// // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // kernel.c -- // // Author : Thierry Delisle // Created On : Tue Jan 17 12:27:26 2017 // Last Modified By : Peter A. Buhr // Last Modified On : Fri Jul 21 22:33:18 2017 // Update Count : 2 // //C Includes #include extern "C" { #include #include #include #include #include } //CFA Includes #include "kernel_private.h" #include "preemption.h" #include "startup.h" //Private includes #define __CFA_INVOKE_PRIVATE__ #include "invoke.h" //Start and stop routine for the kernel, declared first to make sure they run first void kernel_startup(void) __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) )); void kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) )); //----------------------------------------------------------------------------- // Kernel storage KERNEL_STORAGE(cluster, mainCluster); KERNEL_STORAGE(processor, mainProcessor); KERNEL_STORAGE(processorCtx_t, mainProcessorCtx); KERNEL_STORAGE(thread_desc, mainThread); KERNEL_STORAGE(machine_context_t, mainThreadCtx); cluster * mainCluster; processor * mainProcessor; thread_desc * mainThread; //----------------------------------------------------------------------------- // Global state thread_local coroutine_desc * volatile this_coroutine; thread_local thread_desc * volatile this_thread; thread_local processor * volatile this_processor; volatile thread_local bool preemption_in_progress = 0; volatile thread_local unsigned short disable_preempt_count = 1; //----------------------------------------------------------------------------- // Main thread construction struct current_stack_info_t { machine_context_t ctx; unsigned int size; // size of stack void *base; // base of stack void *storage; // pointer to stack void *limit; // stack grows towards stack limit void *context; // address of cfa_context_t void *top; // address of top of storage }; void ?{}( current_stack_info_t & this ) { CtxGet( this.ctx ); this.base = this.ctx.FP; this.storage = this.ctx.SP; rlimit r; getrlimit( RLIMIT_STACK, &r); this.size = r.rlim_cur; this.limit = (void *)(((intptr_t)this.base) - this.size); this.context = &storage_mainThreadCtx; this.top = this.base; } void ?{}( coStack_t & this, current_stack_info_t * info) { this.size = info->size; this.storage = info->storage; this.limit = info->limit; this.base = info->base; this.context = info->context; this.top = info->top; this.userStack = true; } void ?{}( coroutine_desc & this, current_stack_info_t * info) { (this.stack){ info }; this.name = "Main Thread"; this.errno_ = 0; this.state = Start; this.starter = NULL; } void ?{}( thread_desc & this, current_stack_info_t * info) { (this.self_cor){ info }; } //----------------------------------------------------------------------------- // Processor coroutine // Construct the processor context of the main processor void ?{}(processorCtx_t & this, processor * proc) { (this.__cor){ "Processor" }; this.__cor.starter = NULL; this.proc = proc; proc->runner = &this; } // Construct the processor context of non-main processors void ?{}(processorCtx_t & this, processor * proc, current_stack_info_t * info) { (this.__cor){ info }; this.proc = proc; proc->runner = &this; } void ?{}(processor & this) { this{ mainCluster }; } void ?{}(processor & this, cluster * cltr) { this.cltr = cltr; (this.terminated){ 0 }; this.do_terminate = false; this.preemption_alarm = NULL; this.pending_preemption = false; start( &this ); } void ?{}(processor & this, cluster * cltr, processorCtx_t & runner) { this.cltr = cltr; (this.terminated){ 0 }; this.do_terminate = false; this.preemption_alarm = NULL; this.pending_preemption = false; this.kernel_thread = pthread_self(); this.runner = &runner; __cfaabi_dbg_print_safe("Kernel : constructing main processor context %p\n", &runner); runner{ &this }; } void ^?{}(processor & this) { if( ! this.do_terminate ) { __cfaabi_dbg_print_safe("Kernel : core %p signaling termination\n", &this); this.do_terminate = true; P( this.terminated ); pthread_join( this.kernel_thread, NULL ); } } void ?{}(cluster & this) { (this.ready_queue){}; ( this.ready_queue_lock ){}; this.preemption = default_preemption(); } void ^?{}(cluster & this) { } //============================================================================================= // Kernel Scheduling logic //============================================================================================= //Main of the processor contexts void main(processorCtx_t & runner) { processor * this = runner.proc; __cfaabi_dbg_print_safe("Kernel : core %p starting\n", this); { // Setup preemption data preemption_scope scope = { this }; __cfaabi_dbg_print_safe("Kernel : core %p started\n", this); thread_desc * readyThread = NULL; for( unsigned int spin_count = 0; ! this->do_terminate; spin_count++ ) { readyThread = nextThread( this->cltr ); if(readyThread) { verify( disable_preempt_count > 0 ); runThread(this, readyThread); verify( disable_preempt_count > 0 ); //Some actions need to be taken from the kernel finishRunning(this); spin_count = 0; } else { spin(this, &spin_count); } } __cfaabi_dbg_print_safe("Kernel : core %p stopping\n", this); } V( this->terminated ); __cfaabi_dbg_print_safe("Kernel : core %p terminated\n", this); } // runThread runs a thread by context switching // from the processor coroutine to the target thread void runThread(processor * this, thread_desc * dst) { coroutine_desc * proc_cor = get_coroutine(*this->runner); coroutine_desc * thrd_cor = get_coroutine(dst); //Reset the terminating actions here this->finish.action_code = No_Action; //Update global state this_thread = dst; // Context Switch to the thread ThreadCtxSwitch(proc_cor, thrd_cor); // when ThreadCtxSwitch returns we are back in the processor coroutine } // Once a thread has finished running, some of // its final actions must be executed from the kernel void finishRunning(processor * this) { if( this->finish.action_code == Release ) { unlock( *this->finish.lock ); } else if( this->finish.action_code == Schedule ) { ScheduleThread( this->finish.thrd ); } else if( this->finish.action_code == Release_Schedule ) { unlock( *this->finish.lock ); ScheduleThread( this->finish.thrd ); } else if( this->finish.action_code == Release_Multi ) { for(int i = 0; i < this->finish.lock_count; i++) { unlock( *this->finish.locks[i] ); } } else if( this->finish.action_code == Release_Multi_Schedule ) { for(int i = 0; i < this->finish.lock_count; i++) { unlock( *this->finish.locks[i] ); } for(int i = 0; i < this->finish.thrd_count; i++) { ScheduleThread( this->finish.thrds[i] ); } } else { assert(this->finish.action_code == No_Action); } } // Handles spinning logic // TODO : find some strategy to put cores to sleep after some time void spin(processor * this, unsigned int * spin_count) { (*spin_count)++; } // Context invoker for processors // This is the entry point for processors (kernel threads) // It effectively constructs a coroutine by stealing the pthread stack void * CtxInvokeProcessor(void * arg) { processor * proc = (processor *) arg; this_processor = proc; this_coroutine = NULL; this_thread = NULL; disable_preempt_count = 1; // SKULLDUGGERY: We want to create a context for the processor coroutine // which is needed for the 2-step context switch. However, there is no reason // to waste the perfectly valid stack create by pthread. current_stack_info_t info; machine_context_t ctx; info.context = &ctx; processorCtx_t proc_cor_storage = { proc, &info }; __cfaabi_dbg_print_safe("Coroutine : created stack %p\n", proc_cor_storage.__cor.stack.base); //Set global state this_coroutine = &proc->runner->__cor; this_thread = NULL; //We now have a proper context from which to schedule threads __cfaabi_dbg_print_safe("Kernel : core %p created (%p, %p)\n", proc, proc->runner, &ctx); // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't // resume it to start it like it normally would, it will just context switch // back to here. Instead directly call the main since we already are on the // appropriate stack. proc_cor_storage.__cor.state = Active; main( proc_cor_storage ); proc_cor_storage.__cor.state = Halted; // Main routine of the core returned, the core is now fully terminated __cfaabi_dbg_print_safe("Kernel : core %p main ended (%p)\n", proc, proc->runner); return NULL; } void start(processor * this) { __cfaabi_dbg_print_safe("Kernel : Starting core %p\n", this); pthread_create( &this->kernel_thread, NULL, CtxInvokeProcessor, (void*)this ); __cfaabi_dbg_print_safe("Kernel : core %p started\n", this); } //----------------------------------------------------------------------------- // Scheduler routines void ScheduleThread( thread_desc * thrd ) { // if( !thrd ) return; verify( thrd ); verify( thrd->self_cor.state != Halted ); verify( disable_preempt_count > 0 ); verifyf( thrd->next == NULL, "Expected null got %p", thrd->next ); lock( this_processor->cltr->ready_queue_lock __cfaabi_dbg_ctx2 ); append( this_processor->cltr->ready_queue, thrd ); unlock( this_processor->cltr->ready_queue_lock ); verify( disable_preempt_count > 0 ); } thread_desc * nextThread(cluster * this) { verify( disable_preempt_count > 0 ); lock( this->ready_queue_lock __cfaabi_dbg_ctx2 ); thread_desc * head = pop_head( this->ready_queue ); unlock( this->ready_queue_lock ); verify( disable_preempt_count > 0 ); return head; } void BlockInternal() { disable_interrupts(); verify( disable_preempt_count > 0 ); suspend(); verify( disable_preempt_count > 0 ); enable_interrupts( __cfaabi_dbg_ctx ); } void BlockInternal( __spinlock_t * lock ) { disable_interrupts(); this_processor->finish.action_code = Release; this_processor->finish.lock = lock; verify( disable_preempt_count > 0 ); suspend(); verify( disable_preempt_count > 0 ); enable_interrupts( __cfaabi_dbg_ctx ); } void BlockInternal( thread_desc * thrd ) { assert(thrd); disable_interrupts(); assert( thrd->self_cor.state != Halted ); this_processor->finish.action_code = Schedule; this_processor->finish.thrd = thrd; verify( disable_preempt_count > 0 ); suspend(); verify( disable_preempt_count > 0 ); enable_interrupts( __cfaabi_dbg_ctx ); } void BlockInternal( __spinlock_t * lock, thread_desc * thrd ) { assert(thrd); disable_interrupts(); this_processor->finish.action_code = Release_Schedule; this_processor->finish.lock = lock; this_processor->finish.thrd = thrd; verify( disable_preempt_count > 0 ); suspend(); verify( disable_preempt_count > 0 ); enable_interrupts( __cfaabi_dbg_ctx ); } void BlockInternal(__spinlock_t * locks [], unsigned short count) { disable_interrupts(); this_processor->finish.action_code = Release_Multi; this_processor->finish.locks = locks; this_processor->finish.lock_count = count; verify( disable_preempt_count > 0 ); suspend(); verify( disable_preempt_count > 0 ); enable_interrupts( __cfaabi_dbg_ctx ); } void BlockInternal(__spinlock_t * locks [], unsigned short lock_count, thread_desc * thrds [], unsigned short thrd_count) { disable_interrupts(); this_processor->finish.action_code = Release_Multi_Schedule; this_processor->finish.locks = locks; this_processor->finish.lock_count = lock_count; this_processor->finish.thrds = thrds; this_processor->finish.thrd_count = thrd_count; verify( disable_preempt_count > 0 ); suspend(); verify( disable_preempt_count > 0 ); enable_interrupts( __cfaabi_dbg_ctx ); } void LeaveThread(__spinlock_t * lock, thread_desc * thrd) { verify( disable_preempt_count > 0 ); this_processor->finish.action_code = thrd ? Release_Schedule : Release; this_processor->finish.lock = lock; this_processor->finish.thrd = thrd; suspend(); } //============================================================================================= // Kernel Setup logic //============================================================================================= //----------------------------------------------------------------------------- // Kernel boot procedures void kernel_startup(void) { __cfaabi_dbg_print_safe("Kernel : Starting\n"); // Start by initializing the main thread // SKULLDUGGERY: the mainThread steals the process main thread // which will then be scheduled by the mainProcessor normally mainThread = (thread_desc *)&storage_mainThread; current_stack_info_t info; (*mainThread){ &info }; __cfaabi_dbg_print_safe("Kernel : Main thread ready\n"); // Initialize the main cluster mainCluster = (cluster *)&storage_mainCluster; (*mainCluster){}; __cfaabi_dbg_print_safe("Kernel : main cluster ready\n"); // Initialize the main processor and the main processor ctx // (the coroutine that contains the processing control flow) mainProcessor = (processor *)&storage_mainProcessor; (*mainProcessor){ mainCluster, *(processorCtx_t *)&storage_mainProcessorCtx }; //initialize the global state variables this_processor = mainProcessor; this_thread = mainThread; this_coroutine = &mainThread->self_cor; // Enable preemption kernel_start_preemption(); // Add the main thread to the ready queue // once resume is called on mainProcessor->runner the mainThread needs to be scheduled like any normal thread ScheduleThread(mainThread); // SKULLDUGGERY: Force a context switch to the main processor to set the main thread's context to the current UNIX // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that // mainThread is on the ready queue when this call is made. resume( *mainProcessor->runner ); // THE SYSTEM IS NOW COMPLETELY RUNNING __cfaabi_dbg_print_safe("Kernel : Started\n--------------------------------------------------\n\n"); enable_interrupts( __cfaabi_dbg_ctx ); } void kernel_shutdown(void) { __cfaabi_dbg_print_safe("\n--------------------------------------------------\nKernel : Shutting down\n"); disable_interrupts(); // SKULLDUGGERY: Notify the mainProcessor it needs to terminates. // When its coroutine terminates, it return control to the mainThread // which is currently here mainProcessor->do_terminate = true; suspend(); // THE SYSTEM IS NOW COMPLETELY STOPPED // Disable preemption kernel_stop_preemption(); // Destroy the main processor and its context in reverse order of construction // These were manually constructed so we need manually destroy them ^(*mainProcessor->runner){}; ^(mainProcessor){}; // Final step, destroy the main thread since it is no longer needed // Since we provided a stack to this taxk it will not destroy anything ^(mainThread){}; __cfaabi_dbg_print_safe("Kernel : Shutdown complete\n"); } static __spinlock_t kernel_abort_lock; static __spinlock_t kernel_debug_lock; static bool kernel_abort_called = false; void * kernel_abort (void) __attribute__ ((__nothrow__)) { // abort cannot be recursively entered by the same or different processors because all signal handlers return when // the globalAbort flag is true. lock( kernel_abort_lock __cfaabi_dbg_ctx2 ); // first task to abort ? if ( !kernel_abort_called ) { // not first task to abort ? kernel_abort_called = true; unlock( kernel_abort_lock ); } else { unlock( kernel_abort_lock ); sigset_t mask; sigemptyset( &mask ); sigaddset( &mask, SIGALRM ); // block SIGALRM signals sigaddset( &mask, SIGUSR1 ); // block SIGUSR1 signals sigsuspend( &mask ); // block the processor to prevent further damage during abort _exit( EXIT_FAILURE ); // if processor unblocks before it is killed, terminate it } return this_thread; } void kernel_abort_msg( void * kernel_data, char * abort_text, int abort_text_size ) { thread_desc * thrd = kernel_data; int len = snprintf( abort_text, abort_text_size, "Error occurred while executing task %.256s (%p)", thrd->self_cor.name, thrd ); __cfaabi_dbg_bits_write( abort_text, len ); if ( thrd != this_coroutine ) { len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", this_coroutine->name, this_coroutine ); __cfaabi_dbg_bits_write( abort_text, len ); } else { __cfaabi_dbg_bits_write( ".\n", 2 ); } } extern "C" { void __cfaabi_dbg_bits_acquire() { lock( kernel_debug_lock __cfaabi_dbg_ctx2 ); } void __cfaabi_dbg_bits_release() { unlock( kernel_debug_lock ); } } //============================================================================================= // Kernel Utilities //============================================================================================= //----------------------------------------------------------------------------- // Locks void ?{}( semaphore & this, int count = 1 ) { (this.lock){}; this.count = count; (this.waiting){}; } void ^?{}(semaphore & this) {} void P(semaphore & this) { lock( this.lock __cfaabi_dbg_ctx2 ); this.count -= 1; if ( this.count < 0 ) { // queue current task append( this.waiting, (thread_desc *)this_thread ); // atomically release spin lock and block BlockInternal( &this.lock ); } else { unlock( this.lock ); } } void V(semaphore & this) { thread_desc * thrd = NULL; lock( this.lock __cfaabi_dbg_ctx2 ); this.count += 1; if ( this.count <= 0 ) { // remove task at head of waiting list thrd = pop_head( this.waiting ); } unlock( this.lock ); // make new owner WakeThread( thrd ); } //----------------------------------------------------------------------------- // Debug __cfaabi_dbg_debug_do( struct { thread_desc * tail; } __cfaabi_dbg_thread_list = { NULL }; void __cfaabi_dbg_thread_register( thread_desc * thrd ) { if( !__cfaabi_dbg_thread_list.tail ) { __cfaabi_dbg_thread_list.tail = thrd; return; } __cfaabi_dbg_thread_list.tail->dbg_next = thrd; thrd->dbg_prev = __cfaabi_dbg_thread_list.tail; __cfaabi_dbg_thread_list.tail = thrd; } void __cfaabi_dbg_thread_unregister( thread_desc * thrd ) { thread_desc * prev = thrd->dbg_prev; thread_desc * next = thrd->dbg_next; if( next ) { next->dbg_prev = prev; } else { assert( __cfaabi_dbg_thread_list.tail == thrd ); __cfaabi_dbg_thread_list.tail = prev; } if( prev ) { prev->dbg_next = next; } thrd->dbg_prev = NULL; thrd->dbg_next = NULL; } ) // Local Variables: // // mode: c // // tab-width: 4 // // End: //