source: src/libcfa/concurrency/kernel.c @ 82ff5845

ADTaaron-thesisarm-ehast-experimentalcleanup-dtorsdeferred_resndemanglerenumforall-pointer-decayjacob/cs343-translationjenkins-sandboxnew-astnew-ast-unique-exprnew-envno_listpersistent-indexerpthread-emulationqualifiedEnumresolv-newwith_gc
Last change on this file since 82ff5845 was 82ff5845, checked in by Thierry Delisle <tdelisle@…>, 7 years ago

First implementation of preemption, does not appear to work with scheduling

  • Property mode set to 100644
File size: 18.7 KB
Line 
1//                              -*- Mode: CFA -*-
2//
3// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
4//
5// The contents of this file are covered under the licence agreement in the
6// file "LICENCE" distributed with Cforall.
7//
8// kernel.c --
9//
10// Author           : Thierry Delisle
11// Created On       : Tue Jan 17 12:27:26 2017
12// Last Modified By : Thierry Delisle
13// Last Modified On : --
14// Update Count     : 0
15//
16
17#include "startup.h"
18
19//Start and stop routine for the kernel, declared first to make sure they run first
20void kernel_startup(void)  __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) ));
21void kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) ));
22
23//Header
24#include "kernel_private.h"
25
26//C Includes
27#include <stddef.h>
28extern "C" {
29#include <stdio.h>
30#include <fenv.h>
31#include <sys/resource.h>
32#include <signal.h>
33#include <unistd.h>
34}
35
36//CFA Includes
37#include "libhdr.h"
38#include "preemption.h"
39
40//Private includes
41#define __CFA_INVOKE_PRIVATE__
42#include "invoke.h"
43
44//-----------------------------------------------------------------------------
45// Kernel storage
46#define KERNEL_STORAGE(T,X) static char X##_storage[sizeof(T)]
47
48KERNEL_STORAGE(processorCtx_t, systemProcessorCtx);
49KERNEL_STORAGE(cluster, systemCluster);
50KERNEL_STORAGE(system_proc_t, systemProcessor);
51KERNEL_STORAGE(thread_desc, mainThread);
52KERNEL_STORAGE(machine_context_t, mainThread_context);
53
54cluster * systemCluster;
55system_proc_t * systemProcessor;
56thread_desc * mainThread;
57
58//-----------------------------------------------------------------------------
59// Global state
60
61thread_local processor * this_processor;
62
63coroutine_desc * this_coroutine(void) {
64        return this_processor->current_coroutine;
65}
66
67thread_desc * this_thread(void) {
68        return this_processor->current_thread;
69}
70
71//-----------------------------------------------------------------------------
72// Main thread construction
73struct current_stack_info_t {
74        machine_context_t ctx; 
75        unsigned int size;              // size of stack
76        void *base;                             // base of stack
77        void *storage;                  // pointer to stack
78        void *limit;                    // stack grows towards stack limit
79        void *context;                  // address of cfa_context_t
80        void *top;                              // address of top of storage
81};
82
83void ?{}( current_stack_info_t * this ) {
84        CtxGet( &this->ctx );
85        this->base = this->ctx.FP;
86        this->storage = this->ctx.SP;
87
88        rlimit r;
89        getrlimit( RLIMIT_STACK, &r);
90        this->size = r.rlim_cur;
91
92        this->limit = (void *)(((intptr_t)this->base) - this->size);
93        this->context = &mainThread_context_storage;
94        this->top = this->base;
95}
96
97void ?{}( coStack_t * this, current_stack_info_t * info) {
98        this->size = info->size;
99        this->storage = info->storage;
100        this->limit = info->limit;
101        this->base = info->base;
102        this->context = info->context;
103        this->top = info->top;
104        this->userStack = true;
105}
106
107void ?{}( coroutine_desc * this, current_stack_info_t * info) {
108        (&this->stack){ info }; 
109        this->name = "Main Thread";
110        this->errno_ = 0;
111        this->state = Start;
112}
113
114void ?{}( thread_desc * this, current_stack_info_t * info) {
115        (&this->cor){ info };
116}
117
118//-----------------------------------------------------------------------------
119// Processor coroutine
120void ?{}(processorCtx_t * this, processor * proc) {
121        (&this->__cor){ "Processor" };
122        this->proc = proc;
123        proc->runner = this;
124}
125
126void ?{}(processorCtx_t * this, processor * proc, current_stack_info_t * info) {
127        (&this->__cor){ info };
128        this->proc = proc;
129        proc->runner = this;
130}
131
132void ?{}(processor * this) {
133        this{ systemCluster };
134}
135
136void ?{}(processor * this, cluster * cltr) {
137        this->cltr = cltr;
138        this->current_coroutine = NULL;
139        this->current_thread = NULL;
140        (&this->terminated){};
141        this->is_terminated = false;
142        this->preemption_alarm = NULL;
143        this->preemption = default_preemption();
144        this->disable_preempt_count = 1;                //Start with interrupts disabled
145        this->pending_preemption = false;
146
147        start( this );
148}
149
150void ?{}(processor * this, cluster * cltr, processorCtx_t * runner) {
151        this->cltr = cltr;
152        this->current_coroutine = NULL;
153        this->current_thread = NULL;
154        (&this->terminated){};
155        this->is_terminated = false;
156        this->preemption_alarm = NULL;
157        this->preemption = default_preemption();
158        this->disable_preempt_count = 1;
159        this->pending_preemption = false;
160        this->kernel_thread = pthread_self();
161
162        this->runner = runner;
163        LIB_DEBUG_PRINT_SAFE("Kernel : constructing system processor context %p\n", runner);
164        runner{ this };
165}
166
167void ?{}(system_proc_t * this, cluster * cltr, processorCtx_t * runner) {
168        (&this->alarms){};
169        (&this->alarm_lock){};
170        this->pending_alarm = false;
171
172        (&this->proc){ cltr, runner };
173}
174
175void ^?{}(processor * this) {
176        if( ! this->is_terminated ) {
177                LIB_DEBUG_PRINT_SAFE("Kernel : core %p signaling termination\n", this);
178                this->is_terminated = true;
179                wait( &this->terminated );
180        }
181}
182
183void ?{}(cluster * this) {
184        ( &this->ready_queue ){};
185        ( &this->lock ){};
186}
187
188void ^?{}(cluster * this) {
189       
190}
191
192//=============================================================================================
193// Kernel Scheduling logic
194//=============================================================================================
195//Main of the processor contexts
196void main(processorCtx_t * runner) {
197        processor * this = runner->proc;
198
199        LIB_DEBUG_PRINT_SAFE("Kernel : core %p starting\n", this);
200
201        {
202                // Setup preemption data
203                preemption_scope scope = { this };
204
205                LIB_DEBUG_PRINT_SAFE("Kernel : core %p started\n", this);
206
207                thread_desc * readyThread = NULL;
208                for( unsigned int spin_count = 0; ! this->is_terminated; spin_count++ ) 
209                {
210                        readyThread = nextThread( this->cltr );
211
212                        if(readyThread)
213                        {
214                                runThread(this, readyThread);
215
216                                //Some actions need to be taken from the kernel
217                                finishRunning(this);
218
219                                spin_count = 0;
220                        }
221                        else
222                        {
223                                spin(this, &spin_count);
224                        }
225                }
226
227                LIB_DEBUG_PRINT_SAFE("Kernel : core %p stopping\n", this);
228        }
229
230        signal( &this->terminated );
231        LIB_DEBUG_PRINT_SAFE("Kernel : core %p terminated\n", this);
232}
233
234// runThread runs a thread by context switching
235// from the processor coroutine to the target thread
236void runThread(processor * this, thread_desc * dst) {
237        coroutine_desc * proc_cor = get_coroutine(this->runner);
238        coroutine_desc * thrd_cor = get_coroutine(dst);
239       
240        //Reset the terminating actions here
241        this->finish.action_code = No_Action;
242
243        //Update global state
244        this->current_thread = dst;
245
246        LIB_DEBUG_PRINT_SAFE("Kernel : running %p\n", dst);
247
248        // Context Switch to the thread
249        ThreadCtxSwitch(proc_cor, thrd_cor);
250        // when ThreadCtxSwitch returns we are back in the processor coroutine
251}
252
253// Once a thread has finished running, some of
254// its final actions must be executed from the kernel
255void finishRunning(processor * this) {
256        if( this->finish.action_code == Release ) {
257                unlock( this->finish.lock );
258        }
259        else if( this->finish.action_code == Schedule ) {
260                ScheduleThread( this->finish.thrd );
261        }
262        else if( this->finish.action_code == Release_Schedule ) {
263                unlock( this->finish.lock );           
264                ScheduleThread( this->finish.thrd );
265        }
266        else if( this->finish.action_code == Release_Multi ) {
267                for(int i = 0; i < this->finish.lock_count; i++) {
268                        unlock( this->finish.locks[i] );
269                }
270        }
271        else if( this->finish.action_code == Release_Multi_Schedule ) {
272                for(int i = 0; i < this->finish.lock_count; i++) {
273                        unlock( this->finish.locks[i] );
274                }
275                for(int i = 0; i < this->finish.thrd_count; i++) {
276                        ScheduleThread( this->finish.thrds[i] );
277                }
278        }
279        else {
280                assert(this->finish.action_code == No_Action);
281        }
282}
283
284// Handles spinning logic
285// TODO : find some strategy to put cores to sleep after some time
286void spin(processor * this, unsigned int * spin_count) {
287        (*spin_count)++;
288}
289
290// Context invoker for processors
291// This is the entry point for processors (kernel threads)
292// It effectively constructs a coroutine by stealing the pthread stack
293void * CtxInvokeProcessor(void * arg) {
294        processor * proc = (processor *) arg;
295        this_processor = proc;
296        // SKULLDUGGERY: We want to create a context for the processor coroutine
297        // which is needed for the 2-step context switch. However, there is no reason
298        // to waste the perfectly valid stack create by pthread.
299        current_stack_info_t info;
300        machine_context_t ctx;
301        info.context = &ctx;
302        processorCtx_t proc_cor_storage = { proc, &info };
303
304        LIB_DEBUG_PRINT_SAFE("Coroutine : created stack %p\n", proc_cor_storage.__cor.stack.base);
305
306        //Set global state
307        proc->current_coroutine = &proc->runner->__cor;
308        proc->current_thread = NULL;
309
310        //We now have a proper context from which to schedule threads
311        LIB_DEBUG_PRINT_SAFE("Kernel : core %p created (%p, %p)\n", proc, proc->runner, &ctx);
312
313        // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't
314        // resume it to start it like it normally would, it will just context switch
315        // back to here. Instead directly call the main since we already are on the
316        // appropriate stack.
317        proc_cor_storage.__cor.state = Active;
318      main( &proc_cor_storage );
319      proc_cor_storage.__cor.state = Halted;
320
321        // Main routine of the core returned, the core is now fully terminated
322        LIB_DEBUG_PRINT_SAFE("Kernel : core %p main ended (%p)\n", proc, proc->runner); 
323
324        return NULL;
325}
326
327void start(processor * this) {
328        LIB_DEBUG_PRINT_SAFE("Kernel : Starting core %p\n", this);
329
330        // SIGALRM must only be caught by the system processor
331        sigset_t old_mask;
332        bool is_system_proc = this_processor == &systemProcessor->proc;
333        if ( is_system_proc ) {
334                // Child kernel-thread inherits the signal mask from the parent kernel-thread. So one special case for the
335                // system processor creating the user processor => toggle the blocking SIGALRM on system processor, create user
336                // processor, and toggle back (below) previous signal mask of the system processor.
337
338                sigset_t new_mask;
339                sigemptyset( &new_mask );
340                sigemptyset( &old_mask );
341                sigaddset( &new_mask, SIGALRM );
342
343                if ( sigprocmask( SIG_BLOCK, &new_mask, &old_mask ) == -1 ) {
344                        abortf( "internal error, sigprocmask" );
345                }
346
347                assert( ! sigismember( &old_mask, SIGALRM ) );
348        }
349
350        pthread_create( &this->kernel_thread, NULL, CtxInvokeProcessor, (void*)this );
351
352        // Toggle back previous signal mask of system processor.
353        if ( is_system_proc ) {
354                if ( sigprocmask( SIG_SETMASK, &old_mask, NULL ) == -1 ) {
355                        abortf( "internal error, sigprocmask" );
356                } // if
357        } // if
358
359        LIB_DEBUG_PRINT_SAFE("Kernel : core %p started\n", this);       
360}
361
362//-----------------------------------------------------------------------------
363// Scheduler routines
364void ScheduleThread( thread_desc * thrd ) {
365        if( !thrd ) return;
366
367        assertf( thrd->next == NULL, "Expected null got %p", thrd->next );
368       
369        lock( &systemProcessor->proc.cltr->lock );
370        append( &systemProcessor->proc.cltr->ready_queue, thrd );
371        unlock( &systemProcessor->proc.cltr->lock );
372}
373
374thread_desc * nextThread(cluster * this) {
375        lock( &this->lock );
376        thread_desc * head = pop_head( &this->ready_queue );
377        unlock( &this->lock );
378        return head;
379}
380
381void BlockInternal() {
382        disable_interrupts();
383        suspend();
384        enable_interrupts();
385}
386
387void BlockInternal( spinlock * lock ) {
388        disable_interrupts();
389        this_processor->finish.action_code = Release;
390        this_processor->finish.lock = lock;
391        suspend();
392        enable_interrupts();
393}
394
395void BlockInternal( thread_desc * thrd ) {
396        disable_interrupts();
397        this_processor->finish.action_code = Schedule;
398        this_processor->finish.thrd = thrd;
399        suspend();
400        enable_interrupts();
401}
402
403void BlockInternal( spinlock * lock, thread_desc * thrd ) {
404        disable_interrupts();
405        this_processor->finish.action_code = Release_Schedule;
406        this_processor->finish.lock = lock;
407        this_processor->finish.thrd = thrd;
408        suspend();
409        enable_interrupts();
410}
411
412void BlockInternal(spinlock ** locks, unsigned short count) {
413        disable_interrupts();
414        this_processor->finish.action_code = Release_Multi;
415        this_processor->finish.locks = locks;
416        this_processor->finish.lock_count = count;
417        suspend();
418        enable_interrupts();
419}
420
421void BlockInternal(spinlock ** locks, unsigned short lock_count, thread_desc ** thrds, unsigned short thrd_count) {
422        disable_interrupts();
423        this_processor->finish.action_code = Release_Multi_Schedule;
424        this_processor->finish.locks = locks;
425        this_processor->finish.lock_count = lock_count;
426        this_processor->finish.thrds = thrds;
427        this_processor->finish.thrd_count = thrd_count;
428        suspend();
429        enable_interrupts();
430}
431
432//=============================================================================================
433// Kernel Setup logic
434//=============================================================================================
435//-----------------------------------------------------------------------------
436// Kernel boot procedures
437void kernel_startup(void) {
438        LIB_DEBUG_PRINT_SAFE("Kernel : Starting\n");   
439
440        // Start by initializing the main thread
441        // SKULLDUGGERY: the mainThread steals the process main thread
442        // which will then be scheduled by the systemProcessor normally
443        mainThread = (thread_desc *)&mainThread_storage;
444        current_stack_info_t info;
445        mainThread{ &info };
446
447        LIB_DEBUG_PRINT_SAFE("Kernel : Main thread ready\n");
448
449        // Initialize the system cluster
450        systemCluster = (cluster *)&systemCluster_storage;
451        systemCluster{};
452
453        LIB_DEBUG_PRINT_SAFE("Kernel : System cluster ready\n");
454
455        // Initialize the system processor and the system processor ctx
456        // (the coroutine that contains the processing control flow)
457        systemProcessor = (system_proc_t *)&systemProcessor_storage;
458        systemProcessor{ systemCluster, (processorCtx_t *)&systemProcessorCtx_storage };
459
460        // Add the main thread to the ready queue
461        // once resume is called on systemProcessor->runner the mainThread needs to be scheduled like any normal thread
462        ScheduleThread(mainThread);
463
464        //initialize the global state variables
465        this_processor = &systemProcessor->proc;
466        this_processor->current_thread = mainThread;
467        this_processor->current_coroutine = &mainThread->cor;
468
469        // Enable preemption
470        kernel_start_preemption();
471
472        // SKULLDUGGERY: Force a context switch to the system processor to set the main thread's context to the current UNIX
473        // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that
474        // mainThread is on the ready queue when this call is made.
475        resume( systemProcessor->proc.runner );
476
477
478
479        // THE SYSTEM IS NOW COMPLETELY RUNNING
480        LIB_DEBUG_PRINT_SAFE("Kernel : Started\n--------------------------------------------------\n\n");
481
482        enable_interrupts();
483}
484
485void kernel_shutdown(void) {
486        LIB_DEBUG_PRINT_SAFE("\n--------------------------------------------------\nKernel : Shutting down\n");
487
488        // SKULLDUGGERY: Notify the systemProcessor it needs to terminates.
489        // When its coroutine terminates, it return control to the mainThread
490        // which is currently here
491        systemProcessor->proc.is_terminated = true;
492        suspend();
493
494        // THE SYSTEM IS NOW COMPLETELY STOPPED
495
496        // Disable preemption
497        kernel_stop_preemption();
498
499        // Destroy the system processor and its context in reverse order of construction
500        // These were manually constructed so we need manually destroy them
501        ^(systemProcessor->proc.runner){};
502        ^(systemProcessor){};
503
504        // Final step, destroy the main thread since it is no longer needed
505        // Since we provided a stack to this taxk it will not destroy anything
506        ^(mainThread){};
507
508        LIB_DEBUG_PRINT_SAFE("Kernel : Shutdown complete\n");   
509}
510
511static spinlock kernel_abort_lock;
512static spinlock kernel_debug_lock;
513static bool kernel_abort_called = false;
514
515void * kernel_abort    (void) __attribute__ ((__nothrow__)) {
516        // abort cannot be recursively entered by the same or different processors because all signal handlers return when
517        // the globalAbort flag is true.
518        lock( &kernel_abort_lock );
519
520        // first task to abort ?
521        if ( !kernel_abort_called ) {                   // not first task to abort ?
522                kernel_abort_called = true;
523                unlock( &kernel_abort_lock );
524        } 
525        else {
526                unlock( &kernel_abort_lock );
527               
528                sigset_t mask;
529                sigemptyset( &mask );
530                sigaddset( &mask, SIGALRM );                    // block SIGALRM signals
531                sigaddset( &mask, SIGUSR1 );                    // block SIGUSR1 signals
532                sigsuspend( &mask );                            // block the processor to prevent further damage during abort
533                _exit( EXIT_FAILURE );                          // if processor unblocks before it is killed, terminate it             
534        }
535
536        return this_thread();
537}
538
539void kernel_abort_msg( void * kernel_data, char * abort_text, int abort_text_size ) {
540        thread_desc * thrd = kernel_data;
541
542        int len = snprintf( abort_text, abort_text_size, "Error occurred while executing task %.256s (%p)", thrd->cor.name, thrd );
543        __lib_debug_write( STDERR_FILENO, abort_text, len );
544
545        if ( thrd != this_coroutine() ) {
546                len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", this_coroutine()->name, this_coroutine() );
547                __lib_debug_write( STDERR_FILENO, abort_text, len );
548        } 
549        else {
550                __lib_debug_write( STDERR_FILENO, ".\n", 2 );
551        }
552}
553
554extern "C" {
555        void __lib_debug_acquire() {
556                lock(&kernel_debug_lock);
557        }
558
559        void __lib_debug_release() {
560                unlock(&kernel_debug_lock);
561        }
562}
563
564//=============================================================================================
565// Kernel Utilities
566//=============================================================================================
567//-----------------------------------------------------------------------------
568// Locks
569void ?{}( spinlock * this ) {
570        this->lock = 0;
571}
572void ^?{}( spinlock * this ) {
573
574}
575
576bool try_lock( spinlock * this ) {
577        return this->lock == 0 && __sync_lock_test_and_set_4( &this->lock, 1 ) == 0;
578}
579
580void lock( spinlock * this ) {
581        for ( unsigned int i = 1;; i += 1 ) {
582                if ( this->lock == 0 && __sync_lock_test_and_set_4( &this->lock, 1 ) == 0 ) break;
583        }
584}
585
586void unlock( spinlock * this ) {
587        __sync_lock_release_4( &this->lock );
588}
589
590void ?{}( signal_once * this ) {
591        this->cond = false;
592}
593void ^?{}( signal_once * this ) {
594
595}
596
597void wait( signal_once * this ) {
598        lock( &this->lock );
599        if( !this->cond ) {
600                append( &this->blocked, this_thread() );
601                BlockInternal( &this->lock );
602                lock( &this->lock );
603        }
604        unlock( &this->lock );
605}
606
607void signal( signal_once * this ) {
608        lock( &this->lock );
609        {
610                this->cond = true;
611
612                thread_desc * it;
613                while( it = pop_head( &this->blocked) ) {
614                        ScheduleThread( it );
615                }
616        }
617        unlock( &this->lock );
618}
619
620//-----------------------------------------------------------------------------
621// Queues
622void ?{}( __thread_queue_t * this ) {
623        this->head = NULL;
624        this->tail = &this->head;
625}
626
627void append( __thread_queue_t * this, thread_desc * t ) {
628        assert(this->tail != NULL);
629        *this->tail = t;
630        this->tail = &t->next;
631}
632
633thread_desc * pop_head( __thread_queue_t * this ) {
634        thread_desc * head = this->head;
635        if( head ) {
636                this->head = head->next;
637                if( !head->next ) {
638                        this->tail = &this->head;
639                }
640                head->next = NULL;
641        }       
642        return head;
643}
644
645void ?{}( __condition_stack_t * this ) {
646        this->top = NULL;
647}
648
649void push( __condition_stack_t * this, __condition_criterion_t * t ) {
650        assert( !t->next );
651        t->next = this->top;
652        this->top = t;
653}
654
655__condition_criterion_t * pop( __condition_stack_t * this ) {
656        __condition_criterion_t * top = this->top;
657        if( top ) {
658                this->top = top->next;
659                top->next = NULL;
660        }       
661        return top;
662}
663// Local Variables: //
664// mode: c //
665// tab-width: 4 //
666// End: //
Note: See TracBrowser for help on using the repository browser.