// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // Validate.cc -- // // Author : Richard C. Bilson // Created On : Sun May 17 21:50:04 2015 // Last Modified By : Peter A. Buhr // Last Modified On : Mon Aug 28 13:47:23 2017 // Update Count : 359 // // The "validate" phase of translation is used to take a syntax tree and convert it into a standard form that aims to be // as regular in structure as possible. Some assumptions can be made regarding the state of the tree after this pass is // complete, including: // // - No nested structure or union definitions; any in the input are "hoisted" to the level of the containing struct or // union. // // - All enumeration constants have type EnumInstType. // // - The type "void" never occurs in lists of function parameter or return types. A function // taking no arguments has no argument types. // // - No context instances exist; they are all replaced by the set of declarations signified by the context, instantiated // by the particular set of type arguments. // // - Every declaration is assigned a unique id. // // - No typedef declarations or instances exist; the actual type is substituted for each instance. // // - Each type, struct, and union definition is followed by an appropriate assignment operator. // // - Each use of a struct or union is connected to a complete definition of that struct or union, even if that // definition occurs later in the input. #include "Validate.h" #include // for assertf, assert #include // for size_t #include // for list #include // for string #include // for pair #include "CodeGen/CodeGenerator.h" // for genName #include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign #include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd #include "Common/ScopedMap.h" // for ScopedMap #include "Common/SemanticError.h" // for SemanticError #include "Common/UniqueName.h" // for UniqueName #include "Common/utility.h" // for operator+, cloneAll, deleteAll #include "Concurrency/Keywords.h" // for applyKeywords #include "FixFunction.h" // for FixFunction #include "Indexer.h" // for Indexer #include "InitTweak/GenInit.h" // for fixReturnStatements #include "InitTweak/InitTweak.h" // for isCtorDtorAssign #include "Parser/LinkageSpec.h" // for C #include "ResolvExpr/typeops.h" // for typesCompatible #include "SymTab/AddVisit.h" // for addVisit #include "SymTab/Autogen.h" // for SizeType #include "SynTree/Attribute.h" // for noAttributes, Attribute #include "SynTree/Constant.h" // for Constant #include "SynTree/Declaration.h" // for ObjectDecl, DeclarationWithType #include "SynTree/Expression.h" // for CompoundLiteralExpr, Expressio... #include "SynTree/Initializer.h" // for ListInit, Initializer #include "SynTree/Label.h" // for operator==, Label #include "SynTree/Mutator.h" // for Mutator #include "SynTree/Type.h" // for Type, TypeInstType, EnumInstType #include "SynTree/TypeSubstitution.h" // for TypeSubstitution #include "SynTree/Visitor.h" // for Visitor class CompoundStmt; class ReturnStmt; class SwitchStmt; #define debugPrint( x ) if ( doDebug ) { std::cout << x; } namespace SymTab { class HoistStruct final : public Visitor { template< typename Visitor > friend void acceptAndAdd( std::list< Declaration * > &translationUnit, Visitor &visitor ); template< typename Visitor > friend void addVisitStatementList( std::list< Statement* > &stmts, Visitor &visitor ); public: /// Flattens nested struct types static void hoistStruct( std::list< Declaration * > &translationUnit ); std::list< Declaration * > &get_declsToAdd() { return declsToAdd; } virtual void visit( EnumInstType *enumInstType ); virtual void visit( StructInstType *structInstType ); virtual void visit( UnionInstType *unionInstType ); virtual void visit( StructDecl *aggregateDecl ); virtual void visit( UnionDecl *aggregateDecl ); virtual void visit( CompoundStmt *compoundStmt ); virtual void visit( SwitchStmt *switchStmt ); private: HoistStruct(); template< typename AggDecl > void handleAggregate( AggDecl *aggregateDecl ); std::list< Declaration * > declsToAdd, declsToAddAfter; bool inStruct; }; /// Fix return types so that every function returns exactly one value struct ReturnTypeFixer { static void fix( std::list< Declaration * > &translationUnit ); void postvisit( FunctionDecl * functionDecl ); void postvisit( FunctionType * ftype ); }; /// Replaces enum types by int, and function or array types in function parameter and return lists by appropriate pointers. struct EnumAndPointerDecay { void previsit( EnumDecl *aggregateDecl ); void previsit( FunctionType *func ); }; /// Associates forward declarations of aggregates with their definitions struct LinkReferenceToTypes final : public WithIndexer { LinkReferenceToTypes( const Indexer *indexer ); void postvisit( TypeInstType *typeInst ); void postvisit( EnumInstType *enumInst ); void postvisit( StructInstType *structInst ); void postvisit( UnionInstType *unionInst ); void postvisit( TraitInstType *traitInst ); void postvisit( EnumDecl *enumDecl ); void postvisit( StructDecl *structDecl ); void postvisit( UnionDecl *unionDecl ); void postvisit( TraitDecl * traitDecl ); private: const Indexer *local_indexer; typedef std::map< std::string, std::list< EnumInstType * > > ForwardEnumsType; typedef std::map< std::string, std::list< StructInstType * > > ForwardStructsType; typedef std::map< std::string, std::list< UnionInstType * > > ForwardUnionsType; ForwardEnumsType forwardEnums; ForwardStructsType forwardStructs; ForwardUnionsType forwardUnions; }; /// Replaces array and function types in forall lists by appropriate pointer type and assigns each Object and Function declaration a unique ID. struct ForallPointerDecay final { void previsit( ObjectDecl * object ); void previsit( FunctionDecl * func ); void previsit( StructDecl * aggrDecl ); void previsit( UnionDecl * aggrDecl ); }; struct ReturnChecker : public WithGuards { /// Checks that return statements return nothing if their return type is void /// and return something if the return type is non-void. static void checkFunctionReturns( std::list< Declaration * > & translationUnit ); void previsit( FunctionDecl * functionDecl ); void previsit( ReturnStmt * returnStmt ); typedef std::list< DeclarationWithType * > ReturnVals; ReturnVals returnVals; }; struct EliminateTypedef final : public WithVisitorRef, public WithGuards { EliminateTypedef() : scopeLevel( 0 ) {} /// Replaces typedefs by forward declarations static void eliminateTypedef( std::list< Declaration * > &translationUnit ); Type * postmutate( TypeInstType * aggregateUseType ); Declaration * postmutate( TypedefDecl * typeDecl ); void premutate( TypeDecl * typeDecl ); void premutate( FunctionDecl * funcDecl ); void premutate( ObjectDecl * objDecl ); DeclarationWithType * postmutate( ObjectDecl * objDecl ); void premutate( CastExpr * castExpr ); void premutate( CompoundStmt * compoundStmt ); CompoundStmt * postmutate( CompoundStmt * compoundStmt ); void premutate( StructDecl * structDecl ); Declaration * postmutate( StructDecl * structDecl ); void premutate( UnionDecl * unionDecl ); Declaration * postmutate( UnionDecl * unionDecl ); void premutate( EnumDecl * enumDecl ); Declaration * postmutate( EnumDecl * enumDecl ); Declaration * postmutate( TraitDecl * contextDecl ); private: template AggDecl *handleAggregate( AggDecl * aggDecl ); template void addImplicitTypedef( AggDecl * aggDecl ); typedef std::unique_ptr TypedefDeclPtr; typedef ScopedMap< std::string, std::pair< TypedefDeclPtr, int > > TypedefMap; typedef std::map< std::string, TypeDecl * > TypeDeclMap; TypedefMap typedefNames; TypeDeclMap typedeclNames; int scopeLevel; }; struct VerifyCtorDtorAssign { /// ensure that constructors, destructors, and assignment have at least one /// parameter, the first of which must be a pointer, and that ctor/dtors have no /// return values. static void verify( std::list< Declaration * > &translationUnit ); void previsit( FunctionDecl *funcDecl ); }; /// ensure that generic types have the correct number of type arguments struct ValidateGenericParameters { void previsit( StructInstType * inst ); void previsit( UnionInstType * inst ); }; struct ArrayLength { /// for array types without an explicit length, compute the length and store it so that it /// is known to the rest of the phases. For example, /// int x[] = { 1, 2, 3 }; /// int y[][2] = { { 1, 2, 3 }, { 1, 2, 3 } }; /// here x and y are known at compile-time to have length 3, so change this into /// int x[3] = { 1, 2, 3 }; /// int y[3][2] = { { 1, 2, 3 }, { 1, 2, 3 } }; static void computeLength( std::list< Declaration * > & translationUnit ); void previsit( ObjectDecl * objDecl ); }; struct CompoundLiteral final : public WithDeclsToAdd, public WithVisitorRef { Type::StorageClasses storageClasses; void premutate( ObjectDecl *objectDecl ); Expression * postmutate( CompoundLiteralExpr *compLitExpr ); }; struct LabelAddressFixer final : public WithGuards { std::set< Label > labels; void premutate( FunctionDecl * funcDecl ); Expression * postmutate( AddressExpr * addrExpr ); }; FunctionDecl * dereferenceOperator = nullptr; struct FindSpecialDeclarations final { void previsit( FunctionDecl * funcDecl ); }; void validate( std::list< Declaration * > &translationUnit, __attribute__((unused)) bool doDebug ) { PassVisitor epc; PassVisitor lrt( nullptr ); PassVisitor fpd; PassVisitor compoundliteral; PassVisitor genericParams; PassVisitor finder; PassVisitor labelAddrFixer; EliminateTypedef::eliminateTypedef( translationUnit ); HoistStruct::hoistStruct( translationUnit ); // must happen after EliminateTypedef, so that aggregate typedefs occur in the correct order ReturnTypeFixer::fix( translationUnit ); // must happen before autogen acceptAll( translationUnit, epc ); // must happen before VerifyCtorDtorAssign, because void return objects should not exist; before LinkReferenceToTypes because it is an indexer and needs correct types for mangling acceptAll( translationUnit, lrt ); // must happen before autogen, because sized flag needs to propagate to generated functions acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors ReturnChecker::checkFunctionReturns( translationUnit ); InitTweak::fixReturnStatements( translationUnit ); // must happen before autogen Concurrency::applyKeywords( translationUnit ); acceptAll( translationUnit, fpd ); // must happen before autogenerateRoutines, after Concurrency::applyKeywords because uniqueIds must be set on declaration before resolution autogenerateRoutines( translationUnit ); // moved up, used to be below compoundLiteral - currently needs EnumAndPointerDecay Concurrency::implementMutexFuncs( translationUnit ); Concurrency::implementThreadStarter( translationUnit ); mutateAll( translationUnit, compoundliteral ); ArrayLength::computeLength( translationUnit ); acceptAll( translationUnit, finder ); // xxx - remove this pass soon mutateAll( translationUnit, labelAddrFixer ); } void validateType( Type *type, const Indexer *indexer ) { PassVisitor epc; PassVisitor lrt( indexer ); PassVisitor fpd; type->accept( epc ); type->accept( lrt ); type->accept( fpd ); } void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) { HoistStruct hoister; acceptAndAdd( translationUnit, hoister ); } HoistStruct::HoistStruct() : inStruct( false ) { } bool isStructOrUnion( Declaration *decl ) { return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ); } template< typename AggDecl > void HoistStruct::handleAggregate( AggDecl *aggregateDecl ) { if ( inStruct ) { // Add elements in stack order corresponding to nesting structure. declsToAdd.push_front( aggregateDecl ); Visitor::visit( aggregateDecl ); } else { inStruct = true; Visitor::visit( aggregateDecl ); inStruct = false; } // if // Always remove the hoisted aggregate from the inner structure. filter( aggregateDecl->get_members(), isStructOrUnion, false ); } void HoistStruct::visit( EnumInstType *structInstType ) { if ( structInstType->get_baseEnum() ) { declsToAdd.push_front( structInstType->get_baseEnum() ); } } void HoistStruct::visit( StructInstType *structInstType ) { if ( structInstType->get_baseStruct() ) { declsToAdd.push_front( structInstType->get_baseStruct() ); } } void HoistStruct::visit( UnionInstType *structInstType ) { if ( structInstType->get_baseUnion() ) { declsToAdd.push_front( structInstType->get_baseUnion() ); } } void HoistStruct::visit( StructDecl *aggregateDecl ) { handleAggregate( aggregateDecl ); } void HoistStruct::visit( UnionDecl *aggregateDecl ) { handleAggregate( aggregateDecl ); } void HoistStruct::visit( CompoundStmt *compoundStmt ) { addVisit( compoundStmt, *this ); } void HoistStruct::visit( SwitchStmt *switchStmt ) { addVisit( switchStmt, *this ); } void EnumAndPointerDecay::previsit( EnumDecl *enumDecl ) { // Set the type of each member of the enumeration to be EnumConstant for ( std::list< Declaration * >::iterator i = enumDecl->get_members().begin(); i != enumDecl->get_members().end(); ++i ) { ObjectDecl * obj = dynamic_cast< ObjectDecl * >( *i ); assert( obj ); obj->set_type( new EnumInstType( Type::Qualifiers( Type::Const ), enumDecl->get_name() ) ); } // for } namespace { template< typename DWTList > void fixFunctionList( DWTList & dwts, FunctionType * func ) { // the only case in which "void" is valid is where it is the only one in the list; then it should be removed // entirely. other fix ups are handled by the FixFunction class typedef typename DWTList::iterator DWTIterator; DWTIterator begin( dwts.begin() ), end( dwts.end() ); if ( begin == end ) return; PassVisitor fixer; DWTIterator i = begin; *i = (*i)->acceptMutator( fixer ); if ( fixer.pass.isVoid ) { DWTIterator j = i; ++i; delete *j; dwts.erase( j ); if ( i != end ) { throw SemanticError( "invalid type void in function type ", func ); } // if } else { ++i; for ( ; i != end; ++i ) { PassVisitor fixer; *i = (*i)->acceptMutator( fixer ); if ( fixer.pass.isVoid ) { throw SemanticError( "invalid type void in function type ", func ); } // if } // for } // if } } void EnumAndPointerDecay::previsit( FunctionType *func ) { // Fix up parameters and return types fixFunctionList( func->get_parameters(), func ); fixFunctionList( func->get_returnVals(), func ); } LinkReferenceToTypes::LinkReferenceToTypes( const Indexer *other_indexer ) { if ( other_indexer ) { local_indexer = other_indexer; } else { local_indexer = &indexer; } // if } void LinkReferenceToTypes::postvisit( EnumInstType *enumInst ) { EnumDecl *st = local_indexer->lookupEnum( enumInst->get_name() ); // it's not a semantic error if the enum is not found, just an implicit forward declaration if ( st ) { //assert( ! enumInst->get_baseEnum() || enumInst->get_baseEnum()->get_members().empty() || ! st->get_members().empty() ); enumInst->set_baseEnum( st ); } // if if ( ! st || st->get_members().empty() ) { // use of forward declaration forwardEnums[ enumInst->get_name() ].push_back( enumInst ); } // if } void LinkReferenceToTypes::postvisit( StructInstType *structInst ) { StructDecl *st = local_indexer->lookupStruct( structInst->get_name() ); // it's not a semantic error if the struct is not found, just an implicit forward declaration if ( st ) { //assert( ! structInst->get_baseStruct() || structInst->get_baseStruct()->get_members().empty() || ! st->get_members().empty() ); structInst->set_baseStruct( st ); } // if if ( ! st || st->get_members().empty() ) { // use of forward declaration forwardStructs[ structInst->get_name() ].push_back( structInst ); } // if } void LinkReferenceToTypes::postvisit( UnionInstType *unionInst ) { UnionDecl *un = local_indexer->lookupUnion( unionInst->get_name() ); // it's not a semantic error if the union is not found, just an implicit forward declaration if ( un ) { unionInst->set_baseUnion( un ); } // if if ( ! un || un->get_members().empty() ) { // use of forward declaration forwardUnions[ unionInst->get_name() ].push_back( unionInst ); } // if } template< typename Decl > void normalizeAssertions( std::list< Decl * > & assertions ) { // ensure no duplicate trait members after the clone auto pred = [](Decl * d1, Decl * d2) { // only care if they're equal DeclarationWithType * dwt1 = dynamic_cast( d1 ); DeclarationWithType * dwt2 = dynamic_cast( d2 ); if ( dwt1 && dwt2 ) { if ( dwt1->get_name() == dwt2->get_name() && ResolvExpr::typesCompatible( dwt1->get_type(), dwt2->get_type(), SymTab::Indexer() ) ) { // std::cerr << "=========== equal:" << std::endl; // std::cerr << "d1: " << d1 << std::endl; // std::cerr << "d2: " << d2 << std::endl; return false; } } return d1 < d2; }; std::set unique_members( assertions.begin(), assertions.end(), pred ); // if ( unique_members.size() != assertions.size() ) { // std::cerr << "============different" << std::endl; // std::cerr << unique_members.size() << " " << assertions.size() << std::endl; // } std::list< Decl * > order; order.splice( order.end(), assertions ); std::copy_if( order.begin(), order.end(), back_inserter( assertions ), [&]( Decl * decl ) { return unique_members.count( decl ); }); } // expand assertions from trait instance, performing the appropriate type variable substitutions template< typename Iterator > void expandAssertions( TraitInstType * inst, Iterator out ) { assertf( inst->baseTrait, "Trait instance not linked to base trait: %s", toString( inst ).c_str() ); std::list< DeclarationWithType * > asserts; for ( Declaration * decl : inst->baseTrait->members ) { asserts.push_back( strict_dynamic_cast( decl->clone() ) ); } // substitute trait decl parameters for instance parameters applySubstitution( inst->baseTrait->parameters.begin(), inst->baseTrait->parameters.end(), inst->parameters.begin(), asserts.begin(), asserts.end(), out ); } void LinkReferenceToTypes::postvisit( TraitDecl * traitDecl ) { if ( traitDecl->name == "sized" ) { // "sized" is a special trait - flick the sized status on for the type variable assertf( traitDecl->parameters.size() == 1, "Built-in trait 'sized' has incorrect number of parameters: %zd", traitDecl->parameters.size() ); TypeDecl * td = traitDecl->parameters.front(); td->set_sized( true ); } // move assertions from type parameters into the body of the trait for ( TypeDecl * td : traitDecl->parameters ) { for ( DeclarationWithType * assert : td->assertions ) { if ( TraitInstType * inst = dynamic_cast< TraitInstType * >( assert->get_type() ) ) { expandAssertions( inst, back_inserter( traitDecl->members ) ); } else { traitDecl->members.push_back( assert->clone() ); } } deleteAll( td->assertions ); td->assertions.clear(); } // for } void LinkReferenceToTypes::postvisit( TraitInstType * traitInst ) { // handle other traits TraitDecl *traitDecl = local_indexer->lookupTrait( traitInst->name ); if ( ! traitDecl ) { throw SemanticError( "use of undeclared trait " + traitInst->name ); } // if if ( traitDecl->get_parameters().size() != traitInst->get_parameters().size() ) { throw SemanticError( "incorrect number of trait parameters: ", traitInst ); } // if traitInst->baseTrait = traitDecl; // need to carry over the 'sized' status of each decl in the instance for ( auto p : group_iterate( traitDecl->get_parameters(), traitInst->get_parameters() ) ) { TypeExpr * expr = strict_dynamic_cast< TypeExpr * >( std::get<1>(p) ); if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( expr->get_type() ) ) { TypeDecl * formalDecl = std::get<0>(p); TypeDecl * instDecl = inst->get_baseType(); if ( formalDecl->get_sized() ) instDecl->set_sized( true ); } } // normalizeAssertions( traitInst->members ); } void LinkReferenceToTypes::postvisit( EnumDecl *enumDecl ) { // visit enum members first so that the types of self-referencing members are updated properly if ( ! enumDecl->get_members().empty() ) { ForwardEnumsType::iterator fwds = forwardEnums.find( enumDecl->get_name() ); if ( fwds != forwardEnums.end() ) { for ( std::list< EnumInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) { (*inst )->set_baseEnum( enumDecl ); } // for forwardEnums.erase( fwds ); } // if } // if } void LinkReferenceToTypes::postvisit( StructDecl *structDecl ) { // visit struct members first so that the types of self-referencing members are updated properly // xxx - need to ensure that type parameters match up between forward declarations and definition (most importantly, number of type parameters and their defaults) if ( ! structDecl->get_members().empty() ) { ForwardStructsType::iterator fwds = forwardStructs.find( structDecl->get_name() ); if ( fwds != forwardStructs.end() ) { for ( std::list< StructInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) { (*inst )->set_baseStruct( structDecl ); } // for forwardStructs.erase( fwds ); } // if } // if } void LinkReferenceToTypes::postvisit( UnionDecl *unionDecl ) { if ( ! unionDecl->get_members().empty() ) { ForwardUnionsType::iterator fwds = forwardUnions.find( unionDecl->get_name() ); if ( fwds != forwardUnions.end() ) { for ( std::list< UnionInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) { (*inst )->set_baseUnion( unionDecl ); } // for forwardUnions.erase( fwds ); } // if } // if } void LinkReferenceToTypes::postvisit( TypeInstType *typeInst ) { if ( NamedTypeDecl *namedTypeDecl = local_indexer->lookupType( typeInst->get_name() ) ) { if ( TypeDecl *typeDecl = dynamic_cast< TypeDecl * >( namedTypeDecl ) ) { typeInst->set_isFtype( typeDecl->get_kind() == TypeDecl::Ftype ); } // if } // if } /// Fix up assertions - flattens assertion lists, removing all trait instances void forallFixer( std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) { for ( TypeDecl * type : forall ) { std::list< DeclarationWithType * > asserts; asserts.splice( asserts.end(), type->assertions ); // expand trait instances into their members for ( DeclarationWithType * assertion : asserts ) { if ( TraitInstType *traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) { // expand trait instance into all of its members expandAssertions( traitInst, back_inserter( type->assertions ) ); delete traitInst; } else { // pass other assertions through type->assertions.push_back( assertion ); } // if } // for // apply FixFunction to every assertion to check for invalid void type for ( DeclarationWithType *& assertion : type->assertions ) { PassVisitor fixer; assertion = assertion->acceptMutator( fixer ); if ( fixer.pass.isVoid ) { throw SemanticError( "invalid type void in assertion of function ", node ); } // if } // for // normalizeAssertions( type->assertions ); } // for } void ForallPointerDecay::previsit( ObjectDecl *object ) { forallFixer( object->type->forall, object ); if ( PointerType *pointer = dynamic_cast< PointerType * >( object->type ) ) { forallFixer( pointer->base->forall, object ); } // if object->fixUniqueId(); } void ForallPointerDecay::previsit( FunctionDecl *func ) { forallFixer( func->type->forall, func ); func->fixUniqueId(); } void ForallPointerDecay::previsit( StructDecl * aggrDecl ) { forallFixer( aggrDecl->parameters, aggrDecl ); } void ForallPointerDecay::previsit( UnionDecl * aggrDecl ) { forallFixer( aggrDecl->parameters, aggrDecl ); } void ReturnChecker::checkFunctionReturns( std::list< Declaration * > & translationUnit ) { PassVisitor checker; acceptAll( translationUnit, checker ); } void ReturnChecker::previsit( FunctionDecl * functionDecl ) { GuardValue( returnVals ); returnVals = functionDecl->get_functionType()->get_returnVals(); } void ReturnChecker::previsit( ReturnStmt * returnStmt ) { // Previously this also checked for the existence of an expr paired with no return values on // the function return type. This is incorrect, since you can have an expression attached to // a return statement in a void-returning function in C. The expression is treated as if it // were cast to void. if ( ! returnStmt->get_expr() && returnVals.size() != 0 ) { throw SemanticError( "Non-void function returns no values: " , returnStmt ); } } bool isTypedef( Declaration *decl ) { return dynamic_cast< TypedefDecl * >( decl ); } void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) { PassVisitor eliminator; mutateAll( translationUnit, eliminator ); if ( eliminator.pass.typedefNames.count( "size_t" ) ) { // grab and remember declaration of size_t SizeType = eliminator.pass.typedefNames["size_t"].first->get_base()->clone(); } else { // xxx - missing global typedef for size_t - default to long unsigned int, even though that may be wrong // eventually should have a warning for this case. SizeType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ); } filter( translationUnit, isTypedef, true ); } Type * EliminateTypedef::postmutate( TypeInstType * typeInst ) { // instances of typedef types will come here. If it is an instance // of a typdef type, link the instance to its actual type. TypedefMap::const_iterator def = typedefNames.find( typeInst->get_name() ); if ( def != typedefNames.end() ) { Type *ret = def->second.first->base->clone(); ret->get_qualifiers() |= typeInst->get_qualifiers(); // place instance parameters on the typedef'd type if ( ! typeInst->parameters.empty() ) { ReferenceToType *rtt = dynamic_cast(ret); if ( ! rtt ) { throw SemanticError("Cannot apply type parameters to base type of " + typeInst->name); } rtt->get_parameters().clear(); cloneAll( typeInst->parameters, rtt->parameters ); mutateAll( rtt->parameters, *visitor ); // recursively fix typedefs on parameters } // if delete typeInst; return ret; } else { TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->get_name() ); assertf( base != typedeclNames.end(), "Cannot find typedecl name %s", typeInst->name.c_str() ); typeInst->set_baseType( base->second ); } // if return typeInst; } struct VarLenChecker : WithShortCircuiting { void previsit( FunctionType * ) { visit_children = false; } void previsit( ArrayType * at ) { isVarLen |= at->isVarLen; } bool isVarLen = false; }; bool isVariableLength( Type * t ) { PassVisitor varLenChecker; maybeAccept( t, varLenChecker ); return varLenChecker.pass.isVarLen; } Declaration *EliminateTypedef::postmutate( TypedefDecl * tyDecl ) { if ( typedefNames.count( tyDecl->get_name() ) == 1 && typedefNames[ tyDecl->get_name() ].second == scopeLevel ) { // typedef to the same name from the same scope // must be from the same type Type * t1 = tyDecl->get_base(); Type * t2 = typedefNames[ tyDecl->get_name() ].first->get_base(); if ( ! ResolvExpr::typesCompatible( t1, t2, Indexer() ) ) { throw SemanticError( "Cannot redefine typedef: " + tyDecl->name ); } // cannot redefine VLA typedefs if ( isVariableLength( t1 ) || isVariableLength( t2 ) ) { throw SemanticError( "Cannot redefine typedef: " + tyDecl->name ); } } else { typedefNames[ tyDecl->get_name() ] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel ); } // if // When a typedef is a forward declaration: // typedef struct screen SCREEN; // the declaration portion must be retained: // struct screen; // because the expansion of the typedef is: // void rtn( SCREEN *p ) => void rtn( struct screen *p ) // hence the type-name "screen" must be defined. // Note, qualifiers on the typedef are superfluous for the forward declaration. Type *designatorType = tyDecl->get_base()->stripDeclarator(); if ( StructInstType *aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) { return new StructDecl( aggDecl->get_name(), DeclarationNode::Struct, noAttributes, tyDecl->get_linkage() ); } else if ( UnionInstType *aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) { return new UnionDecl( aggDecl->get_name(), noAttributes, tyDecl->get_linkage() ); } else if ( EnumInstType *enumDecl = dynamic_cast< EnumInstType * >( designatorType ) ) { return new EnumDecl( enumDecl->get_name(), noAttributes, tyDecl->get_linkage() ); } else { return tyDecl->clone(); } // if } void EliminateTypedef::premutate( TypeDecl * typeDecl ) { TypedefMap::iterator i = typedefNames.find( typeDecl->get_name() ); if ( i != typedefNames.end() ) { typedefNames.erase( i ) ; } // if typedeclNames[ typeDecl->get_name() ] = typeDecl; } void EliminateTypedef::premutate( FunctionDecl * ) { GuardScope( typedefNames ); } void EliminateTypedef::premutate( ObjectDecl * ) { GuardScope( typedefNames ); } DeclarationWithType *EliminateTypedef::postmutate( ObjectDecl * objDecl ) { if ( FunctionType *funtype = dynamic_cast( objDecl->get_type() ) ) { // function type? // replace the current object declaration with a function declaration FunctionDecl * newDecl = new FunctionDecl( objDecl->get_name(), objDecl->get_storageClasses(), objDecl->get_linkage(), funtype, 0, objDecl->get_attributes(), objDecl->get_funcSpec() ); objDecl->get_attributes().clear(); objDecl->set_type( nullptr ); delete objDecl; return newDecl; } // if return objDecl; } void EliminateTypedef::premutate( CastExpr * ) { GuardScope( typedefNames ); } void EliminateTypedef::premutate( CompoundStmt * ) { GuardScope( typedefNames ); scopeLevel += 1; GuardAction( [this](){ scopeLevel -= 1; } ); } CompoundStmt *EliminateTypedef::postmutate( CompoundStmt * compoundStmt ) { // remove and delete decl stmts filter( compoundStmt->kids, [](Statement * stmt) { if ( DeclStmt *declStmt = dynamic_cast< DeclStmt * >( stmt ) ) { if ( dynamic_cast< TypedefDecl * >( declStmt->get_decl() ) ) { return true; } // if } // if return false; }, true); return compoundStmt; } // there may be typedefs nested within aggregates. in order for everything to work properly, these should be removed // as well template AggDecl *EliminateTypedef::handleAggregate( AggDecl * aggDecl ) { filter( aggDecl->members, isTypedef, true ); return aggDecl; } template void EliminateTypedef::addImplicitTypedef( AggDecl * aggDecl ) { if ( typedefNames.count( aggDecl->get_name() ) == 0 ) { Type *type = nullptr; if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( aggDecl ) ) { type = new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() ); } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( aggDecl ) ) { type = new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() ); } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( aggDecl ) ) { type = new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() ); } // if TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), Type::StorageClasses(), type, aggDecl->get_linkage() ) ); typedefNames[ aggDecl->get_name() ] = std::make_pair( std::move( tyDecl ), scopeLevel ); } // if } void EliminateTypedef::premutate( StructDecl * structDecl ) { addImplicitTypedef( structDecl ); } Declaration *EliminateTypedef::postmutate( StructDecl * structDecl ) { return handleAggregate( structDecl ); } void EliminateTypedef::premutate( UnionDecl * unionDecl ) { addImplicitTypedef( unionDecl ); } Declaration *EliminateTypedef::postmutate( UnionDecl * unionDecl ) { return handleAggregate( unionDecl ); } void EliminateTypedef::premutate( EnumDecl * enumDecl ) { addImplicitTypedef( enumDecl ); } Declaration *EliminateTypedef::postmutate( EnumDecl * enumDecl ) { return handleAggregate( enumDecl ); } Declaration *EliminateTypedef::postmutate( TraitDecl * traitDecl ) { return handleAggregate( traitDecl ); } void VerifyCtorDtorAssign::verify( std::list< Declaration * > & translationUnit ) { PassVisitor verifier; acceptAll( translationUnit, verifier ); } void VerifyCtorDtorAssign::previsit( FunctionDecl * funcDecl ) { FunctionType * funcType = funcDecl->get_functionType(); std::list< DeclarationWithType * > &returnVals = funcType->get_returnVals(); std::list< DeclarationWithType * > ¶ms = funcType->get_parameters(); if ( CodeGen::isCtorDtorAssign( funcDecl->get_name() ) ) { // TODO: also check /=, etc. if ( params.size() == 0 ) { throw SemanticError( "Constructors, destructors, and assignment functions require at least one parameter ", funcDecl ); } ReferenceType * refType = dynamic_cast< ReferenceType * >( params.front()->get_type() ); if ( ! refType ) { throw SemanticError( "First parameter of a constructor, destructor, or assignment function must be a reference ", funcDecl ); } if ( CodeGen::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) { throw SemanticError( "Constructors and destructors cannot have explicit return values ", funcDecl ); } } } template< typename Aggr > void validateGeneric( Aggr * inst ) { std::list< TypeDecl * > * params = inst->get_baseParameters(); if ( params ) { std::list< Expression * > & args = inst->get_parameters(); // insert defaults arguments when a type argument is missing (currently only supports missing arguments at the end of the list). // A substitution is used to ensure that defaults are replaced correctly, e.g., // forall(otype T, otype alloc = heap_allocator(T)) struct vector; // vector(int) v; // after insertion of default values becomes // vector(int, heap_allocator(T)) // and the substitution is built with T=int so that after substitution, the result is // vector(int, heap_allocator(int)) TypeSubstitution sub; auto paramIter = params->begin(); for ( size_t i = 0; paramIter != params->end(); ++paramIter, ++i ) { if ( i < args.size() ) { TypeExpr * expr = strict_dynamic_cast< TypeExpr * >( *std::next( args.begin(), i ) ); sub.add( (*paramIter)->get_name(), expr->get_type()->clone() ); } else if ( i == args.size() ) { Type * defaultType = (*paramIter)->get_init(); if ( defaultType ) { args.push_back( new TypeExpr( defaultType->clone() ) ); sub.add( (*paramIter)->get_name(), defaultType->clone() ); } } } sub.apply( inst ); if ( args.size() < params->size() ) throw SemanticError( "Too few type arguments in generic type ", inst ); if ( args.size() > params->size() ) throw SemanticError( "Too many type arguments in generic type ", inst ); } } void ValidateGenericParameters::previsit( StructInstType * inst ) { validateGeneric( inst ); } void ValidateGenericParameters::previsit( UnionInstType * inst ) { validateGeneric( inst ); } void CompoundLiteral::premutate( ObjectDecl *objectDecl ) { storageClasses = objectDecl->get_storageClasses(); } Expression *CompoundLiteral::postmutate( CompoundLiteralExpr *compLitExpr ) { // transform [storage_class] ... (struct S){ 3, ... }; // into [storage_class] struct S temp = { 3, ... }; static UniqueName indexName( "_compLit" ); ObjectDecl *tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, nullptr, compLitExpr->get_result(), compLitExpr->get_initializer() ); compLitExpr->set_result( nullptr ); compLitExpr->set_initializer( nullptr ); delete compLitExpr; declsToAddBefore.push_back( tempvar ); // add modified temporary to current block return new VariableExpr( tempvar ); } void ReturnTypeFixer::fix( std::list< Declaration * > &translationUnit ) { PassVisitor fixer; acceptAll( translationUnit, fixer ); } void ReturnTypeFixer::postvisit( FunctionDecl * functionDecl ) { FunctionType * ftype = functionDecl->get_functionType(); std::list< DeclarationWithType * > & retVals = ftype->get_returnVals(); assertf( retVals.size() == 0 || retVals.size() == 1, "Function %s has too many return values: %zu", functionDecl->get_name().c_str(), retVals.size() ); if ( retVals.size() == 1 ) { // ensure all function return values have a name - use the name of the function to disambiguate (this also provides a nice bit of help for debugging). // ensure other return values have a name. DeclarationWithType * ret = retVals.front(); if ( ret->get_name() == "" ) { ret->set_name( toString( "_retval_", CodeGen::genName( functionDecl ) ) ); } ret->get_attributes().push_back( new Attribute( "unused" ) ); } } void ReturnTypeFixer::postvisit( FunctionType * ftype ) { // xxx - need to handle named return values - this information needs to be saved somehow // so that resolution has access to the names. // Note that this pass needs to happen early so that other passes which look for tuple types // find them in all of the right places, including function return types. std::list< DeclarationWithType * > & retVals = ftype->get_returnVals(); if ( retVals.size() > 1 ) { // generate a single return parameter which is the tuple of all of the return values TupleType * tupleType = strict_dynamic_cast< TupleType * >( ResolvExpr::extractResultType( ftype ) ); // ensure return value is not destructed by explicitly creating an empty ListInit node wherein maybeConstruct is false. ObjectDecl * newRet = new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, tupleType, new ListInit( std::list(), noDesignators, false ) ); deleteAll( retVals ); retVals.clear(); retVals.push_back( newRet ); } } void ArrayLength::computeLength( std::list< Declaration * > & translationUnit ) { PassVisitor len; acceptAll( translationUnit, len ); } void ArrayLength::previsit( ObjectDecl * objDecl ) { if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->get_type() ) ) { if ( at->get_dimension() ) return; if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->get_init() ) ) { at->set_dimension( new ConstantExpr( Constant::from_ulong( init->get_initializers().size() ) ) ); } } } struct LabelFinder { std::set< Label > & labels; LabelFinder( std::set< Label > & labels ) : labels( labels ) {} void previsit( Statement * stmt ) { for ( Label & l : stmt->labels ) { labels.insert( l ); } } }; void LabelAddressFixer::premutate( FunctionDecl * funcDecl ) { GuardValue( labels ); PassVisitor finder( labels ); funcDecl->accept( finder ); } Expression * LabelAddressFixer::postmutate( AddressExpr * addrExpr ) { // convert &&label into label address if ( AddressExpr * inner = dynamic_cast< AddressExpr * >( addrExpr->arg ) ) { if ( NameExpr * nameExpr = dynamic_cast< NameExpr * >( inner->arg ) ) { if ( labels.count( nameExpr->name ) ) { Label name = nameExpr->name; delete addrExpr; return new LabelAddressExpr( name ); } } } return addrExpr; } void FindSpecialDeclarations::previsit( FunctionDecl * funcDecl ) { if ( ! dereferenceOperator ) { if ( funcDecl->get_name() == "*?" && funcDecl->get_linkage() == LinkageSpec::Intrinsic ) { FunctionType * ftype = funcDecl->get_functionType(); if ( ftype->get_parameters().size() == 1 && ftype->get_parameters().front()->get_type()->get_qualifiers() == Type::Qualifiers() ) { dereferenceOperator = funcDecl; } } } } } // namespace SymTab // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //