// // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // threads.c -- // // Author : Thierry Delisle // Created On : Mon Nov 28 12:27:26 2016 // Last Modified By : Thierry Delisle // Last Modified On : Mon Nov 28 12:27:26 2016 // Update Count : 0 // extern "C" { #include #include #include #include #include #include } #include "threads" #include "assert" #include "libhdr.h" #define __CFA_INVOKE_PRIVATE__ #include "invoke.h" // minimum feasible stack size in bytes #define MinStackSize 1000 static size_t pageSize = 0; // architecture pagesize static coroutine main_coroutine; static coroutine* current_coroutine = &main_coroutine; coroutine* this_coroutine(void) { return current_coroutine; } void ctxSwitchDirect(coroutine* src, coroutine* dst); void create_stack( coStack_t* this, unsigned int storageSize ); // used by all constructors void ?{}(coStack_t* this) { this->size = 10240; // size of stack this->storage = NULL; // pointer to stack this->limit = NULL; // stack grows towards stack limit this->base = NULL; // base of stack this->context = NULL; // address of cfa_context_t this->top = NULL; // address of top of storage this->userStack = false; create_stack(this, this->size); } void ?{}(coroutine* this) { this->name = "Anonymous Coroutine"; this->errno_ = 0; this->state = Start; this->notHalted = true; this->starter = NULL; this->last = NULL; } void ?{}(coroutine* this, covptr_t* object) { this{}; startCoroutine(object, invokeCoroutine); } void suspend() { coroutine* src = this_coroutine(); // optimization assertf( src->last != 0, "Attempt to suspend coroutine %.256s (%p) that has never been resumed.\n" "Possible cause is a suspend executed in a member called by a coroutine user rather than by the coroutine main.", src->name, src ); assertf( src->last->notHalted, "Attempt by coroutine %.256s (%p) to suspend back to terminated coroutine %.256s (%p).\n" "Possible cause is terminated coroutine's main routine has already returned.", src->name, src, src->last->name, src->last ); ctxSwitchDirect( src, src->last ); } forall(dtype T | coroutine_t(T)) void resume(T* cor) { coroutine* src = this_coroutine(); // optimization coroutine* dst = get_coroutine(vtable(cor)); if ( src != dst ) { // not resuming self ? assertf( dst->notHalted , "Attempt by coroutine %.256s (%p) to resume terminated coroutine %.256s (%p).\n" "Possible cause is terminated coroutine's main routine has already returned.", src->name, src, dst->name, dst ); dst->last = src; // set last resumer } // if ctxSwitchDirect( src, dst ); // always done for performance testing } void ctxSwitchDirect(coroutine* src, coroutine* dst) { // THREAD_GETMEM( This )->disableInterrupts(); // set state of current coroutine to inactive src->state = Inactive; // set new coroutine that task is executing current_coroutine = dst; // context switch to specified coroutine CtxSwitch( src->stack.context, dst->stack.context ); // when CtxSwitch returns we are back in the src coroutine // set state of new coroutine to active src->state = Active; // THREAD_GETMEM( This )->enableInterrupts(); } //ctxSwitchDirect // used by all constructors void create_stack( coStack_t* this, unsigned int storageSize ) { //TEMP HACK do this on proper kernel startup if(pageSize == 0ul) pageSize = sysconf( _SC_PAGESIZE ); size_t cxtSize = libCeiling( sizeof(machine_context_t), 8 ); // minimum alignment if ( (intptr_t)this->storage == 0 ) { this->userStack = false; this->size = libCeiling( storageSize, 16 ); // use malloc/memalign because "new" raises an exception for out-of-memory // assume malloc has 8 byte alignment so add 8 to allow rounding up to 16 byte alignment LIB_DEBUG_DO( this->storage = memalign( pageSize, cxtSize + this->size + pageSize ) ); LIB_NO_DEBUG_DO( this->storage = malloc( cxtSize + this->size + 8 ) ); LIB_DEBUG_DO( if ( mprotect( this->storage, pageSize, PROT_NONE ) == -1 ) { abortf( "(uMachContext &)%p.createContext() : internal error, mprotect failure, error(%d) %s.", this, (int)errno, strerror( (int)errno ) ); } // if ); if ( (intptr_t)this->storage == 0 ) { abortf( "Attempt to allocate %d bytes of storage for coroutine or task execution-state but insufficient memory available.", this->size ); } // if LIB_DEBUG_DO( this->limit = (char *)this->storage + pageSize ); LIB_NO_DEBUG_DO( this->limit = (char *)libCeiling( (unsigned long)this->storage, 16 ) ); // minimum alignment } else { assertf( ((size_t)this->storage & (libAlign() - 1)) != 0ul, "Stack storage %p for task/coroutine must be aligned on %d byte boundary.", this->storage, (int)libAlign() ); this->userStack = true; this->size = storageSize - cxtSize; if ( this->size % 16 != 0u ) this->size -= 8; this->limit = (char *)libCeiling( (unsigned long)this->storage, 16 ); // minimum alignment } // if assertf( this->size >= MinStackSize, "Stack size %d provides less than minimum of %d bytes for a stack.", this->size, MinStackSize ); this->base = (char *)this->limit + this->size; this->context = this->base; this->top = (char *)this->context + cxtSize; } // Local Variables: // // mode: c // // tab-width: 4 // // End: //