// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // TupleAssignment.cc -- // // Author : Rodolfo G. Esteves // Created On : Mon May 18 07:44:20 2015 // Last Modified By : Peter A. Buhr // Last Modified On : Thu Mar 16 08:05:17 2017 // Update Count : 15 // #include #include #include #include "Tuples.h" #include "GenPoly/DeclMutator.h" #include "SynTree/Mutator.h" #include "SynTree/Statement.h" #include "SynTree/Declaration.h" #include "SynTree/Type.h" #include "SynTree/Expression.h" #include "SynTree/Initializer.h" #include "SymTab/Mangler.h" #include "Common/ScopedMap.h" #include "ResolvExpr/typeops.h" #include "InitTweak/GenInit.h" #include "InitTweak/InitTweak.h" namespace Tuples { namespace { class MemberTupleExpander final : public Mutator { public: typedef Mutator Parent; using Parent::mutate; virtual Expression * mutate( UntypedMemberExpr * memberExpr ) override; }; class UniqueExprExpander final : public GenPoly::DeclMutator { public: typedef GenPoly::DeclMutator Parent; using Parent::mutate; virtual Expression * mutate( UniqueExpr * unqExpr ) override; std::map< int, Expression * > decls; // not vector, because order added may not be increasing order ~UniqueExprExpander() { for ( std::pair & p : decls ) { delete p.second; } } }; class TupleAssignExpander : public Mutator { public: typedef Mutator Parent; using Parent::mutate; virtual Expression * mutate( TupleAssignExpr * tupleExpr ); }; class TupleTypeReplacer : public GenPoly::DeclMutator { public: typedef GenPoly::DeclMutator Parent; using Parent::mutate; virtual Type * mutate( TupleType * tupleType ) override; virtual CompoundStmt * mutate( CompoundStmt * stmt ) override { typeMap.beginScope(); stmt = Parent::mutate( stmt ); typeMap.endScope(); return stmt; } private: ScopedMap< int, StructDecl * > typeMap; }; class TupleIndexExpander final : public Mutator { public: typedef Mutator Parent; using Parent::mutate; virtual Expression * mutate( TupleIndexExpr * tupleExpr ) override; }; class TupleExprExpander final : public Mutator { public: typedef Mutator Parent; using Parent::mutate; virtual Expression * mutate( TupleExpr * tupleExpr ) override; }; } void expandMemberTuples( std::list< Declaration * > & translationUnit ) { MemberTupleExpander expander; mutateAll( translationUnit, expander ); } void expandUniqueExpr( std::list< Declaration * > & translationUnit ) { UniqueExprExpander unqExpander; unqExpander.mutateDeclarationList( translationUnit ); } void expandTuples( std::list< Declaration * > & translationUnit ) { TupleAssignExpander assnExpander; mutateAll( translationUnit, assnExpander ); TupleTypeReplacer replacer; replacer.mutateDeclarationList( translationUnit ); TupleIndexExpander idxExpander; mutateAll( translationUnit, idxExpander ); TupleExprExpander exprExpander; mutateAll( translationUnit, exprExpander ); } namespace { /// given a expression representing the member and an expression representing the aggregate, /// reconstructs a flattened UntypedMemberExpr with the right precedence Expression * reconstructMemberExpr( Expression * member, Expression * aggr, CodeLocation & loc ) { if ( UntypedMemberExpr * memberExpr = dynamic_cast< UntypedMemberExpr * >( member ) ) { // construct a new UntypedMemberExpr with the correct structure , and recursively // expand that member expression. MemberTupleExpander expander; UntypedMemberExpr * inner = new UntypedMemberExpr( memberExpr->get_aggregate(), aggr->clone() ); UntypedMemberExpr * newMemberExpr = new UntypedMemberExpr( memberExpr->get_member(), inner ); inner->location = newMemberExpr->location = loc; memberExpr->set_member(nullptr); memberExpr->set_aggregate(nullptr); delete memberExpr; return newMemberExpr->acceptMutator( expander ); } else { // not a member expression, so there is nothing to do but attach and return UntypedMemberExpr * newMemberExpr = new UntypedMemberExpr( member, aggr->clone() ); newMemberExpr->location = loc; return newMemberExpr; } } } Expression * MemberTupleExpander::mutate( UntypedMemberExpr * memberExpr ) { if ( UntypedTupleExpr * tupleExpr = dynamic_cast< UntypedTupleExpr * > ( memberExpr->get_member() ) ) { Expression * aggr = memberExpr->get_aggregate()->clone()->acceptMutator( *this ); // aggregate expressions which might be impure must be wrapped in unique expressions // xxx - if there's a member-tuple expression nested in the aggregate, this currently generates the wrong code if a UniqueExpr is not used, and it's purely an optimization to remove the UniqueExpr // if ( Tuples::maybeImpure( memberExpr->get_aggregate() ) ) aggr = new UniqueExpr( aggr ); aggr = new UniqueExpr( aggr ); for ( Expression *& expr : tupleExpr->get_exprs() ) { expr = reconstructMemberExpr( expr, aggr, memberExpr->location ); expr->location = memberExpr->location; } delete aggr; tupleExpr->location = memberExpr->location; return tupleExpr; } else { // there may be a tuple expr buried in the aggregate // xxx - this is a memory leak UntypedMemberExpr * newMemberExpr = new UntypedMemberExpr( memberExpr->get_member()->clone(), memberExpr->get_aggregate()->acceptMutator( *this ) ); newMemberExpr->location = memberExpr->location; return newMemberExpr; } } Expression * UniqueExprExpander::mutate( UniqueExpr * unqExpr ) { unqExpr = safe_dynamic_cast< UniqueExpr * > ( Parent::mutate( unqExpr ) ); const int id = unqExpr->get_id(); // on first time visiting a unique expr with a particular ID, generate the expression that replaces all UniqueExprs with that ID, // and lookup on subsequent hits. This ensures that all unique exprs with the same ID reference the same variable. if ( ! decls.count( id ) ) { Expression * assignUnq; Expression * var = unqExpr->get_var(); if ( unqExpr->get_object() ) { // an object was generated to represent this unique expression -- it should be added to the list of declarations now addDeclaration( unqExpr->get_object() ); unqExpr->set_object( nullptr ); // steal the expr from the unqExpr assignUnq = UntypedExpr::createAssign( unqExpr->get_var()->clone(), unqExpr->get_expr() ); unqExpr->set_expr( nullptr ); } else { // steal the already generated assignment to var from the unqExpr - this has been generated by FixInit Expression * expr = unqExpr->get_expr(); CommaExpr * commaExpr = safe_dynamic_cast< CommaExpr * >( expr ); assignUnq = commaExpr->get_arg1(); commaExpr->set_arg1( nullptr ); } BasicType * boolType = new BasicType( Type::Qualifiers(), BasicType::Bool ); ObjectDecl * finished = new ObjectDecl( toString( "_unq", id, "_finished_" ), Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new BasicType( Type::Qualifiers(), BasicType::Bool ), new SingleInit( new ConstantExpr( Constant( boolType->clone(), "0" ) ), noDesignators ) ); addDeclaration( finished ); // (finished ? _unq_expr_N : (_unq_expr_N = get_expr()>, finished = 1, _unq_expr_N)) // This pattern ensures that each unique expression is evaluated once, regardless of evaluation order of the generated C code. Expression * assignFinished = UntypedExpr::createAssign( new VariableExpr(finished), new ConstantExpr( Constant( boolType->clone(), "1" ) ) ); ConditionalExpr * condExpr = new ConditionalExpr( new VariableExpr( finished ), var->clone(), new CommaExpr( new CommaExpr( assignUnq, assignFinished ), var->clone() ) ); condExpr->set_result( var->get_result()->clone() ); condExpr->set_env( maybeClone( unqExpr->get_env() ) ); decls[id] = condExpr; } delete unqExpr; return decls[id]->clone(); } Expression * TupleAssignExpander::mutate( TupleAssignExpr * assnExpr ) { assnExpr = safe_dynamic_cast< TupleAssignExpr * >( Parent::mutate( assnExpr ) ); StmtExpr * ret = assnExpr->get_stmtExpr(); assnExpr->set_stmtExpr( nullptr ); // move env to StmtExpr ret->set_env( assnExpr->get_env() ); assnExpr->set_env( nullptr ); delete assnExpr; return ret; } Type * TupleTypeReplacer::mutate( TupleType * tupleType ) { tupleType = safe_dynamic_cast< TupleType * > ( Parent::mutate( tupleType ) ); unsigned tupleSize = tupleType->size(); if ( ! typeMap.count( tupleSize ) ) { // generate struct type to replace tuple type based on the number of components in the tuple StructDecl * decl = new StructDecl( toString( "_tuple", tupleSize, "_" ) ); decl->set_body( true ); for ( size_t i = 0; i < tupleSize; ++i ) { TypeDecl * tyParam = new TypeDecl( toString( "tuple_param_", i ), Type::StorageClasses(), nullptr, TypeDecl::Any ); decl->get_members().push_back( new ObjectDecl( toString("field_", i ), Type::StorageClasses(), LinkageSpec::C, nullptr, new TypeInstType( Type::Qualifiers(), tyParam->get_name(), tyParam ), nullptr ) ); decl->get_parameters().push_back( tyParam ); } if ( tupleSize == 0 ) { // empty structs are not standard C. Add a dummy field to empty tuples to silence warnings when a compound literal Tuple0 is created. decl->get_members().push_back( new ObjectDecl( "dummy", Type::StorageClasses(), LinkageSpec::C, nullptr, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), nullptr ) ); } typeMap[tupleSize] = decl; addDeclaration( decl ); } Type::Qualifiers qualifiers = tupleType->get_qualifiers(); StructDecl * decl = typeMap[tupleSize]; StructInstType * newType = new StructInstType( qualifiers, decl ); for ( Type * t : *tupleType ) { newType->get_parameters().push_back( new TypeExpr( t->clone() ) ); } delete tupleType; return newType; } Expression * TupleIndexExpander::mutate( TupleIndexExpr * tupleExpr ) { Expression * tuple = maybeMutate( tupleExpr->get_tuple(), *this ); assert( tuple ); tupleExpr->set_tuple( nullptr ); unsigned int idx = tupleExpr->get_index(); TypeSubstitution * env = tupleExpr->get_env(); tupleExpr->set_env( nullptr ); delete tupleExpr; StructInstType * type = safe_dynamic_cast< StructInstType * >( tuple->get_result() ); StructDecl * structDecl = type->get_baseStruct(); assert( structDecl->get_members().size() > idx ); Declaration * member = *std::next(structDecl->get_members().begin(), idx); MemberExpr * memExpr = new MemberExpr( safe_dynamic_cast< DeclarationWithType * >( member ), tuple ); memExpr->set_env( env ); return memExpr; } Expression * replaceTupleExpr( Type * result, const std::list< Expression * > & exprs, TypeSubstitution * env ) { if ( result->isVoid() ) { // void result - don't need to produce a value for cascading - just output a chain of comma exprs assert( ! exprs.empty() ); std::list< Expression * >::const_iterator iter = exprs.begin(); Expression * expr = new CastExpr( *iter++ ); for ( ; iter != exprs.end(); ++iter ) { expr = new CommaExpr( expr, new CastExpr( *iter ) ); } expr->set_env( env ); return expr; } else { // typed tuple expression - produce a compound literal which performs each of the expressions // as a distinct part of its initializer - the produced compound literal may be used as part of // another expression std::list< Initializer * > inits; for ( Expression * expr : exprs ) { inits.push_back( new SingleInit( expr ) ); } Expression * expr = new CompoundLiteralExpr( result, new ListInit( inits ) ); expr->set_env( env ); return expr; } } Expression * TupleExprExpander::mutate( TupleExpr * tupleExpr ) { // recursively expand sub-tuple-expressions tupleExpr = safe_dynamic_cast(Parent::mutate(tupleExpr)); Type * result = tupleExpr->get_result(); std::list< Expression * > exprs = tupleExpr->get_exprs(); assert( result ); TypeSubstitution * env = tupleExpr->get_env(); // remove data from shell and delete it tupleExpr->set_result( nullptr ); tupleExpr->get_exprs().clear(); tupleExpr->set_env( nullptr ); delete tupleExpr; return replaceTupleExpr( result, exprs, env ); } Type * makeTupleType( const std::list< Expression * > & exprs ) { // produce the TupleType which aggregates the types of the exprs TupleType *tupleType = new TupleType( Type::Qualifiers( Type::Const | Type::Volatile | Type::Restrict | Type::Lvalue | Type::Atomic | Type::Mutex ) ); Type::Qualifiers &qualifiers = tupleType->get_qualifiers(); for ( Expression * expr : exprs ) { assert( expr->get_result() ); if ( expr->get_result()->isVoid() ) { // if the type of any expr is void, the type of the entire tuple is void delete tupleType; return new VoidType( Type::Qualifiers() ); } Type * type = expr->get_result()->clone(); tupleType->get_types().push_back( type ); // the qualifiers on the tuple type are the qualifiers that exist on all component types qualifiers &= type->get_qualifiers(); } // for if ( exprs.empty() ) qualifiers = Type::Qualifiers(); return tupleType; } TypeInstType * isTtype( Type * type ) { if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( type ) ) { if ( inst->get_baseType() && inst->get_baseType()->get_kind() == TypeDecl::Ttype ) { return inst; } } return nullptr; } namespace { /// determines if impurity (read: side-effects) may exist in a piece of code. Currently gives a very crude approximation, wherein any function call expression means the code may be impure class ImpurityDetector : public Visitor { public: typedef Visitor Parent; virtual void visit( ApplicationExpr * appExpr ) { if ( DeclarationWithType * function = InitTweak::getFunction( appExpr ) ) { if ( function->get_linkage() == LinkageSpec::Intrinsic ) { if ( function->get_name() == "*?" || function->get_name() == "?[?]" ) { // intrinsic dereference, subscript are pure, but need to recursively look for impurity Parent::visit( appExpr ); return; } } } maybeImpure = true; } virtual void visit( UntypedExpr * untypedExpr ) { maybeImpure = true; } bool maybeImpure = false; }; } // namespace bool maybeImpure( Expression * expr ) { ImpurityDetector detector; expr->accept( detector ); return detector.maybeImpure; } } // namespace Tuples // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //