// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // TupleAssignment.cc -- // // Author : Rodolfo G. Esteves // Created On : Mon May 18 07:44:20 2015 // Last Modified By : Peter A. Buhr // Last Modified On : Mon May 18 15:02:53 2015 // Update Count : 2 // #include #include #include #include "Tuples.h" #include "GenPoly/DeclMutator.h" #include "SynTree/Mutator.h" #include "SynTree/Statement.h" #include "SynTree/Declaration.h" #include "SynTree/Type.h" #include "SynTree/Expression.h" #include "SynTree/Initializer.h" #include "SymTab/Mangler.h" #include "Common/ScopedMap.h" #include "ResolvExpr/typeops.h" #include "InitTweak/GenInit.h" namespace Tuples { namespace { class MemberTupleExpander : public Mutator { public: typedef Mutator Parent; virtual Expression * mutate( UntypedMemberExpr * memberExpr ); }; class UniqueExprExpander : public GenPoly::DeclMutator { public: typedef GenPoly::DeclMutator Parent; virtual Expression * mutate( UniqueExpr * unqExpr ); std::map< int, ObjectDecl * > decls; // not vector, because order added may not be increasing order }; class TupleAssignExpander : public Mutator { public: typedef Mutator Parent; virtual Expression * mutate( TupleAssignExpr * tupleExpr ); }; class TupleTypeReplacer : public GenPoly::DeclMutator { public: typedef GenPoly::DeclMutator Parent; virtual Type * mutate( TupleType * tupleType ); virtual CompoundStmt * mutate( CompoundStmt * stmt ) { typeMap.beginScope(); stmt = Parent::mutate( stmt ); typeMap.endScope(); return stmt; } private: ScopedMap< std::string, StructDecl * > typeMap; }; class TupleIndexExpander : public Mutator { public: typedef Mutator Parent; virtual Expression * mutate( TupleIndexExpr * tupleExpr ); }; class TupleExprExpander : public Mutator { public: typedef Mutator Parent; virtual Expression * mutate( TupleExpr * tupleExpr ); }; } void expandMemberTuples( std::list< Declaration * > & translationUnit ) { MemberTupleExpander expander; mutateAll( translationUnit, expander ); } void expandUniqueExpr( std::list< Declaration * > & translationUnit ) { UniqueExprExpander unqExpander; unqExpander.mutateDeclarationList( translationUnit ); } void expandTuples( std::list< Declaration * > & translationUnit ) { TupleAssignExpander assnExpander; mutateAll( translationUnit, assnExpander ); TupleTypeReplacer replacer; replacer.mutateDeclarationList( translationUnit ); TupleIndexExpander idxExpander; mutateAll( translationUnit, idxExpander ); TupleExprExpander exprExpander; mutateAll( translationUnit, exprExpander ); } namespace { /// given a expression representing the member and an expression representing the aggregate, /// reconstructs a flattened UntypedMemberExpr with the right precedence Expression * reconstructMemberExpr( Expression * member, UniqueExpr * aggr ) { if ( UntypedMemberExpr * memberExpr = dynamic_cast< UntypedMemberExpr * >( member ) ) { // construct a new UntypedMemberExpr with the correct structure , and recursively // expand that member expression. MemberTupleExpander expander; UntypedMemberExpr * newMemberExpr = new UntypedMemberExpr( memberExpr->get_member(), new UntypedMemberExpr( memberExpr->get_aggregate(), aggr->clone() ) ); memberExpr->set_member(nullptr); memberExpr->set_aggregate(nullptr); delete memberExpr; return newMemberExpr->acceptMutator( expander ); } else { // not a member expression, so there is nothing to do but attach and return return new UntypedMemberExpr( member, aggr->clone() ); } } } Expression * MemberTupleExpander::mutate( UntypedMemberExpr * memberExpr ) { if ( TupleExpr * tupleExpr = dynamic_cast< TupleExpr * > ( memberExpr->get_member() ) ) { UniqueExpr * unqExpr = new UniqueExpr( memberExpr->get_aggregate()->clone() ); for ( Expression *& expr : tupleExpr->get_exprs() ) { expr = reconstructMemberExpr( expr, unqExpr ); } delete unqExpr; return tupleExpr; } else { // there may be a tuple expr buried in the aggregate // xxx - this is a memory leak return new UntypedMemberExpr( memberExpr->get_member()->clone(), memberExpr->get_aggregate()->acceptMutator( *this ) ); } } Expression * UniqueExprExpander::mutate( UniqueExpr * unqExpr ) { static UniqueName tempNamer( "_unq_expr_" ); unqExpr = safe_dynamic_cast< UniqueExpr * > ( Parent::mutate( unqExpr ) ); if ( ! decls.count( unqExpr->get_id() ) ) { // xxx - it's possible (likely?) that expressions can appear in the wrong order because of this. Need to ensure they're placed in the correct location. // xxx - this doesn't work, because it would need to be placed after fixInit, but fixInit doesn't know (and shouldn't have to know) about the existance of UniqueExprs - i.e. it will visit them twice // need to construct/destruct unique exprs in general - maybe it's not worth it and fixInit should handle UniqueExpr explicitly? // currently, tmp is being destructed before unqExpr is used, which suggests there should be a separate lifetime for unqExpr from the tmp_ret // if ( CommaExpr * commaExpr = dynamic_cast< CommaExpr * >( unqExpr->get_expr() ) ) { // if ( VariableExpr * varExpr = dynamic_cast< VariableExpr * >( commaExpr->get_arg2() ) ) { // // steal existing decl from expr // if ( ObjectDecl * decl = dynamic_cast< ObjectDecl * >( varExpr->get_var() ) ) { // decls[unqExpr->get_id()] = decl; // return unqExpr->get_expr()->clone(); // } // } // } // xxx - attach a resolved ConstructorInit node? // xxx - is it possible to make the objDecl's type const? ObjectDecl * objDecl = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, unqExpr->get_result()->clone(), nullptr ); // must be done on two lines because genCtorInit accesses objDecl's fields objDecl->set_init( InitTweak::genCtorInit( objDecl ) ); decls[unqExpr->get_id()] = objDecl; addDeclaration( objDecl ); } return new VariableExpr( decls[unqExpr->get_id()] ); } Expression * TupleAssignExpander::mutate( TupleAssignExpr * assnExpr ) { // xxx - Parent::mutate? CompoundStmt * compoundStmt = new CompoundStmt( noLabels ); std::list< Statement * > & stmts = compoundStmt->get_kids(); for ( ObjectDecl * obj : assnExpr->get_tempDecls() ) { stmts.push_back( new DeclStmt( noLabels, obj ) ); } TupleExpr * tupleExpr = new TupleExpr( assnExpr->get_assigns() ); assert( tupleExpr->get_result() ); stmts.push_back( new ExprStmt( noLabels, tupleExpr ) ); assnExpr->get_tempDecls().clear(); assnExpr->get_assigns().clear(); delete assnExpr; return new StmtExpr( compoundStmt ); } Type * TupleTypeReplacer::mutate( TupleType * tupleType ) { std::string mangleName = SymTab::Mangler::mangleType( tupleType ); TupleType * newType = safe_dynamic_cast< TupleType * > ( Parent::mutate( tupleType ) ); if ( ! typeMap.count( mangleName ) ) { // generate struct type to replace tuple type StructDecl * decl = new StructDecl( "_tuple_type_" + mangleName ); decl->set_body( true ); int cnt = 0; for ( Type * t : *newType ) { decl->get_members().push_back( new ObjectDecl( "field_"+std::to_string(++cnt), DeclarationNode::NoStorageClass, LinkageSpec::C, nullptr, t->clone(), nullptr ) ); } typeMap[mangleName] = decl; addDeclaration( decl ); } Type::Qualifiers qualifiers = newType->get_qualifiers(); delete newType; return new StructInstType( qualifiers, typeMap[mangleName] ); } Expression * TupleIndexExpander::mutate( TupleIndexExpr * tupleExpr ) { Expression * tuple = maybeMutate( tupleExpr->get_tuple(), *this ); assert( tuple ); tupleExpr->set_tuple( nullptr ); unsigned int idx = tupleExpr->get_index(); delete tupleExpr; StructInstType * type = safe_dynamic_cast< StructInstType * >( tuple->get_result() ); StructDecl * structDecl = type->get_baseStruct(); assert( structDecl->get_members().size() > idx ); Declaration * member = *std::next(structDecl->get_members().begin(), idx); return new MemberExpr( safe_dynamic_cast< DeclarationWithType * >( member ), tuple ); } Expression * replaceTupleExpr( Type * result, const std::list< Expression * > & exprs ) { if ( result->isVoid() ) { // void result - don't need to produce a value for cascading - just output a chain of comma exprs assert( ! exprs.empty() ); std::list< Expression * >::const_iterator iter = exprs.begin(); Expression * expr = *iter++; for ( ; iter != exprs.end(); ++iter ) { expr = new CommaExpr( expr, *iter ); } return expr; } else { // typed tuple expression - produce a compound literal which performs each of the expressions // as a distinct part of its initializer - the produced compound literal may be used as part of // another expression std::list< Initializer * > inits; for ( Expression * expr : exprs ) { inits.push_back( new SingleInit( expr ) ); } return new CompoundLiteralExpr( result, new ListInit( inits ) ); } } Expression * TupleExprExpander::mutate( TupleExpr * tupleExpr ) { // recursively expand sub-tuple-expressions tupleExpr = safe_dynamic_cast(Parent::mutate(tupleExpr)); Type * result = tupleExpr->get_result(); std::list< Expression * > exprs = tupleExpr->get_exprs(); assert( result ); // remove data from shell and delete it tupleExpr->set_result( nullptr ); tupleExpr->get_exprs().clear(); delete tupleExpr; return replaceTupleExpr( result, exprs ); } Type * makeTupleType( const std::list< Expression * > & exprs ) { // produce the TupleType which aggregates the types of the exprs TupleType *tupleType = new TupleType( Type::Qualifiers(true, true, true, true, true, false) ); Type::Qualifiers &qualifiers = tupleType->get_qualifiers(); for ( Expression * expr : exprs ) { assert( expr->get_result() ); if ( expr->get_result()->isVoid() ) { // if the type of any expr is void, the type of the entire tuple is void delete tupleType; return new VoidType( Type::Qualifiers() ); } Type * type = expr->get_result()->clone(); tupleType->get_types().push_back( type ); // the qualifiers on the tuple type are the qualifiers that exist on all component types qualifiers &= type->get_qualifiers(); } // for return tupleType; } namespace { /// determines if impurity (read: side-effects) may exist in a piece of code. Currently gives a very crude approximation, wherein any function call expression means the code may be impure class ImpurityDetector : public Visitor { public: typedef Visitor Parent; virtual void visit( ApplicationExpr * appExpr ) { maybeImpure = true; } virtual void visit( UntypedExpr * untypedExpr ) { maybeImpure = true; } bool maybeImpure = false; }; } // namespace bool maybeImpure( Expression * expr ) { ImpurityDetector detector; expr->accept( detector ); return detector.maybeImpure; } } // namespace Tuples // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //