; std::cout << "formals are:" << std::endl; printAll( function->get_parameters(), std::cout, 8 ); std::cout << "actuals are:" << std::endl; printAll( appExpr->get_args(), std::cout, 8 ); std::cout << "bindings are:" << std::endl; withFunc->env.print( std::cout, 8 ); std::cout << "cost of conversion is:" << cvtCost << std::endl; #endif if( cvtCost != Cost::infinity ) { withFunc->cvtCost = cvtCost; alternatives.push_back( *withFunc ); } } candidates.clear(); candidates.splice( candidates.end(), alternatives ); findMinCost( candidates.begin(), candidates.end(), std::back_inserter( alternatives ) ); } bool isLvalue( Expression *expr ) { for( std::list< Type* >::const_iterator i = expr->get_results().begin(); i != expr->get_results().end(); ++i ) { if( !(*i)->get_isLvalue() ) return false; } return true; } void AlternativeFinder::visit(AddressExpr *addressExpr) { AlternativeFinder finder( indexer, env ); finder.find( addressExpr->get_arg() ); for( std::list< Alternative >::iterator i = finder.alternatives.begin(); i != finder.alternatives.end(); ++i ) { if( isLvalue( i->expr ) ) { alternatives.push_back( Alternative( new AddressExpr( i->expr->clone() ), i->env, i->cost ) ); } } } void AlternativeFinder::visit(CastExpr *castExpr) { for( std::list< Type* >::iterator i = castExpr->get_results().begin(); i != castExpr->get_results().end(); ++i ) { SymTab::validateType( *i, &indexer ); adjustExprType( *i, env, indexer ); } AlternativeFinder finder( indexer, env ); finder.findWithAdjustment( castExpr->get_arg() ); AltList candidates; for( std::list< Alternative >::iterator i = finder.alternatives.begin(); i != finder.alternatives.end(); ++i ) { AssertionSet needAssertions, haveAssertions; OpenVarSet openVars; // It's possible that a cast can throw away some values in a multiply-valued expression. // (An example is a cast-to-void, which casts from one value to zero.) // Figure out the prefix of the subexpression results that are cast directly. // The candidate is invalid if it has fewer results than there are types to cast to. int discardedValues = (*i).expr->get_results().size() - castExpr->get_results().size(); if( discardedValues < 0 ) continue; std::list< Type* >::iterator candidate_end = (*i).expr->get_results().begin(); std::advance( candidate_end, castExpr->get_results().size() ); if( !unifyList( (*i).expr->get_results().begin(), candidate_end, castExpr->get_results().begin(), castExpr->get_results().end(), i->env, needAssertions, haveAssertions, openVars, indexer ) ) continue; Cost thisCost = castCostList( (*i).expr->get_results().begin(), candidate_end, castExpr->get_results().begin(), castExpr->get_results().end(), indexer, i->env ); if( thisCost != Cost::infinity ) { // count one safe conversion for each value that is thrown away thisCost += Cost( 0, 0, discardedValues ); CastExpr *newExpr = castExpr->clone(); newExpr->set_arg( i->expr->clone() ); candidates.push_back( Alternative( newExpr, i->env, i->cost, thisCost ) ); } } // findMinCost selects the alternatives with the lowest "cost" members, but has the side effect // of copying the cvtCost member to the cost member (since the old cost is now irrelevant). // Thus, calling findMinCost twice selects first based on argument cost, then on conversion cost. AltList minArgCost; findMinCost( candidates.begin(), candidates.end(), std::back_inserter( minArgCost ) ); findMinCost( minArgCost.begin(), minArgCost.end(), std::back_inserter( alternatives ) ); } void AlternativeFinder::visit(UntypedMemberExpr *memberExpr) { AlternativeFinder funcFinder( indexer, env ); funcFinder.findWithAdjustment( memberExpr->get_aggregate() ); for( AltList::const_iterator agg = funcFinder.alternatives.begin(); agg != funcFinder.alternatives.end(); ++agg ) { if( agg->expr->get_results().size() == 1 ) { if( StructInstType *structInst = dynamic_cast< StructInstType* >( agg->expr->get_results().front() ) ) { addAggMembers( structInst, agg->expr, agg->cost, memberExpr->get_member() ); } else if( UnionInstType *unionInst = dynamic_cast< UnionInstType* >( agg->expr->get_results().front() ) ) { addAggMembers( unionInst, agg->expr, agg->cost, memberExpr->get_member() ); } } } } void AlternativeFinder::visit(MemberExpr *memberExpr) { alternatives.push_back( Alternative( memberExpr->clone(), env, Cost::zero ) ); } void AlternativeFinder::visit(NameExpr *nameExpr) { std::list< DeclarationWithType* > declList; indexer.lookupId( nameExpr->get_name(), declList ); /// std::cerr << "nameExpr is " << nameExpr->get_name() << std::endl; for( std::list< DeclarationWithType* >::iterator i = declList.begin(); i != declList.end(); ++i ) { VariableExpr newExpr( *i, nameExpr->get_argName() ); alternatives.push_back( Alternative( newExpr.clone(), env, Cost() ) ); /// std::cerr << "decl is "; /// (*i)->print( std::cerr ); /// std::cerr << std::endl; /// std::cerr << "newExpr is "; /// newExpr.print( std::cerr ); /// std::cerr << std::endl; renameTypes( alternatives.back().expr ); if( StructInstType *structInst = dynamic_cast< StructInstType* >( (*i)->get_type() ) ) { addAggMembers( structInst, &newExpr, Cost( 0, 0, 1 ), "" ); } else if( UnionInstType *unionInst = dynamic_cast< UnionInstType* >( (*i)->get_type() ) ) { addAggMembers( unionInst, &newExpr, Cost( 0, 0, 1 ), "" ); } } } void AlternativeFinder::visit(VariableExpr *variableExpr) { alternatives.push_back( Alternative( variableExpr->clone(), env, Cost::zero ) ); } void AlternativeFinder::visit(ConstantExpr *constantExpr) { alternatives.push_back( Alternative( constantExpr->clone(), env, Cost::zero ) ); } void AlternativeFinder::visit(SizeofExpr *sizeofExpr) { if( sizeofExpr->get_isType() ) { alternatives.push_back( Alternative( sizeofExpr->clone(), env, Cost::zero ) ); } else { AlternativeFinder finder( indexer, env ); finder.find( sizeofExpr->get_expr() ); if( finder.alternatives.size() != 1 ) { throw SemanticError( "Ambiguous expression in sizeof operand: ", sizeofExpr->get_expr() ); } Alternative &choice = finder.alternatives.front(); alternatives.push_back( Alternative( new SizeofExpr( choice.expr->clone() ), choice.env, Cost::zero ) ); } } void AlternativeFinder::resolveAttr( DeclarationWithType *funcDecl, FunctionType *function, Type *argType, const TypeEnvironment &env ) { // assume no polymorphism // assume no implicit conversions assert( function->get_parameters().size() == 1 ); /// std::cout << "resolvAttr: funcDecl is "; /// funcDecl->print( std::cout ); /// std::cout << " argType is "; /// argType->print( std::cout ); /// std::cout << std::endl; if( typesCompatibleIgnoreQualifiers( argType, function->get_parameters().front()->get_type(), indexer, env ) ) { alternatives.push_back( Alternative( new AttrExpr( new VariableExpr( funcDecl ), argType->clone() ), env, Cost::zero ) ); for( std::list< DeclarationWithType* >::iterator i = function->get_returnVals().begin(); i != function->get_returnVals().end(); ++i ) { alternatives.back().expr->get_results().push_back( (*i)->get_type()->clone() ); } } } void AlternativeFinder::visit(AttrExpr *attrExpr) { // assume no 'pointer-to-attribute' NameExpr *nameExpr = dynamic_cast< NameExpr* >( attrExpr->get_attr() ); assert( nameExpr ); std::list< DeclarationWithType* > attrList; indexer.lookupId( nameExpr->get_name(), attrList ); if( attrExpr->get_isType() || attrExpr->get_expr() ) { for( std::list< DeclarationWithType* >::iterator i = attrList.begin(); i != attrList.end(); ++i ) { // check if the type is function if( FunctionType *function = dynamic_cast< FunctionType* >( (*i)->get_type() ) ) { // assume exactly one parameter if( function->get_parameters().size() == 1 ) { if( attrExpr->get_isType() ) { resolveAttr( *i, function, attrExpr->get_type(), env ); } else { AlternativeFinder finder( indexer, env ); finder.find( attrExpr->get_expr() ); for( AltList::iterator choice = finder.alternatives.begin(); choice != finder.alternatives.end(); ++choice ) { if( choice->expr->get_results().size() == 1 ) { resolveAttr(*i, function, choice->expr->get_results().front(), choice->env ); } } } } } } } else { for( std::list< DeclarationWithType* >::iterator i = attrList.begin(); i != attrList.end(); ++i ) { VariableExpr newExpr( *i ); alternatives.push_back( Alternative( newExpr.clone(), env, Cost() ) ); renameTypes( alternatives.back().expr ); } } } void AlternativeFinder::visit(LogicalExpr *logicalExpr) { AlternativeFinder firstFinder( indexer, env ); firstFinder.findWithAdjustment( logicalExpr->get_arg1() ); for( AltList::const_iterator first = firstFinder.alternatives.begin(); first != firstFinder.alternatives.end(); ++first ) { AlternativeFinder secondFinder( indexer, first->env ); secondFinder.findWithAdjustment( logicalExpr->get_arg2() ); for( AltList::const_iterator second = secondFinder.alternatives.begin(); second != secondFinder.alternatives.end(); ++second ) { LogicalExpr *newExpr = new LogicalExpr( first->expr->clone(), second->expr->clone(), logicalExpr->get_isAnd() ); alternatives.push_back( Alternative( newExpr, second->env, first->cost + second->cost ) ); } } } void AlternativeFinder::visit(ConditionalExpr *conditionalExpr) { AlternativeFinder firstFinder( indexer, env ); firstFinder.findWithAdjustment( conditionalExpr->get_arg1() ); for( AltList::const_iterator first = firstFinder.alternatives.begin(); first != firstFinder.alternatives.end(); ++first ) { AlternativeFinder secondFinder( indexer, first->env ); secondFinder.findWithAdjustment( conditionalExpr->get_arg2() ); for( AltList::const_iterator second = secondFinder.alternatives.begin(); second != secondFinder.alternatives.end(); ++second ) { AlternativeFinder thirdFinder( indexer, second->env ); thirdFinder.findWithAdjustment( conditionalExpr->get_arg3() ); for( AltList::const_iterator third = thirdFinder.alternatives.begin(); third != thirdFinder.alternatives.end(); ++third ) { OpenVarSet openVars; AssertionSet needAssertions, haveAssertions; Alternative newAlt( 0, third->env, first->cost + second->cost + third->cost ); std::list< Type* > commonTypes; if( unifyList( second->expr->get_results().begin(), second->expr->get_results().end(), third->expr->get_results().begin(), third->expr->get_results().end(), newAlt.env, needAssertions, haveAssertions, openVars, indexer, commonTypes ) ) { ConditionalExpr *newExpr = new ConditionalExpr( first->expr->clone(), second->expr->clone(), third->expr->clone() ); std::list< Type* >::const_iterator original = second->expr->get_results().begin(); std::list< Type* >::const_iterator commonType = commonTypes.begin(); for( ; original != second->expr->get_results().end() && commonType != commonTypes.end(); ++original, ++commonType ) { if( *commonType ) { newExpr->get_results().push_back( *commonType ); } else { newExpr->get_results().push_back( (*original)->clone() ); } } newAlt.expr = newExpr; inferParameters( needAssertions, haveAssertions, newAlt, openVars, back_inserter( alternatives ) ); } } } } } void AlternativeFinder::visit(CommaExpr *commaExpr) { TypeEnvironment newEnv( env ); Expression *newFirstArg = resolveInVoidContext( commaExpr->get_arg1(), indexer, newEnv ); AlternativeFinder secondFinder( indexer, newEnv ); secondFinder.findWithAdjustment( commaExpr->get_arg2() ); for( AltList::const_iterator alt = secondFinder.alternatives.begin(); alt != secondFinder.alternatives.end(); ++alt ) { alternatives.push_back( Alternative( new CommaExpr( newFirstArg->clone(), alt->expr->clone() ), alt->env, alt->cost ) ); } delete newFirstArg; } void AlternativeFinder::visit(TupleExpr *tupleExpr) { std::list< AlternativeFinder > subExprAlternatives; findSubExprs( tupleExpr->get_exprs().begin(), tupleExpr->get_exprs().end(), back_inserter( subExprAlternatives ) ); std::list< AltList > possibilities; combos( subExprAlternatives.begin(), subExprAlternatives.end(), back_inserter( possibilities ) ); for( std::list< AltList >::const_iterator i = possibilities.begin(); i != possibilities.end(); ++i ) { TupleExpr *newExpr = new TupleExpr; makeExprList( *i, newExpr->get_exprs() ); for( std::list< Expression* >::const_iterator resultExpr = newExpr->get_exprs().begin(); resultExpr != newExpr->get_exprs().end(); ++resultExpr ) { for( std::list< Type* >::const_iterator resultType = (*resultExpr)->get_results().begin(); resultType != (*resultExpr)->get_results().end(); ++resultType ) { newExpr->get_results().push_back( (*resultType)->clone() ); } } TypeEnvironment compositeEnv; simpleCombineEnvironments( i->begin(), i->end(), compositeEnv ); alternatives.push_back( Alternative( newExpr, compositeEnv, sumCost( *i ) ) ); } } } // namespace ResolvExpr