// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // TupleAssignment.cc -- // // Author : Rodolfo G. Esteves // Created On : Mon May 18 07:44:20 2015 // Last Modified By : Peter A. Buhr // Last Modified On : Fri Dec 13 23:45:33 2019 // Update Count : 9 // #include // for transform #include // for assert #include // for back_insert_iterator, back... #include // for _List_const_iterator, _Lis... #include // for unique_ptr, allocator_trai... #include // for string #include #include "AST/Decl.hpp" #include "AST/Init.hpp" #include "AST/Pass.hpp" #include "AST/Stmt.hpp" #include "AST/TypeEnvironment.hpp" #include "CodeGen/OperatorTable.h" #include "Common/PassVisitor.h" #include "Common/UniqueName.h" // for UniqueName #include "Common/utility.h" // for splice, zipWith #include "Explode.h" // for explode #include "InitTweak/GenInit.h" // for genCtorInit #include "InitTweak/InitTweak.h" // for getPointerBase, isAssignment #include "ResolvExpr/Alternative.h" // for AltList, Alternative #include "ResolvExpr/AlternativeFinder.h" // for AlternativeFinder, simpleC... #include "ResolvExpr/Cost.h" // for Cost #include "ResolvExpr/Resolver.h" // for resolveCtorInit #include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment #include "ResolvExpr/typeops.h" // for combos #include "SynTree/LinkageSpec.h" // for Cforall #include "SynTree/Declaration.h" // for ObjectDecl #include "SynTree/Expression.h" // for Expression, CastExpr, Name... #include "SynTree/Initializer.h" // for ConstructorInit, SingleInit #include "SynTree/Statement.h" // for ExprStmt #include "SynTree/Type.h" // for Type, Type::Qualifiers #include "SynTree/TypeSubstitution.h" // for TypeSubstitution #include "SynTree/Visitor.h" // for Visitor #if 0 #define PRINT(x) x #else #define PRINT(x) #endif namespace Tuples { class TupleAssignSpotter_old { public: // dispatcher for Tuple (multiple and mass) assignment operations TupleAssignSpotter_old( ResolvExpr::AlternativeFinder & ); void spot( UntypedExpr * expr, std::vector &args ); private: void match(); struct Matcher { public: Matcher( TupleAssignSpotter_old &spotter, const ResolvExpr::AltList& lhs, const ResolvExpr::AltList& rhs ); virtual ~Matcher() {} virtual void match( std::list< Expression * > &out ) = 0; ObjectDecl * newObject( UniqueName & namer, Expression * expr ); void combineState( const ResolvExpr::Alternative& alt ) { compositeEnv.simpleCombine( alt.env ); ResolvExpr::mergeOpenVars( openVars, alt.openVars ); cloneAll( alt.need, need ); } void combineState( const ResolvExpr::AltList& alts ) { for ( const ResolvExpr::Alternative& alt : alts ) { combineState( alt ); } } ResolvExpr::AltList lhs, rhs; TupleAssignSpotter_old &spotter; ResolvExpr::Cost baseCost; std::list< ObjectDecl * > tmpDecls; ResolvExpr::TypeEnvironment compositeEnv; ResolvExpr::OpenVarSet openVars; ResolvExpr::AssertionSet need; }; struct MassAssignMatcher : public Matcher { public: MassAssignMatcher( TupleAssignSpotter_old &spotter, const ResolvExpr::AltList& lhs, const ResolvExpr::AltList& rhs ) : Matcher(spotter, lhs, rhs) {} virtual void match( std::list< Expression * > &out ); }; struct MultipleAssignMatcher : public Matcher { public: MultipleAssignMatcher( TupleAssignSpotter_old &spotter, const ResolvExpr::AltList& lhs, const ResolvExpr::AltList& rhs ) : Matcher(spotter, lhs, rhs) {} virtual void match( std::list< Expression * > &out ); }; ResolvExpr::AlternativeFinder ¤tFinder; std::string fname; std::unique_ptr< Matcher > matcher; }; /// true if expr is an expression of tuple type bool isTuple( Expression *expr ) { if ( ! expr ) return false; assert( expr->result ); return dynamic_cast< TupleType * >( expr->get_result()->stripReferences() ); } template< typename AltIter > bool isMultAssign( AltIter begin, AltIter end ) { // multiple assignment if more than one alternative in the range or if // the alternative is a tuple if ( begin == end ) return false; if ( isTuple( begin->expr ) ) return true; return ++begin != end; } bool refToTuple( Expression *expr ) { assert( expr->get_result() ); // also check for function returning tuple of reference types if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( expr ) ) { return refToTuple( castExpr->get_arg() ); } else { return isTuple( expr ); } return false; } void handleTupleAssignment( ResolvExpr::AlternativeFinder & currentFinder, UntypedExpr * expr, std::vector &args ) { TupleAssignSpotter_old spotter( currentFinder ); spotter.spot( expr, args ); } TupleAssignSpotter_old::TupleAssignSpotter_old( ResolvExpr::AlternativeFinder &f ) : currentFinder(f) {} void TupleAssignSpotter_old::spot( UntypedExpr * expr, std::vector &args ) { if ( NameExpr *op = dynamic_cast< NameExpr * >(expr->get_function()) ) { if ( CodeGen::isCtorDtorAssign( op->get_name() ) ) { fname = op->get_name(); // AlternativeFinder will naturally handle this case case, if it's legal if ( args.size() == 0 ) return; // if an assignment only takes 1 argument, that's odd, but maybe someone wrote // the function, in which case AlternativeFinder will handle it normally if ( args.size() == 1 && CodeGen::isAssignment( fname ) ) return; // look over all possible left-hand-sides for ( ResolvExpr::Alternative& lhsAlt : args[0] ) { // skip non-tuple LHS if ( ! refToTuple(lhsAlt.expr) ) continue; // explode is aware of casts - ensure every LHS expression is sent into explode // with a reference cast // xxx - this seems to change the alternatives before the normal // AlternativeFinder flow; maybe this is desired? if ( ! dynamic_cast( lhsAlt.expr ) ) { lhsAlt.expr = new CastExpr( lhsAlt.expr, new ReferenceType( Type::Qualifiers(), lhsAlt.expr->result->clone() ) ); } // explode the LHS so that each field of a tuple-valued-expr is assigned ResolvExpr::AltList lhs; explode( lhsAlt, currentFinder.get_indexer(), back_inserter(lhs), true ); for ( ResolvExpr::Alternative& alt : lhs ) { // each LHS value must be a reference - some come in with a cast expression, // if not just cast to reference here if ( ! dynamic_cast( alt.expr->get_result() ) ) { alt.expr = new CastExpr( alt.expr, new ReferenceType( Type::Qualifiers(), alt.expr->get_result()->clone() ) ); } } if ( args.size() == 1 ) { // mass default-initialization/destruction ResolvExpr::AltList rhs{}; matcher.reset( new MassAssignMatcher( *this, lhs, rhs ) ); match(); } else if ( args.size() > 2 ) { // expand all possible RHS possibilities // TODO build iterative version of this instead of using combos std::vector< ResolvExpr::AltList > rhsAlts; combos( std::next(args.begin(), 1), args.end(), std::back_inserter( rhsAlts ) ); for ( const ResolvExpr::AltList& rhsAlt : rhsAlts ) { // multiple assignment ResolvExpr::AltList rhs; explode( rhsAlt, currentFinder.get_indexer(), std::back_inserter(rhs), true ); matcher.reset( new MultipleAssignMatcher( *this, lhs, rhs ) ); match(); } } else { for ( const ResolvExpr::Alternative& rhsAlt : args[1] ) { ResolvExpr::AltList rhs; if ( isTuple(rhsAlt.expr) ) { // multiple assignment explode( rhsAlt, currentFinder.get_indexer(), std::back_inserter(rhs), true ); matcher.reset( new MultipleAssignMatcher( *this, lhs, rhs ) ); } else { // mass assignment rhs.push_back( rhsAlt ); matcher.reset( new MassAssignMatcher( *this, lhs, rhs ) ); } match(); } } } } } } void TupleAssignSpotter_old::match() { assert ( matcher != 0 ); std::list< Expression * > new_assigns; matcher->match( new_assigns ); if ( ! matcher->lhs.empty() || ! matcher->rhs.empty() ) { // if both lhs and rhs are empty then this is the empty tuple case, wherein it's okay for new_assigns to be empty. // if not the empty tuple case, return early so that no new alternatives are generated. if ( new_assigns.empty() ) return; } ResolvExpr::AltList current; // now resolve new assignments for ( std::list< Expression * >::iterator i = new_assigns.begin(); i != new_assigns.end(); ++i ) { PRINT( std::cerr << "== resolving tuple assign ==" << std::endl; std::cerr << *i << std::endl; ) ResolvExpr::AlternativeFinder finder{ currentFinder.get_indexer(), matcher->compositeEnv }; try { finder.findWithAdjustment(*i); } catch (...) { return; // no match should not mean failure, it just means this particular tuple assignment isn't valid } // prune expressions that don't coincide with ResolvExpr::AltList alts = finder.get_alternatives(); assert( alts.size() == 1 ); assert( alts.front().expr != 0 ); current.push_back( alts.front() ); } // extract expressions from the assignment alternatives to produce a list of assignments // that together form a single alternative std::list< Expression *> solved_assigns; for ( ResolvExpr::Alternative & alt : current ) { solved_assigns.push_back( alt.expr->clone() ); matcher->combineState( alt ); } // xxx -- was push_front currentFinder.get_alternatives().push_back( ResolvExpr::Alternative{ new TupleAssignExpr{ solved_assigns, matcher->tmpDecls }, matcher->compositeEnv, matcher->openVars, ResolvExpr::AssertionList( matcher->need.begin(), matcher->need.end() ), ResolvExpr::sumCost( current ) + matcher->baseCost } ); } TupleAssignSpotter_old::Matcher::Matcher( TupleAssignSpotter_old &spotter, const ResolvExpr::AltList &lhs, const ResolvExpr::AltList &rhs ) : lhs(lhs), rhs(rhs), spotter(spotter), baseCost( ResolvExpr::sumCost( lhs ) + ResolvExpr::sumCost( rhs ) ) { combineState( lhs ); combineState( rhs ); } UntypedExpr * createFunc( const std::string &fname, ObjectDecl *left, ObjectDecl *right ) { assert( left ); std::list< Expression * > args; args.push_back( new VariableExpr( left ) ); // args.push_back( new AddressExpr( new VariableExpr( left ) ) ); if ( right ) args.push_back( new VariableExpr( right ) ); if ( left->type->referenceDepth() > 1 && CodeGen::isConstructor( fname ) ) { args.front() = new AddressExpr( args.front() ); if ( right ) args.back() = new AddressExpr( args.back() ); return new UntypedExpr( new NameExpr( "?=?" ), args ); } else { return new UntypedExpr( new NameExpr( fname ), args ); } } // removes environments from subexpressions within statement exprs, which could throw off later passes like those in Box which rely on PolyMutator, and adds the bindings to the compositeEnv // xxx - maybe this should happen in alternative finder for every StmtExpr? struct EnvRemover { void previsit( ExprStmt * stmt ) { assert( compositeEnv ); if ( stmt->expr->env ) { compositeEnv->add( *stmt->expr->env ); delete stmt->expr->env; stmt->expr->env = nullptr; } } ResolvExpr::TypeEnvironment * compositeEnv = nullptr; }; ObjectDecl * TupleAssignSpotter_old::Matcher::newObject( UniqueName & namer, Expression * expr ) { assert( expr->result && ! expr->get_result()->isVoid() ); ObjectDecl * ret = new ObjectDecl( namer.newName(), Type::StorageClasses(), LinkageSpec::Cforall, nullptr, expr->result->clone(), new SingleInit( expr->clone() ) ); // if expression type is a reference, don't need to construct anything, a simple initializer is sufficient. if ( ! dynamic_cast< ReferenceType * >( expr->result ) ) { ConstructorInit * ctorInit = InitTweak::genCtorInit( ret ); ret->init = ctorInit; ResolvExpr::resolveCtorInit( ctorInit, spotter.currentFinder.get_indexer() ); // resolve ctor/dtors for the new object PassVisitor rm; // remove environments from subexpressions of StmtExprs rm.pass.compositeEnv = &compositeEnv; ctorInit->accept( rm ); } PRINT( std::cerr << "new object: " << ret << std::endl; ) return ret; } void TupleAssignSpotter_old::MassAssignMatcher::match( std::list< Expression * > &out ) { static UniqueName lhsNamer( "__massassign_L" ); static UniqueName rhsNamer( "__massassign_R" ); // empty tuple case falls into this matcher, hence the second part of the assert assert( (! lhs.empty() && rhs.size() <= 1) || (lhs.empty() && rhs.empty()) ); // xxx - may need to split this up into multiple declarations, because potential conversion to references // probably should not reference local variable - see MultipleAssignMatcher::match ObjectDecl * rtmp = rhs.size() == 1 ? newObject( rhsNamer, rhs.front().expr ) : nullptr; for ( ResolvExpr::Alternative & lhsAlt : lhs ) { // create a temporary object for each value in the lhs and create a call involving the rhs ObjectDecl * ltmp = newObject( lhsNamer, lhsAlt.expr ); out.push_back( createFunc( spotter.fname, ltmp, rtmp ) ); tmpDecls.push_back( ltmp ); } if ( rtmp ) tmpDecls.push_back( rtmp ); } void TupleAssignSpotter_old::MultipleAssignMatcher::match( std::list< Expression * > &out ) { static UniqueName lhsNamer( "__multassign_L" ); static UniqueName rhsNamer( "__multassign_R" ); if ( lhs.size() == rhs.size() ) { // produce a new temporary object for each value in the lhs and rhs and pairwise create the calls std::list< ObjectDecl * > ltmp; std::list< ObjectDecl * > rtmp; for ( auto p : group_iterate( lhs, rhs ) ) { ResolvExpr::Alternative & lhsAlt = std::get<0>(p); ResolvExpr::Alternative & rhsAlt = std::get<1>(p); // convert RHS to LHS type minus one reference -- important for the case where LHS is && and RHS is lvalue, etc. ReferenceType * lhsType = strict_dynamic_cast( lhsAlt.expr->result ); rhsAlt.expr = new CastExpr( rhsAlt.expr, lhsType->base->clone() ); ObjectDecl * lobj = newObject( lhsNamer, lhsAlt.expr ); ObjectDecl * robj = newObject( rhsNamer, rhsAlt.expr ); out.push_back( createFunc(spotter.fname, lobj, robj) ); ltmp.push_back( lobj ); rtmp.push_back( robj ); // resolve the cast expression so that rhsAlt return type is bound by the cast type as needed, and transfer the resulting environment ResolvExpr::AlternativeFinder finder{ spotter.currentFinder.get_indexer(), compositeEnv }; finder.findWithAdjustment( rhsAlt.expr ); assert( finder.get_alternatives().size() == 1 ); compositeEnv = std::move( finder.get_alternatives().front().env ); } tmpDecls.splice( tmpDecls.end(), ltmp ); tmpDecls.splice( tmpDecls.end(), rtmp ); } } namespace { /// true if `expr` is of tuple type bool isTuple( const ast::Expr * expr ) { if ( ! expr ) return false; assert( expr->result ); return dynamic_cast< const ast::TupleType * >( expr->result->stripReferences() ); } /// true if `expr` is of tuple type or a reference to one bool refToTuple( const ast::Expr * expr ) { assert( expr->result ); // check for function returning tuple of reference types if ( auto castExpr = dynamic_cast< const ast::CastExpr * >( expr ) ) { return refToTuple( castExpr->arg ); } else { return isTuple( expr ); } } /// Dispatcher for tuple (multiple and mass) assignment operations class TupleAssignSpotter_new final { /// Actually finds tuple assignment operations, by subclass struct Matcher { ResolvExpr::CandidateList lhs, rhs; TupleAssignSpotter_new & spotter; CodeLocation location; ResolvExpr::Cost baseCost; std::vector< ast::ptr< ast::ObjectDecl > > tmpDecls; ast::TypeEnvironment env; ast::OpenVarSet open; ast::AssertionSet need; void combineState( const ResolvExpr::Candidate & cand ) { env.simpleCombine( cand.env ); ast::mergeOpenVars( open, cand.open ); need.insert( cand.need.begin(), cand.need.end() ); } Matcher( TupleAssignSpotter_new & s, const CodeLocation & loc, const ResolvExpr::CandidateList & l, const ResolvExpr::CandidateList & r ) : lhs( l ), rhs( r ), spotter( s ), location( loc ), baseCost( ResolvExpr::sumCost( lhs ) + ResolvExpr::sumCost( rhs ) ), tmpDecls(), env(), open(), need() { for ( auto & cand : lhs ) combineState( *cand ); for ( auto & cand : rhs ) combineState( *cand ); } virtual ~Matcher() = default; virtual std::vector< ast::ptr< ast::Expr > > match() = 0; /// removes environments from subexpressions within statement expressions, which could /// throw off later passes like those in Box which rely on PolyMutator, and adds the /// bindings to the env struct EnvRemover { /// environment to hoist ExprStmt environments to ast::TypeEnvironment & tenv; EnvRemover( ast::TypeEnvironment & e ) : tenv( e ) {} const ast::ExprStmt * previsit( const ast::ExprStmt * stmt ) { if ( stmt->expr->env ) { tenv.add( *stmt->expr->env ); ast::ExprStmt * mut = mutate( stmt ); mut->expr.get_and_mutate()->env = nullptr; return mut; } return stmt; } }; ast::ObjectDecl * newObject( UniqueName & namer, const ast::Expr * expr ) { assert( expr->result && ! expr->result->isVoid() ); ast::ObjectDecl * ret = new ast::ObjectDecl{ location, namer.newName(), expr->result, new ast::SingleInit{ location, expr }, ast::Storage::Classes{}, ast::Linkage::Cforall }; // if expression type is a reference, just need an initializer, otherwise construct if ( ! expr->result.as< ast::ReferenceType >() ) { // resolve ctor/dtor for the new object ast::ptr< ast::Init > ctorInit = ResolvExpr::resolveCtorInit( InitTweak::genCtorInit( location, ret ), spotter.crntFinder.localSyms ); // remove environments from subexpressions of stmtExpr ast::Pass< EnvRemover > rm{ env }; ret->init = ctorInit->accept( rm ); } PRINT( std::cerr << "new object: " << ret << std::endl; ) return ret; } ast::UntypedExpr * createFunc( const std::string & fname, const ast::ObjectDecl * left, const ast::ObjectDecl * right ) { assert( left ); std::vector< ast::ptr< ast::Expr > > args; args.emplace_back( new ast::VariableExpr{ location, left } ); if ( right ) { args.emplace_back( new ast::VariableExpr{ location, right } ); } if ( left->type->referenceDepth() > 1 && CodeGen::isConstructor( fname ) ) { args.front() = new ast::AddressExpr{ location, args.front() }; if ( right ) { args.back() = new ast::AddressExpr{ location, args.back() }; } return new ast::UntypedExpr{ location, new ast::NameExpr{ location, "?=?" }, std::move(args) }; } else { return new ast::UntypedExpr{ location, new ast::NameExpr{ location, fname }, std::move(args) }; } } }; /// Finds mass-assignment operations struct MassAssignMatcher final : public Matcher { MassAssignMatcher( TupleAssignSpotter_new & s, const CodeLocation & loc, const ResolvExpr::CandidateList & l, const ResolvExpr::CandidateList & r ) : Matcher( s, loc, l, r ) {} std::vector< ast::ptr< ast::Expr > > match() override { static UniqueName lhsNamer( "__massassign_L" ); static UniqueName rhsNamer( "__massassign_R" ); // empty tuple case falls into this matcher assert( lhs.empty() ? rhs.empty() : rhs.size() <= 1 ); ast::ptr< ast::ObjectDecl > rtmp = rhs.size() == 1 ? newObject( rhsNamer, rhs.front()->expr ) : nullptr; std::vector< ast::ptr< ast::Expr > > out; for ( ResolvExpr::CandidateRef & lhsCand : lhs ) { // create a temporary object for each value in the LHS and create a call // involving the RHS ast::ptr< ast::ObjectDecl > ltmp = newObject( lhsNamer, lhsCand->expr ); out.emplace_back( createFunc( spotter.fname, ltmp, rtmp ) ); tmpDecls.emplace_back( std::move( ltmp ) ); } if ( rtmp ) tmpDecls.emplace_back( std::move( rtmp ) ); return out; } }; /// Finds multiple-assignment operations struct MultipleAssignMatcher final : public Matcher { MultipleAssignMatcher( TupleAssignSpotter_new & s, const CodeLocation & loc, const ResolvExpr::CandidateList & l, const ResolvExpr::CandidateList & r ) : Matcher( s, loc, l, r ) {} std::vector< ast::ptr< ast::Expr > > match() override { static UniqueName lhsNamer( "__multassign_L" ); static UniqueName rhsNamer( "__multassign_R" ); if ( lhs.size() != rhs.size() ) return {}; // produce a new temporary object for each value in the LHS and RHS and pairwise // create the calls std::vector< ast::ptr< ast::ObjectDecl > > ltmp, rtmp; std::vector< ast::ptr< ast::Expr > > out; for ( unsigned i = 0; i < lhs.size(); ++i ) { ResolvExpr::CandidateRef & lhsCand = lhs[i]; ResolvExpr::CandidateRef & rhsCand = rhs[i]; // convert RHS to LHS type minus one reference -- important for case where LHS // is && and RHS is lvalue auto lhsType = lhsCand->expr->result.strict_as< ast::ReferenceType >(); rhsCand->expr = new ast::CastExpr{ rhsCand->expr, lhsType->base }; ast::ptr< ast::ObjectDecl > lobj = newObject( lhsNamer, lhsCand->expr ); ast::ptr< ast::ObjectDecl > robj = newObject( rhsNamer, rhsCand->expr ); out.emplace_back( createFunc( spotter.fname, lobj, robj ) ); ltmp.emplace_back( std::move( lobj ) ); rtmp.emplace_back( std::move( robj ) ); // resolve the cast expression so that rhsCand return type is bound by the cast // type as needed, and transfer the resulting environment ResolvExpr::CandidateFinder finder{ spotter.crntFinder.localSyms, env }; finder.find( rhsCand->expr, ResolvExpr::ResolvMode::withAdjustment() ); assert( finder.candidates.size() == 1 ); env = std::move( finder.candidates.front()->env ); } splice( tmpDecls, ltmp ); splice( tmpDecls, rtmp ); return out; } }; ResolvExpr::CandidateFinder & crntFinder; std::string fname; std::unique_ptr< Matcher > matcher; public: TupleAssignSpotter_new( ResolvExpr::CandidateFinder & f ) : crntFinder( f ), fname(), matcher() {} // find left- and right-hand-sides for mass or multiple assignment void spot( const ast::UntypedExpr * expr, std::vector< ResolvExpr::CandidateFinder > & args ) { if ( auto op = expr->func.as< ast::NameExpr >() ) { // skip non-assignment functions if ( ! CodeGen::isCtorDtorAssign( op->name ) ) return; fname = op->name; // handled by CandidateFinder if applicable (both odd cases) if ( args.empty() || ( args.size() == 1 && CodeGen::isAssignment( fname ) ) ) { return; } // look over all possible left-hand-side for ( ResolvExpr::CandidateRef & lhsCand : args[0] ) { // skip non-tuple LHS if ( ! refToTuple( lhsCand->expr ) ) continue; // explode is aware of casts - ensure every LHS is sent into explode with a // reference cast if ( ! lhsCand->expr.as< ast::CastExpr >() ) { lhsCand->expr = new ast::CastExpr{ lhsCand->expr, new ast::ReferenceType{ lhsCand->expr->result } }; } // explode the LHS so that each field of a tuple-valued expr is assigned ResolvExpr::CandidateList lhs; explode( *lhsCand, crntFinder.localSyms, back_inserter(lhs), true ); for ( ResolvExpr::CandidateRef & cand : lhs ) { // each LHS value must be a reference - some come in with a cast, if not // just cast to reference here if ( ! cand->expr->result.as< ast::ReferenceType >() ) { cand->expr = new ast::CastExpr{ cand->expr, new ast::ReferenceType{ cand->expr->result } }; } } if ( args.size() == 1 ) { // mass default-initialization/destruction ResolvExpr::CandidateList rhs{}; matcher.reset( new MassAssignMatcher{ *this, expr->location, lhs, rhs } ); match(); } else if ( args.size() == 2 ) { for ( const ResolvExpr::CandidateRef & rhsCand : args[1] ) { ResolvExpr::CandidateList rhs; if ( isTuple( rhsCand->expr ) ) { // multiple assignment explode( *rhsCand, crntFinder.localSyms, back_inserter(rhs), true ); matcher.reset( new MultipleAssignMatcher{ *this, expr->location, lhs, rhs } ); } else { // mass assignment rhs.emplace_back( rhsCand ); matcher.reset( new MassAssignMatcher{ *this, expr->location, lhs, rhs } ); } match(); } } else { // expand all possible RHS possibilities std::vector< ResolvExpr::CandidateList > rhsCands; combos( std::next( args.begin(), 1 ), args.end(), back_inserter( rhsCands ) ); for ( const ResolvExpr::CandidateList & rhsCand : rhsCands ) { // multiple assignment ResolvExpr::CandidateList rhs; explode( rhsCand, crntFinder.localSyms, back_inserter(rhs), true ); matcher.reset( new MultipleAssignMatcher{ *this, expr->location, lhs, rhs } ); match(); } } } } } void match() { assert( matcher ); std::vector< ast::ptr< ast::Expr > > newAssigns = matcher->match(); if ( ! ( matcher->lhs.empty() && matcher->rhs.empty() ) ) { // if both LHS and RHS are empty than this is the empty tuple case, wherein it's // okay for newAssigns to be empty. Otherwise, return early so that no new // candidates are generated if ( newAssigns.empty() ) return; } ResolvExpr::CandidateList crnt; // now resolve new assignments for ( const ast::Expr * expr : newAssigns ) { PRINT( std::cerr << "== resolving tuple assign ==" << std::endl; std::cerr << expr << std::endl; ) ResolvExpr::CandidateFinder finder{ crntFinder.localSyms, matcher->env }; try { finder.find( expr, ResolvExpr::ResolvMode::withAdjustment() ); } catch (...) { // no match is not failure, just that this tuple assignment is invalid return; } ResolvExpr::CandidateList & cands = finder.candidates; assert( cands.size() == 1 ); assert( cands.front()->expr ); crnt.emplace_back( std::move( cands.front() ) ); } // extract expressions from the assignment candidates to produce a list of assignments // that together form a sigle candidate std::vector< ast::ptr< ast::Expr > > solved; for ( ResolvExpr::CandidateRef & cand : crnt ) { solved.emplace_back( cand->expr ); matcher->combineState( *cand ); } crntFinder.candidates.emplace_back( std::make_shared< ResolvExpr::Candidate >( new ast::TupleAssignExpr{ matcher->location, std::move( solved ), std::move( matcher->tmpDecls ) }, std::move( matcher->env ), std::move( matcher->open ), std::move( matcher->need ), ResolvExpr::sumCost( crnt ) + matcher->baseCost ) ); } }; } // anonymous namespace void handleTupleAssignment( ResolvExpr::CandidateFinder & finder, const ast::UntypedExpr * assign, std::vector< ResolvExpr::CandidateFinder > & args ) { TupleAssignSpotter_new spotter{ finder }; spotter.spot( assign, args ); } } // namespace Tuples // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //