// // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // monitor_desc.c -- // // Author : Thierry Delisle // Created On : Thd Feb 23 12:27:26 2017 // Last Modified By : Peter A. Buhr // Last Modified On : Mon Jul 31 14:59:05 2017 // Update Count : 3 // #include "monitor" #include #include #include "libhdr.h" #include "kernel_private.h" #include "bits/algorithms.h" //----------------------------------------------------------------------------- // Forward declarations static inline void set_owner ( monitor_desc * this, thread_desc * owner ); static inline void set_owner ( monitor_desc * storage [], __lock_size_t count, thread_desc * owner ); static inline void set_mask ( monitor_desc * storage [], __lock_size_t count, const __waitfor_mask_t & mask ); static inline void reset_mask( monitor_desc * this ); static inline thread_desc * next_thread( monitor_desc * this ); static inline bool is_accepted( monitor_desc * this, const __monitor_group_t & monitors ); static inline void lock_all ( __spinlock_t * locks [], __lock_size_t count ); static inline void lock_all ( monitor_desc * source [], __spinlock_t * /*out*/ locks [], __lock_size_t count ); static inline void unlock_all( __spinlock_t * locks [], __lock_size_t count ); static inline void unlock_all( monitor_desc * locks [], __lock_size_t count ); static inline void save ( monitor_desc * ctx [], __lock_size_t count, __spinlock_t * locks [], unsigned int /*out*/ recursions [], __waitfor_mask_t /*out*/ masks [] ); static inline void restore( monitor_desc * ctx [], __lock_size_t count, __spinlock_t * locks [], unsigned int /*in */ recursions [], __waitfor_mask_t /*in */ masks [] ); static inline void init ( __lock_size_t count, monitor_desc * monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ); static inline void init_push( __lock_size_t count, monitor_desc * monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ); static inline thread_desc * check_condition ( __condition_criterion_t * ); static inline void brand_condition ( condition & ); static inline [thread_desc *, int] search_entry_queue( const __waitfor_mask_t &, monitor_desc * monitors [], __lock_size_t count ); forall(dtype T | sized( T )) static inline __lock_size_t insert_unique( T * array [], __lock_size_t & size, T * val ); static inline __lock_size_t count_max ( const __waitfor_mask_t & mask ); static inline __lock_size_t aggregate ( monitor_desc * storage [], const __waitfor_mask_t & mask ); #ifndef __CFA_LOCK_NO_YIELD #define DO_LOCK lock_yield #else #define DO_LOCK lock #endif //----------------------------------------------------------------------------- // Useful defines #define wait_ctx(thrd, user_info) /* Create the necessary information to use the signaller stack */ \ __condition_node_t waiter = { thrd, count, user_info }; /* Create the node specific to this wait operation */ \ __condition_criterion_t criteria[count]; /* Create the creteria this wait operation needs to wake up */ \ init( count, monitors, waiter, criteria ); /* Link everything together */ \ #define wait_ctx_primed(thrd, user_info) /* Create the necessary information to use the signaller stack */ \ __condition_node_t waiter = { thrd, count, user_info }; /* Create the node specific to this wait operation */ \ __condition_criterion_t criteria[count]; /* Create the creteria this wait operation needs to wake up */ \ init_push( count, monitors, waiter, criteria ); /* Link everything together and push it to the AS-Stack */ \ #define monitor_ctx( mons, cnt ) /* Define that create the necessary struct for internal/external scheduling operations */ \ monitor_desc ** monitors = mons; /* Save the targeted monitors */ \ __lock_size_t count = cnt; /* Save the count to a local variable */ \ unsigned int recursions[ count ]; /* Save the current recursion levels to restore them later */ \ __waitfor_mask_t masks [ count ]; /* Save the current waitfor masks to restore them later */ \ __spinlock_t * locks [ count ]; /* We need to pass-in an array of locks to BlockInternal */ \ #define monitor_save save ( monitors, count, locks, recursions, masks ) #define monitor_restore restore( monitors, count, locks, recursions, masks ) //----------------------------------------------------------------------------- // Enter/Leave routines extern "C" { // Enter single monitor static void __enter_monitor_desc( monitor_desc * this, const __monitor_group_t & group ) { // Lock the monitor spinlock DO_LOCK( this->lock DEBUG_CTX2 ); thread_desc * thrd = this_thread; LIB_DEBUG_PRINT_SAFE("Kernel : %10p Entering mon %p (%p)\n", thrd, this, this->owner); if( !this->owner ) { // No one has the monitor, just take it set_owner( this, thrd ); LIB_DEBUG_PRINT_SAFE("Kernel : mon is free \n"); } else if( this->owner == thrd) { // We already have the monitor, just note how many times we took it this->recursion += 1; LIB_DEBUG_PRINT_SAFE("Kernel : mon already owned \n"); } else if( is_accepted( this, group) ) { // Some one was waiting for us, enter set_owner( this, thrd ); // Reset mask reset_mask( this ); LIB_DEBUG_PRINT_SAFE("Kernel : mon accepts \n"); } else { LIB_DEBUG_PRINT_SAFE("Kernel : blocking \n"); // Some one else has the monitor, wait in line for it append( this->entry_queue, thrd ); BlockInternal( &this->lock ); LIB_DEBUG_PRINT_SAFE("Kernel : %10p Entered mon %p\n", thrd, this); // BlockInternal will unlock spinlock, no need to unlock ourselves return; } LIB_DEBUG_PRINT_SAFE("Kernel : %10p Entered mon %p\n", thrd, this); // Release the lock and leave unlock( this->lock ); return; } static void __enter_monitor_dtor( monitor_desc * this, fptr_t func ) { // Lock the monitor spinlock DO_LOCK( this->lock DEBUG_CTX2 ); thread_desc * thrd = this_thread; LIB_DEBUG_PRINT_SAFE("Kernel : %10p Entering dtor for mon %p (%p)\n", thrd, this, this->owner); if( !this->owner ) { LIB_DEBUG_PRINT_SAFE("Kernel : Destroying free mon %p\n", this); // No one has the monitor, just take it set_owner( this, thrd ); unlock( this->lock ); return; } else if( this->owner == thrd) { // We already have the monitor... but where about to destroy it so the nesting will fail // Abort! abortf("Attempt to destroy monitor %p by thread \"%.256s\" (%p) in nested mutex."); } __lock_size_t count = 1; monitor_desc ** monitors = &this; __monitor_group_t group = { &this, 1, func }; if( is_accepted( this, group) ) { LIB_DEBUG_PRINT_SAFE("Kernel : mon accepts dtor, block and signal it \n"); // Wake the thread that is waiting for this __condition_criterion_t * urgent = pop( this->signal_stack ); verify( urgent ); // Reset mask reset_mask( this ); // Create the node specific to this wait operation wait_ctx_primed( this_thread, 0 ) // Some one else has the monitor, wait for him to finish and then run BlockInternal( &this->lock, urgent->owner->waiting_thread ); // Some one was waiting for us, enter set_owner( this, thrd ); } else { LIB_DEBUG_PRINT_SAFE("Kernel : blocking \n"); wait_ctx( this_thread, 0 ) this->dtor_node = &waiter; // Some one else has the monitor, wait in line for it append( this->entry_queue, thrd ); BlockInternal( &this->lock ); // BlockInternal will unlock spinlock, no need to unlock ourselves return; } LIB_DEBUG_PRINT_SAFE("Kernel : Destroying %p\n", this); } // Leave single monitor void __leave_monitor_desc( monitor_desc * this ) { // Lock the monitor spinlock, DO_LOCK to reduce contention DO_LOCK( this->lock DEBUG_CTX2 ); LIB_DEBUG_PRINT_SAFE("Kernel : %10p Leaving mon %p (%p)\n", this_thread, this, this->owner); verifyf( this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", this_thread, this->owner, this->recursion, this ); // Leaving a recursion level, decrement the counter this->recursion -= 1; // If we haven't left the last level of recursion // it means we don't need to do anything if( this->recursion != 0) { LIB_DEBUG_PRINT_SAFE("Kernel : recursion still %d\n", this->recursion); unlock( this->lock ); return; } // Get the next thread, will be null on low contention monitor thread_desc * new_owner = next_thread( this ); // We can now let other threads in safely unlock( this->lock ); //We need to wake-up the thread WakeThread( new_owner ); } // Leave single monitor for the last time void __leave_dtor_monitor_desc( monitor_desc * this ) { LIB_DEBUG_DO( if( this_thread != this->owner ) { abortf("Destroyed monitor %p has inconsistent owner, expected %p got %p.\n", this, this_thread, this->owner); } if( this->recursion != 1 ) { abortf("Destroyed monitor %p has %d outstanding nested calls.\n", this, this->recursion - 1); } ) } // Leave the thread monitor // last routine called by a thread. // Should never return void __leave_thread_monitor( thread_desc * thrd ) { monitor_desc * this = &thrd->self_mon; // Lock the monitor now DO_LOCK( this->lock DEBUG_CTX2 ); disable_interrupts(); thrd->self_cor.state = Halted; verifyf( thrd == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", thrd, this->owner, this->recursion, this ); // Leaving a recursion level, decrement the counter this->recursion -= 1; // If we haven't left the last level of recursion // it must mean there is an error if( this->recursion != 0) { abortf("Thread internal monitor has unbalanced recursion"); } // Fetch the next thread, can be null thread_desc * new_owner = next_thread( this ); // Leave the thread, this will unlock the spinlock // Use leave thread instead of BlockInternal which is // specialized for this case and supports null new_owner LeaveThread( &this->lock, new_owner ); // Control flow should never reach here! } } // Enter multiple monitor // relies on the monitor array being sorted static inline void enter( __monitor_group_t monitors ) { for( __lock_size_t i = 0; i < monitors.size; i++) { __enter_monitor_desc( monitors.list[i], monitors ); } } // Leave multiple monitor // relies on the monitor array being sorted static inline void leave(monitor_desc * monitors [], __lock_size_t count) { for( __lock_size_t i = count - 1; i >= 0; i--) { __leave_monitor_desc( monitors[i] ); } } // Ctor for monitor guard // Sorts monitors before entering void ?{}( monitor_guard_t & this, monitor_desc * m [], __lock_size_t count, fptr_t func ) { // Store current array this.m = m; this.count = count; // Sort monitors based on address -> TODO use a sort specialized for small numbers __libcfa_small_sort(this.m, count); // Save previous thread context this.[prev_mntrs, prev_count, prev_func] = this_thread->monitors.[list, size, func]; // Update thread context (needed for conditions) this_thread->monitors.[list, size, func] = [m, count, func]; // LIB_DEBUG_PRINT_SAFE("MGUARD : enter %d\n", count); // Enter the monitors in order __monitor_group_t group = {this.m, this.count, func}; enter( group ); // LIB_DEBUG_PRINT_SAFE("MGUARD : entered\n"); } // Dtor for monitor guard void ^?{}( monitor_guard_t & this ) { // LIB_DEBUG_PRINT_SAFE("MGUARD : leaving %d\n", this.count); // Leave the monitors in order leave( this.m, this.count ); // LIB_DEBUG_PRINT_SAFE("MGUARD : left\n"); // Restore thread context this_thread->monitors.[list, size, func] = this.[prev_mntrs, prev_count, prev_func]; } // Ctor for monitor guard // Sorts monitors before entering void ?{}( monitor_dtor_guard_t & this, monitor_desc * m [], fptr_t func ) { // Store current array this.m = *m; // Save previous thread context this.[prev_mntrs, prev_count, prev_func] = this_thread->monitors.[list, size, func]; // Update thread context (needed for conditions) this_thread->monitors.[list, size, func] = [m, 1, func]; __enter_monitor_dtor( this.m, func ); } // Dtor for monitor guard void ^?{}( monitor_dtor_guard_t & this ) { // Leave the monitors in order __leave_dtor_monitor_desc( this.m ); // Restore thread context this_thread->monitors.[list, size, func] = this.[prev_mntrs, prev_count, prev_func]; } //----------------------------------------------------------------------------- // Internal scheduling types void ?{}(__condition_node_t & this, thread_desc * waiting_thread, __lock_size_t count, uintptr_t user_info ) { this.waiting_thread = waiting_thread; this.count = count; this.next = NULL; this.user_info = user_info; } void ?{}(__condition_criterion_t & this ) { this.ready = false; this.target = NULL; this.owner = NULL; this.next = NULL; } void ?{}(__condition_criterion_t & this, monitor_desc * target, __condition_node_t & owner ) { this.ready = false; this.target = target; this.owner = &owner; this.next = NULL; } //----------------------------------------------------------------------------- // Internal scheduling void wait( condition & this, uintptr_t user_info = 0 ) { brand_condition( this ); // Check that everything is as expected assertf( this.monitors != NULL, "Waiting with no monitors (%p)", this.monitors ); verifyf( this.monitor_count != 0, "Waiting with 0 monitors (%"PRIiFAST16")", this.monitor_count ); verifyf( this.monitor_count < 32u, "Excessive monitor count (%"PRIiFAST16")", this.monitor_count ); // Create storage for monitor context monitor_ctx( this.monitors, this.monitor_count ); // Create the node specific to this wait operation wait_ctx( this_thread, user_info ); // Append the current wait operation to the ones already queued on the condition // We don't need locks for that since conditions must always be waited on inside monitor mutual exclusion append( this.blocked, &waiter ); // Lock all monitors (aggregates the locks as well) lock_all( monitors, locks, count ); // Find the next thread(s) to run __lock_size_t thread_count = 0; thread_desc * threads[ count ]; __builtin_memset( threads, 0, sizeof( threads ) ); // Save monitor states monitor_save; // Remove any duplicate threads for( __lock_size_t i = 0; i < count; i++) { thread_desc * new_owner = next_thread( monitors[i] ); insert_unique( threads, thread_count, new_owner ); } // Everything is ready to go to sleep BlockInternal( locks, count, threads, thread_count ); // We are back, restore the owners and recursions monitor_restore; } bool signal( condition & this ) { if( is_empty( this ) ) { return false; } //Check that everything is as expected verify( this.monitors ); verify( this.monitor_count != 0 ); //Some more checking in debug LIB_DEBUG_DO( thread_desc * this_thrd = this_thread; if ( this.monitor_count != this_thrd->monitors.size ) { abortf( "Signal on condition %p made with different number of monitor(s), expected %i got %i", &this, this.monitor_count, this_thrd->monitors.size ); } for(int i = 0; i < this.monitor_count; i++) { if ( this.monitors[i] != this_thrd->monitors.list[i] ) { abortf( "Signal on condition %p made with different monitor, expected %p got %i", &this, this.monitors[i], this_thrd->monitors.list[i] ); } } ); __lock_size_t count = this.monitor_count; // Lock all monitors lock_all( this.monitors, NULL, count ); //Pop the head of the waiting queue __condition_node_t * node = pop_head( this.blocked ); //Add the thread to the proper AS stack for(int i = 0; i < count; i++) { __condition_criterion_t * crit = &node->criteria[i]; assert( !crit->ready ); push( crit->target->signal_stack, crit ); } //Release unlock_all( this.monitors, count ); return true; } bool signal_block( condition & this ) { if( !this.blocked.head ) { return false; } //Check that everything is as expected verifyf( this.monitors != NULL, "Waiting with no monitors (%p)", this.monitors ); verifyf( this.monitor_count != 0, "Waiting with 0 monitors (%"PRIiFAST16")", this.monitor_count ); // Create storage for monitor context monitor_ctx( this.monitors, this.monitor_count ); // Lock all monitors (aggregates the locks them as well) lock_all( monitors, locks, count ); // Create the node specific to this wait operation wait_ctx_primed( this_thread, 0 ) //save contexts monitor_save; //Find the thread to run thread_desc * signallee = pop_head( this.blocked )->waiting_thread; set_owner( monitors, count, signallee ); LIB_DEBUG_PRINT_BUFFER_DECL( "Kernel : signal_block condition %p (s: %p)\n", &this, signallee ); //Everything is ready to go to sleep BlockInternal( locks, count, &signallee, 1 ); // WE WOKE UP LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : signal_block returned\n" ); //We are back, restore the masks and recursions monitor_restore; return true; } // Access the user_info of the thread waiting at the front of the queue uintptr_t front( condition & this ) { verifyf( !is_empty(this), "Attempt to access user data on an empty condition.\n" "Possible cause is not checking if the condition is empty before reading stored data." ); return this.blocked.head->user_info; } //----------------------------------------------------------------------------- // External scheduling // cases to handle : // - target already there : // block and wake // - dtor already there // put thread on signaller stack // - non-blocking // return else // - timeout // return timeout // - block // setup mask // block void __waitfor_internal( const __waitfor_mask_t & mask, int duration ) { // This statment doesn't have a contiguous list of monitors... // Create one! __lock_size_t max = count_max( mask ); monitor_desc * mon_storage[max]; __builtin_memset( mon_storage, 0, sizeof( mon_storage ) ); __lock_size_t actual_count = aggregate( mon_storage, mask ); LIB_DEBUG_PRINT_BUFFER_DECL( "Kernel : waitfor %d (s: %d, m: %d)\n", actual_count, mask.size, (__lock_size_t)max); if(actual_count == 0) return; LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : waitfor internal proceeding\n"); // Create storage for monitor context monitor_ctx( mon_storage, actual_count ); // Lock all monitors (aggregates the locks as well) lock_all( monitors, locks, count ); { // Check if the entry queue thread_desc * next; int index; [next, index] = search_entry_queue( mask, monitors, count ); if( next ) { *mask.accepted = index; if( mask.clauses[index].is_dtor ) { LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : dtor already there\n"); verifyf( mask.clauses[index].size == 1 , "ERROR: Accepted dtor has more than 1 mutex parameter." ); monitor_desc * mon2dtor = mask.clauses[index].list[0]; verifyf( mon2dtor->dtor_node, "ERROR: Accepted monitor has no dtor_node." ); __condition_criterion_t * dtor_crit = mon2dtor->dtor_node->criteria; push( mon2dtor->signal_stack, dtor_crit ); unlock_all( locks, count ); } else { LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : thread present, baton-passing\n"); // Create the node specific to this wait operation wait_ctx_primed( this_thread, 0 ); // Save monitor states monitor_save; LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : baton of %d monitors : ", count ); #ifdef __CFA_DEBUG_PRINT__ for( int i = 0; i < count; i++) { LIB_DEBUG_PRINT_BUFFER_LOCAL( "%p %p ", monitors[i], monitors[i]->signal_stack.top ); } #endif LIB_DEBUG_PRINT_BUFFER_LOCAL( "\n"); // Set the owners to be the next thread set_owner( monitors, count, next ); // Everything is ready to go to sleep BlockInternal( locks, count, &next, 1 ); // We are back, restore the owners and recursions monitor_restore; LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : thread present, returned\n"); } LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : accepted %d\n", *mask.accepted); return; } } if( duration == 0 ) { LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : non-blocking, exiting\n"); unlock_all( locks, count ); LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : accepted %d\n", *mask.accepted); return; } verifyf( duration < 0, "Timeout on waitfor statments not supported yet."); LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : blocking waitfor\n"); // Create the node specific to this wait operation wait_ctx_primed( this_thread, 0 ); monitor_save; set_mask( monitors, count, mask ); for( __lock_size_t i = 0; i < count; i++) { verify( monitors[i]->owner == this_thread ); } //Everything is ready to go to sleep BlockInternal( locks, count ); // WE WOKE UP //We are back, restore the masks and recursions monitor_restore; LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : exiting\n"); LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : accepted %d\n", *mask.accepted); } //----------------------------------------------------------------------------- // Utilities static inline void set_owner( monitor_desc * this, thread_desc * owner ) { // LIB_DEBUG_PRINT_SAFE("Kernal : Setting owner of %p to %p ( was %p)\n", this, owner, this->owner ); //Pass the monitor appropriately this->owner = owner; //We are passing the monitor to someone else, which means recursion level is not 0 this->recursion = owner ? 1 : 0; } static inline void set_owner( monitor_desc * monitors [], __lock_size_t count, thread_desc * owner ) { monitors[0]->owner = owner; monitors[0]->recursion = 1; for( __lock_size_t i = 1; i < count; i++ ) { monitors[i]->owner = owner; monitors[i]->recursion = 0; } } static inline void set_mask( monitor_desc * storage [], __lock_size_t count, const __waitfor_mask_t & mask ) { for( __lock_size_t i = 0; i < count; i++) { storage[i]->mask = mask; } } static inline void reset_mask( monitor_desc * this ) { this->mask.accepted = NULL; this->mask.clauses = NULL; this->mask.size = 0; } static inline thread_desc * next_thread( monitor_desc * this ) { //Check the signaller stack LIB_DEBUG_PRINT_SAFE("Kernel : mon %p AS-stack top %p\n", this, this->signal_stack.top); __condition_criterion_t * urgent = pop( this->signal_stack ); if( urgent ) { //The signaller stack is not empty, //regardless of if we are ready to baton pass, //we need to set the monitor as in use set_owner( this, urgent->owner->waiting_thread ); return check_condition( urgent ); } // No signaller thread // Get the next thread in the entry_queue thread_desc * new_owner = pop_head( this->entry_queue ); set_owner( this, new_owner ); return new_owner; } static inline bool is_accepted( monitor_desc * this, const __monitor_group_t & group ) { __acceptable_t * it = this->mask.clauses; // Optim __lock_size_t count = this->mask.size; // Check if there are any acceptable functions if( !it ) return false; // If this isn't the first monitor to test this, there is no reason to repeat the test. if( this != group[0] ) return group[0]->mask.accepted >= 0; // For all acceptable functions check if this is the current function. for( __lock_size_t i = 0; i < count; i++, it++ ) { if( *it == group ) { *this->mask.accepted = i; return true; } } // No function matched return false; } static inline void init( __lock_size_t count, monitor_desc * monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ) { for( __lock_size_t i = 0; i < count; i++) { (criteria[i]){ monitors[i], waiter }; } waiter.criteria = criteria; } static inline void init_push( __lock_size_t count, monitor_desc * monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ) { for( __lock_size_t i = 0; i < count; i++) { (criteria[i]){ monitors[i], waiter }; LIB_DEBUG_PRINT_SAFE( "Kernel : target %p = %p\n", criteria[i].target, &criteria[i] ); push( criteria[i].target->signal_stack, &criteria[i] ); } waiter.criteria = criteria; } static inline void lock_all( __spinlock_t * locks [], __lock_size_t count ) { for( __lock_size_t i = 0; i < count; i++ ) { DO_LOCK( *locks[i] DEBUG_CTX2 ); } } static inline void lock_all( monitor_desc * source [], __spinlock_t * /*out*/ locks [], __lock_size_t count ) { for( __lock_size_t i = 0; i < count; i++ ) { __spinlock_t * l = &source[i]->lock; DO_LOCK( *l DEBUG_CTX2 ); if(locks) locks[i] = l; } } static inline void unlock_all( __spinlock_t * locks [], __lock_size_t count ) { for( __lock_size_t i = 0; i < count; i++ ) { unlock( *locks[i] ); } } static inline void unlock_all( monitor_desc * locks [], __lock_size_t count ) { for( __lock_size_t i = 0; i < count; i++ ) { unlock( locks[i]->lock ); } } static inline void save( monitor_desc * ctx [], __lock_size_t count, __attribute((unused)) __spinlock_t * locks [], unsigned int /*out*/ recursions [], __waitfor_mask_t /*out*/ masks [] ) { for( __lock_size_t i = 0; i < count; i++ ) { recursions[i] = ctx[i]->recursion; masks[i] = ctx[i]->mask; } } static inline void restore( monitor_desc * ctx [], __lock_size_t count, __spinlock_t * locks [], unsigned int /*out*/ recursions [], __waitfor_mask_t /*out*/ masks [] ) { lock_all( locks, count ); for( __lock_size_t i = 0; i < count; i++ ) { ctx[i]->recursion = recursions[i]; ctx[i]->mask = masks[i]; } unlock_all( locks, count ); } // Function has 2 different behavior // 1 - Marks a monitors as being ready to run // 2 - Checks if all the monitors are ready to run // if so return the thread to run static inline thread_desc * check_condition( __condition_criterion_t * target ) { __condition_node_t * node = target->owner; unsigned short count = node->count; __condition_criterion_t * criteria = node->criteria; bool ready2run = true; for( int i = 0; i < count; i++ ) { // LIB_DEBUG_PRINT_SAFE( "Checking %p for %p\n", &criteria[i], target ); if( &criteria[i] == target ) { criteria[i].ready = true; // LIB_DEBUG_PRINT_SAFE( "True\n" ); } ready2run = criteria[i].ready && ready2run; } LIB_DEBUG_PRINT_SAFE( "Kernel : Runing %i (%p)\n", ready2run, ready2run ? node->waiting_thread : NULL ); return ready2run ? node->waiting_thread : NULL; } static inline void brand_condition( condition & this ) { thread_desc * thrd = this_thread; if( !this.monitors ) { // LIB_DEBUG_PRINT_SAFE("Branding\n"); assertf( thrd->monitors.list != NULL, "No current monitor to brand condition %p", thrd->monitors.list ); this.monitor_count = thrd->monitors.size; this.monitors = (monitor_desc **)malloc( this.monitor_count * sizeof( *this.monitors ) ); for( int i = 0; i < this.monitor_count; i++ ) { this.monitors[i] = thrd->monitors.list[i]; } } } static inline [thread_desc *, int] search_entry_queue( const __waitfor_mask_t & mask, monitor_desc * monitors [], __lock_size_t count ) { __thread_queue_t & entry_queue = monitors[0]->entry_queue; // For each thread in the entry-queue for( thread_desc ** thrd_it = &entry_queue.head; *thrd_it; thrd_it = &(*thrd_it)->next ) { // For each acceptable check if it matches int i = 0; __acceptable_t * end = mask.clauses + mask.size; for( __acceptable_t * it = mask.clauses; it != end; it++, i++ ) { // Check if we have a match if( *it == (*thrd_it)->monitors ) { // If we have a match return it // after removeing it from the entry queue return [remove( entry_queue, thrd_it ), i]; } } } return [0, -1]; } forall(dtype T | sized( T )) static inline __lock_size_t insert_unique( T * array [], __lock_size_t & size, T * val ) { if( !val ) return size; for( __lock_size_t i = 0; i <= size; i++) { if( array[i] == val ) return size; } array[size] = val; size = size + 1; return size; } static inline __lock_size_t count_max( const __waitfor_mask_t & mask ) { __lock_size_t max = 0; for( __lock_size_t i = 0; i < mask.size; i++ ) { max += mask.clauses[i].size; } return max; } static inline __lock_size_t aggregate( monitor_desc * storage [], const __waitfor_mask_t & mask ) { __lock_size_t size = 0; for( __lock_size_t i = 0; i < mask.size; i++ ) { __libcfa_small_sort( mask.clauses[i].list, mask.clauses[i].size ); for( __lock_size_t j = 0; j < mask.clauses[i].size; j++) { insert_unique( storage, size, mask.clauses[i].list[j] ); } } // TODO insertion sort instead of this __libcfa_small_sort( storage, size ); return size; } void ?{}( __condition_blocked_queue_t & this ) { this.head = NULL; this.tail = &this.head; } void append( __condition_blocked_queue_t & this, __condition_node_t * c ) { verify(this.tail != NULL); *this.tail = c; this.tail = &c->next; } __condition_node_t * pop_head( __condition_blocked_queue_t & this ) { __condition_node_t * head = this.head; if( head ) { this.head = head->next; if( !head->next ) { this.tail = &this.head; } head->next = NULL; } return head; } // Local Variables: // // mode: c // // tab-width: 4 // // End: //