// // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // monitor_desc.c -- // // Author : Thierry Delisle // Created On : Thd Feb 23 12:27:26 2017 // Last Modified By : Peter A. Buhr // Last Modified On : Mon Jul 31 14:59:05 2017 // Update Count : 3 // #include "monitor" #include #include "libhdr.h" #include "kernel_private.h" //----------------------------------------------------------------------------- // Forward declarations static inline void set_owner( monitor_desc * this, thread_desc * owner ); static inline thread_desc * next_thread( monitor_desc * this ); static inline int is_accepted( thread_desc * owner, monitor_desc * this, monitor_desc ** group, int group_cnt, void (*func)() ); static inline void lock_all( spinlock ** locks, unsigned short count ); static inline void lock_all( monitor_desc ** source, spinlock ** /*out*/ locks, unsigned short count ); static inline void unlock_all( spinlock ** locks, unsigned short count ); static inline void unlock_all( monitor_desc ** locks, unsigned short count ); static inline void save_recursion ( monitor_desc ** ctx, unsigned int * /*out*/ recursions, unsigned short count ); static inline void restore_recursion( monitor_desc ** ctx, unsigned int * /*in */ recursions, unsigned short count ); static inline void init ( int count, monitor_desc ** monitors, __condition_node_t * waiter, __condition_criterion_t * criteria ); static inline void init_push( int count, monitor_desc ** monitors, __condition_node_t * waiter, __condition_criterion_t * criteria ); static inline thread_desc * check_condition( __condition_criterion_t * ); static inline void brand_condition( condition * ); static inline unsigned short insert_unique( thread_desc ** thrds, unsigned short end, thread_desc * val ); static inline thread_desc * search_entry_queue( __acceptable_t * acceptables, int acc_count, monitor_desc ** monitors, int count ); //----------------------------------------------------------------------------- // Useful defines #define wait_ctx(thrd, user_info) /* Create the necessary information to use the signaller stack */ \ __condition_node_t waiter = { thrd, count, user_info }; /* Create the node specific to this wait operation */ \ __condition_criterion_t criteria[count]; /* Create the creteria this wait operation needs to wake up */ \ init( count, monitors, &waiter, criteria ); /* Link everything together */ \ #define wait_ctx_primed(thrd, user_info) /* Create the necessary information to use the signaller stack */ \ __condition_node_t waiter = { thrd, count, user_info }; /* Create the node specific to this wait operation */ \ __condition_criterion_t criteria[count]; /* Create the creteria this wait operation needs to wake up */ \ init_push( count, monitors, &waiter, criteria ); /* Link everything together and push it to the AS-Stack */ \ #define monitor_ctx( mons, cnt ) /* Define that create the necessary struct for internal/external scheduling operations */ \ monitor_desc ** monitors = mons; /* Save the targeted monitors */ \ unsigned short count = cnt; /* Save the count to a local variable */ \ unsigned int recursions[ count ]; /* Save the current recursion levels to restore them later */ \ spinlock * locks [ count ]; /* We need to pass-in an array of locks to BlockInternal */ \ //----------------------------------------------------------------------------- // Enter/Leave routines extern "C" { // Enter single monitor static void __enter_monitor_desc( monitor_desc * this, monitor_desc ** group, int group_cnt, void (*func)() ) { // Lock the monitor spinlock, lock_yield to reduce contention lock_yield( &this->lock DEBUG_CTX2 ); thread_desc * thrd = this_thread; LIB_DEBUG_PRINT_SAFE("Kernel : %10p Entering mon %p (%p)\n", thrd, this, this->owner); this->accepted_index = -1; if( !this->owner ) { // No one has the monitor, just take it set_owner( this, thrd ); LIB_DEBUG_PRINT_SAFE("Kernel : mon is free \n"); } else if( this->owner == thrd) { // We already have the monitor, just not how many times we took it verify( this->recursion > 0 ); this->recursion += 1; LIB_DEBUG_PRINT_SAFE("Kernel : mon already owned \n"); } else if( (this->accepted_index = is_accepted( thrd, this, group, group_cnt, func)) >= 0 ) { // Some one was waiting for us, enter set_owner( this, thrd ); LIB_DEBUG_PRINT_SAFE("Kernel : mon accepts \n"); } else { LIB_DEBUG_PRINT_SAFE("Kernel : blocking \n"); // Some one else has the monitor, wait in line for it append( &this->entry_queue, thrd ); BlockInternal( &this->lock ); LIB_DEBUG_PRINT_SAFE("Kernel : %10p Entered mon %p\n", thrd, this); // BlockInternal will unlock spinlock, no need to unlock ourselves return; } LIB_DEBUG_PRINT_SAFE("Kernel : %10p Entered mon %p\n", thrd, this); // Release the lock and leave unlock( &this->lock ); return; } // Leave single monitor void __leave_monitor_desc( monitor_desc * this ) { // Lock the monitor spinlock, lock_yield to reduce contention lock_yield( &this->lock DEBUG_CTX2 ); verifyf( this_thread == this->owner, "Expected owner to be %p, got %p (r: %i)", this_thread, this->owner, this->recursion ); // Leaving a recursion level, decrement the counter this->recursion -= 1; // If we haven't left the last level of recursion // it means we don't need to do anything if( this->recursion != 0) { unlock( &this->lock ); return; } // Get the next thread, will be null on low contention monitor thread_desc * new_owner = next_thread( this ); // We can now let other threads in safely unlock( &this->lock ); //We need to wake-up the thread WakeThread( new_owner ); } // Leave the thread monitor // last routine called by a thread. // Should never return void __leave_thread_monitor( thread_desc * thrd ) { monitor_desc * this = &thrd->mon; // Lock the monitor now lock_yield( &this->lock DEBUG_CTX2 ); disable_interrupts(); thrd->cor.state = Halted; verifyf( thrd == this->owner, "Expected owner to be %p, got %p (r: %i)", thrd, this->owner, this->recursion ); // Leaving a recursion level, decrement the counter this->recursion -= 1; // If we haven't left the last level of recursion // it must mean there is an error if( this->recursion != 0) { abortf("Thread internal monitor has unbalanced recursion"); } // Fetch the next thread, can be null thread_desc * new_owner = next_thread( this ); // Leave the thread, this will unlock the spinlock // Use leave thread instead of BlockInternal which is // specialized for this case and supports null new_owner LeaveThread( &this->lock, new_owner ); // Control flow should never reach here! } } // Enter multiple monitor // relies on the monitor array being sorted static inline void enter(monitor_desc ** monitors, int count, void (*func)() ) { for(int i = 0; i < count; i++) { __enter_monitor_desc( monitors[i], monitors, count, func ); } } // Leave multiple monitor // relies on the monitor array being sorted static inline void leave(monitor_desc ** monitors, int count) { for(int i = count - 1; i >= 0; i--) { __leave_monitor_desc( monitors[i] ); } } // Ctor for monitor guard // Sorts monitors before entering void ?{}( monitor_guard_t & this, monitor_desc ** m, int count, void (*func)() ) { // Store current array this.m = m; this.count = count; // Sort monitors based on address -> TODO use a sort specialized for small numbers qsort(this.m, count); // Save previous thread context this.prev_mntrs = this_thread->current_monitors; this.prev_count = this_thread->current_monitor_count; this.prev_func = this_thread->current_monitor_func; // Update thread context (needed for conditions) this_thread->current_monitors = m; this_thread->current_monitor_count = count; this_thread->current_monitor_func = func; // Enter the monitors in order enter( this.m, this.count, func ); } // Dtor for monitor guard void ^?{}( monitor_guard_t & this ) { // Leave the monitors in order leave( this.m, this.count ); // Restore thread context this_thread->current_monitors = this.prev_mntrs; this_thread->current_monitor_count = this.prev_count; this_thread->current_monitor_func = this.prev_func; } //----------------------------------------------------------------------------- // Internal scheduling types void ?{}(__condition_node_t & this, thread_desc * waiting_thread, unsigned short count, uintptr_t user_info ) { this.waiting_thread = waiting_thread; this.count = count; this.next = NULL; this.user_info = user_info; } void ?{}(__condition_criterion_t & this ) { this.ready = false; this.target = NULL; this.owner = NULL; this.next = NULL; } void ?{}(__condition_criterion_t & this, monitor_desc * target, __condition_node_t * owner ) { this.ready = false; this.target = target; this.owner = owner; this.next = NULL; } //----------------------------------------------------------------------------- // Internal scheduling void wait( condition * this, uintptr_t user_info = 0 ) { brand_condition( this ); // Check that everything is as expected assertf( this->monitors != NULL, "Waiting with no monitors (%p)", this->monitors ); verifyf( this->monitor_count != 0, "Waiting with 0 monitors (%i)", this->monitor_count ); verifyf( this->monitor_count < 32u, "Excessive monitor count (%i)", this->monitor_count ); // Create storage for monitor context monitor_ctx( this->monitors, this->monitor_count ); // Create the node specific to this wait operation wait_ctx( this_thread, user_info ); // Append the current wait operation to the ones already queued on the condition // We don't need locks for that since conditions must always be waited on inside monitor mutual exclusion append( &this->blocked, &waiter ); // Lock all monitors (aggregates the lock them as well) lock_all( monitors, locks, count ); // DON'T unlock, ask the kernel to do it // Save monitor state save_recursion( monitors, recursions, count ); // Find the next thread(s) to run unsigned short thread_count = 0; thread_desc * threads[ count ]; for(int i = 0; i < count; i++) { threads[i] = 0; } // Remove any duplicate threads for( int i = 0; i < count; i++) { thread_desc * new_owner = next_thread( monitors[i] ); thread_count = insert_unique( threads, thread_count, new_owner ); } // Everything is ready to go to sleep BlockInternal( locks, count, threads, thread_count ); // WE WOKE UP // We are back, restore the owners and recursions lock_all( locks, count ); restore_recursion( monitors, recursions, count ); unlock_all( locks, count ); } bool signal( condition * this ) { if( is_empty( this ) ) { return false; } //Check that everything is as expected verify( this->monitors ); verify( this->monitor_count != 0 ); //Some more checking in debug LIB_DEBUG_DO( thread_desc * this_thrd = this_thread; if ( this->monitor_count != this_thrd->current_monitor_count ) { abortf( "Signal on condition %p made with different number of monitor(s), expected %i got %i", this, this->monitor_count, this_thrd->current_monitor_count ); } for(int i = 0; i < this->monitor_count; i++) { if ( this->monitors[i] != this_thrd->current_monitors[i] ) { abortf( "Signal on condition %p made with different monitor, expected %p got %i", this, this->monitors[i], this_thrd->current_monitors[i] ); } } ); unsigned short count = this->monitor_count; // Lock all monitors lock_all( this->monitors, NULL, count ); //Pop the head of the waiting queue __condition_node_t * node = pop_head( &this->blocked ); //Add the thread to the proper AS stack for(int i = 0; i < count; i++) { __condition_criterion_t * crit = &node->criteria[i]; assert( !crit->ready ); push( &crit->target->signal_stack, crit ); } //Release unlock_all( this->monitors, count ); return true; } bool signal_block( condition * this ) { if( !this->blocked.head ) { return false; } //Check that everything is as expected verifyf( this->monitors != NULL, "Waiting with no monitors (%p)", this->monitors ); verifyf( this->monitor_count != 0, "Waiting with 0 monitors (%i)", this->monitor_count ); // Create storage for monitor context monitor_ctx( this->monitors, this->monitor_count ); // Lock all monitors (aggregates the locks them as well) lock_all( monitors, locks, count ); // Create the node specific to this wait operation wait_ctx_primed( this_thread, 0 ) //save contexts save_recursion( monitors, recursions, count ); //Find the thread to run thread_desc * signallee = pop_head( &this->blocked )->waiting_thread; for(int i = 0; i < count; i++) { set_owner( monitors[i], signallee ); } //Everything is ready to go to sleep BlockInternal( locks, count, &signallee, 1 ); // WE WOKE UP //We are back, restore the owners and recursions lock_all( locks, count ); restore_recursion( monitors, recursions, count ); unlock_all( locks, count ); return true; } // Access the user_info of the thread waiting at the front of the queue uintptr_t front( condition * this ) { verifyf( !is_empty(this), "Attempt to access user data on an empty condition.\n" "Possible cause is not checking if the condition is empty before reading stored data." ); return this->blocked.head->user_info; } //----------------------------------------------------------------------------- // Internal scheduling int __waitfor_internal( unsigned short acc_count, __acceptable_t * acceptables ) { thread_desc * thrd = this_thread; // Create storage for monitor context monitor_ctx( acceptables->monitors, acceptables->count ); // Lock all monitors (aggregates the lock them as well) lock_all( monitors, locks, count ); // Create the node specific to this wait operation wait_ctx_primed( thrd, 0 ); // Check if the entry queue thread_desc * next = search_entry_queue( acceptables, acc_count, monitors, count ); LIB_DEBUG_PRINT_SAFE("Owner(s) :"); for(int i = 0; i < count; i++) { LIB_DEBUG_PRINT_SAFE(" %p", monitors[i]->owner ); } LIB_DEBUG_PRINT_SAFE("\n"); LIB_DEBUG_PRINT_SAFE("Passing mon to %p\n", next); if( !next ) { // Update acceptables on the current monitors for(int i = 0; i < count; i++) { monitors[i]->acceptables = acceptables; monitors[i]->acceptable_count = acc_count; } } else { for(int i = 0; i < count; i++) { set_owner( monitors[i], next ); } } save_recursion( monitors, recursions, count ); // Everything is ready to go to sleep BlockInternal( locks, count, &next, next ? 1 : 0 ); //WE WOKE UP //We are back, restore the owners and recursions lock_all( locks, count ); restore_recursion( monitors, recursions, count ); int acc_idx = monitors[0]->accepted_index; unlock_all( locks, count ); return acc_idx; } //----------------------------------------------------------------------------- // Utilities static inline void set_owner( monitor_desc * this, thread_desc * owner ) { //Pass the monitor appropriately this->owner = owner; //We are passing the monitor to someone else, which means recursion level is not 0 this->recursion = owner ? 1 : 0; } static inline thread_desc * next_thread( monitor_desc * this ) { //Check the signaller stack __condition_criterion_t * urgent = pop( &this->signal_stack ); if( urgent ) { //The signaller stack is not empty, //regardless of if we are ready to baton pass, //we need to set the monitor as in use set_owner( this, urgent->owner->waiting_thread ); return check_condition( urgent ); } // No signaller thread // Get the next thread in the entry_queue thread_desc * new_owner = pop_head( &this->entry_queue ); set_owner( this, new_owner ); return new_owner; } static inline int is_accepted( thread_desc * owner, monitor_desc * this, monitor_desc ** group, int group_cnt, void (*func)() ) { __acceptable_t* accs = this->acceptables; // Optim int acc_cnt = this->acceptable_count; // Check if there are any acceptable functions if( !accs ) return -1; // If this isn't the first monitor to test this, there is no reason to repeat the test. if( this != group[0] ) return group[0]->accepted_index; // For all acceptable functions check if this is the current function. OUT_LOOP: for( int i = 0; i < acc_cnt; i++ ) { __acceptable_t * acc = &accs[i]; // if function matches, check the monitors if( acc->func == func ) { // If the group count is different then it can't be a match if( acc->count != group_cnt ) return -1; // Check that all the monitors match for( int j = 0; j < group_cnt; j++ ) { // If not a match, check next function if( acc->monitors[j] != group[j] ) continue OUT_LOOP; } // It's a complete match, accept the call return i; } } // No function matched return -1; } static inline void init( int count, monitor_desc ** monitors, __condition_node_t * waiter, __condition_criterion_t * criteria ) { for(int i = 0; i < count; i++) { (criteria[i]){ monitors[i], waiter }; } waiter->criteria = criteria; } static inline void init_push( int count, monitor_desc ** monitors, __condition_node_t * waiter, __condition_criterion_t * criteria ) { for(int i = 0; i < count; i++) { (criteria[i]){ monitors[i], waiter }; push( &criteria[i].target->signal_stack, &criteria[i] ); } waiter->criteria = criteria; } static inline void lock_all( spinlock ** locks, unsigned short count ) { for( int i = 0; i < count; i++ ) { lock_yield( locks[i] DEBUG_CTX2 ); } } static inline void lock_all( monitor_desc ** source, spinlock ** /*out*/ locks, unsigned short count ) { for( int i = 0; i < count; i++ ) { spinlock * l = &source[i]->lock; lock_yield( l DEBUG_CTX2 ); if(locks) locks[i] = l; } } static inline void unlock_all( spinlock ** locks, unsigned short count ) { for( int i = 0; i < count; i++ ) { unlock( locks[i] ); } } static inline void unlock_all( monitor_desc ** locks, unsigned short count ) { for( int i = 0; i < count; i++ ) { unlock( &locks[i]->lock ); } } static inline void save_recursion ( monitor_desc ** ctx, unsigned int * /*out*/ recursions, unsigned short count ) { for( int i = 0; i < count; i++ ) { recursions[i] = ctx[i]->recursion; } } static inline void restore_recursion( monitor_desc ** ctx, unsigned int * /*in */ recursions, unsigned short count ) { for( int i = 0; i < count; i++ ) { ctx[i]->recursion = recursions[i]; } } // Function has 2 different behavior // 1 - Marks a monitors as being ready to run // 2 - Checks if all the monitors are ready to run // if so return the thread to run static inline thread_desc * check_condition( __condition_criterion_t * target ) { __condition_node_t * node = target->owner; unsigned short count = node->count; __condition_criterion_t * criteria = node->criteria; bool ready2run = true; for( int i = 0; i < count; i++ ) { // LIB_DEBUG_PRINT_SAFE( "Checking %p for %p\n", &criteria[i], target ); if( &criteria[i] == target ) { criteria[i].ready = true; // LIB_DEBUG_PRINT_SAFE( "True\n" ); } ready2run = criteria[i].ready && ready2run; } // LIB_DEBUG_PRINT_SAFE( "Runing %i\n", ready2run ); return ready2run ? node->waiting_thread : NULL; } static inline void brand_condition( condition * this ) { thread_desc * thrd = this_thread; if( !this->monitors ) { // LIB_DEBUG_PRINT_SAFE("Branding\n"); assertf( thrd->current_monitors != NULL, "No current monitor to brand condition %p", thrd->current_monitors ); this->monitor_count = thrd->current_monitor_count; this->monitors = malloc( this->monitor_count * sizeof( *this->monitors ) ); for( int i = 0; i < this->monitor_count; i++ ) { this->monitors[i] = thrd->current_monitors[i]; } } } static inline unsigned short insert_unique( thread_desc ** thrds, unsigned short end, thread_desc * val ) { if( !val ) return end; for(int i = 0; i <= end; i++) { if( thrds[i] == val ) return end; } thrds[end] = val; return end + 1; } static inline bool match( __acceptable_t * acc, thread_desc * thrd ) { verify( thrd ); verify( acc ); if( acc->func != thrd->current_monitor_func ) return false; return true; } static inline thread_desc * search_entry_queue( __acceptable_t * acceptables, int acc_count, monitor_desc ** monitors, int count ) { __thread_queue_t * entry_queue = &monitors[0]->entry_queue; // For each thread in the entry-queue for( thread_desc ** thrd_it = &entry_queue->head; *thrd_it; thrd_it = &(*thrd_it)->next) { // For each acceptable check if it matches __acceptable_t * acc_end = acceptables + acc_count; for( __acceptable_t * acc_it = acceptables; acc_it != acc_end; acc_it++ ) { // Check if we have a match if( match( acc_it, *thrd_it ) ) { // If we have a match return it // after removeing it from the entry queue return remove( entry_queue, thrd_it ); } } } return NULL; } void ?{}( __condition_blocked_queue_t & this ) { this.head = NULL; this.tail = &this.head; } void append( __condition_blocked_queue_t * this, __condition_node_t * c ) { verify(this->tail != NULL); *this->tail = c; this->tail = &c->next; } __condition_node_t * pop_head( __condition_blocked_queue_t * this ) { __condition_node_t * head = this->head; if( head ) { this->head = head->next; if( !head->next ) { this->tail = &this->head; } head->next = NULL; } return head; } // Local Variables: // // mode: c // // tab-width: 4 // // End: //