// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // Validate.cc -- // // Author : Richard C. Bilson // Created On : Sun May 17 21:50:04 2015 // Last Modified By : Peter A. Buhr // Last Modified On : Thu Mar 30 16:50:13 2017 // Update Count : 357 // // The "validate" phase of translation is used to take a syntax tree and convert it into a standard form that aims to be // as regular in structure as possible. Some assumptions can be made regarding the state of the tree after this pass is // complete, including: // // - No nested structure or union definitions; any in the input are "hoisted" to the level of the containing struct or // union. // // - All enumeration constants have type EnumInstType. // // - The type "void" never occurs in lists of function parameter or return types. A function // taking no arguments has no argument types. // // - No context instances exist; they are all replaced by the set of declarations signified by the context, instantiated // by the particular set of type arguments. // // - Every declaration is assigned a unique id. // // - No typedef declarations or instances exist; the actual type is substituted for each instance. // // - Each type, struct, and union definition is followed by an appropriate assignment operator. // // - Each use of a struct or union is connected to a complete definition of that struct or union, even if that // definition occurs later in the input. #include #include #include #include "CodeGen/CodeGenerator.h" #include "Common/PassVisitor.h" #include "Common/ScopedMap.h" #include "Common/UniqueName.h" #include "Common/utility.h" #include "Concurrency/Keywords.h" #include "GenPoly/DeclMutator.h" #include "InitTweak/InitTweak.h" #include "AddVisit.h" #include "Autogen.h" #include "FixFunction.h" // #include "ImplementationType.h" #include "Indexer.h" #include "MakeLibCfa.h" #include "TypeEquality.h" #include "Validate.h" #include "ResolvExpr/typeops.h" #include "SynTree/Attribute.h" #include "SynTree/Expression.h" #include "SynTree/Mutator.h" #include "SynTree/Statement.h" #include "SynTree/Type.h" #include "SynTree/TypeSubstitution.h" #include "SynTree/Visitor.h" #define debugPrint( x ) if ( doDebug ) { std::cout << x; } namespace SymTab { class HoistStruct final : public Visitor { template< typename Visitor > friend void acceptAndAdd( std::list< Declaration * > &translationUnit, Visitor &visitor ); template< typename Visitor > friend void addVisitStatementList( std::list< Statement* > &stmts, Visitor &visitor ); public: /// Flattens nested struct types static void hoistStruct( std::list< Declaration * > &translationUnit ); std::list< Declaration * > &get_declsToAdd() { return declsToAdd; } virtual void visit( EnumInstType *enumInstType ); virtual void visit( StructInstType *structInstType ); virtual void visit( UnionInstType *unionInstType ); virtual void visit( StructDecl *aggregateDecl ); virtual void visit( UnionDecl *aggregateDecl ); virtual void visit( CompoundStmt *compoundStmt ); virtual void visit( SwitchStmt *switchStmt ); private: HoistStruct(); template< typename AggDecl > void handleAggregate( AggDecl *aggregateDecl ); std::list< Declaration * > declsToAdd, declsToAddAfter; bool inStruct; }; /// Fix return types so that every function returns exactly one value class ReturnTypeFixer { public: static void fix( std::list< Declaration * > &translationUnit ); void postvisit( FunctionDecl * functionDecl ); void postvisit( FunctionType * ftype ); }; /// Replaces enum types by int, and function or array types in function parameter and return lists by appropriate pointers. class EnumAndPointerDecay { public: void previsit( EnumDecl *aggregateDecl ); void previsit( FunctionType *func ); }; /// Associates forward declarations of aggregates with their definitions class LinkReferenceToTypes final : public Indexer { typedef Indexer Parent; public: LinkReferenceToTypes( bool doDebug, const Indexer *indexer ); using Parent::visit; void visit( EnumInstType *enumInst ) final; void visit( StructInstType *structInst ) final; void visit( UnionInstType *unionInst ) final; void visit( TraitInstType *contextInst ) final; void visit( EnumDecl *enumDecl ) final; void visit( StructDecl *structDecl ) final; void visit( UnionDecl *unionDecl ) final; void visit( TypeInstType *typeInst ) final; private: const Indexer *indexer; typedef std::map< std::string, std::list< EnumInstType * > > ForwardEnumsType; typedef std::map< std::string, std::list< StructInstType * > > ForwardStructsType; typedef std::map< std::string, std::list< UnionInstType * > > ForwardUnionsType; ForwardEnumsType forwardEnums; ForwardStructsType forwardStructs; ForwardUnionsType forwardUnions; }; /// Replaces array and function types in forall lists by appropriate pointer type and assigns each Object and Function declaration a unique ID. class ForallPointerDecay final : public Indexer { typedef Indexer Parent; public: using Parent::visit; ForallPointerDecay( const Indexer *indexer ); virtual void visit( ObjectDecl *object ) override; virtual void visit( FunctionDecl *func ) override; const Indexer *indexer; }; class ReturnChecker : public WithScopes { public: /// Checks that return statements return nothing if their return type is void /// and return something if the return type is non-void. static void checkFunctionReturns( std::list< Declaration * > & translationUnit ); private: void previsit( FunctionDecl * functionDecl ); void previsit( ReturnStmt * returnStmt ); typedef std::list< DeclarationWithType * > ReturnVals; ReturnVals returnVals; }; class EliminateTypedef : public Mutator { public: EliminateTypedef() : scopeLevel( 0 ) {} /// Replaces typedefs by forward declarations static void eliminateTypedef( std::list< Declaration * > &translationUnit ); private: virtual Declaration *mutate( TypedefDecl *typeDecl ); virtual TypeDecl *mutate( TypeDecl *typeDecl ); virtual DeclarationWithType *mutate( FunctionDecl *funcDecl ); virtual DeclarationWithType *mutate( ObjectDecl *objDecl ); virtual CompoundStmt *mutate( CompoundStmt *compoundStmt ); virtual Type *mutate( TypeInstType *aggregateUseType ); virtual Expression *mutate( CastExpr *castExpr ); virtual Declaration *mutate( StructDecl * structDecl ); virtual Declaration *mutate( UnionDecl * unionDecl ); virtual Declaration *mutate( EnumDecl * enumDecl ); virtual Declaration *mutate( TraitDecl * contextDecl ); template AggDecl *handleAggregate( AggDecl * aggDecl ); template void addImplicitTypedef( AggDecl * aggDecl ); typedef std::unique_ptr TypedefDeclPtr; typedef ScopedMap< std::string, std::pair< TypedefDeclPtr, int > > TypedefMap; typedef std::map< std::string, TypeDecl * > TypeDeclMap; TypedefMap typedefNames; TypeDeclMap typedeclNames; int scopeLevel; }; class VerifyCtorDtorAssign { public: /// ensure that constructors, destructors, and assignment have at least one /// parameter, the first of which must be a pointer, and that ctor/dtors have no /// return values. static void verify( std::list< Declaration * > &translationUnit ); void previsit( FunctionDecl *funcDecl ); }; /// ensure that generic types have the correct number of type arguments class ValidateGenericParameters { public: void previsit( StructInstType * inst ); void previsit( UnionInstType * inst ); }; class ArrayLength { public: /// for array types without an explicit length, compute the length and store it so that it /// is known to the rest of the phases. For example, /// int x[] = { 1, 2, 3 }; /// int y[][2] = { { 1, 2, 3 }, { 1, 2, 3 } }; /// here x and y are known at compile-time to have length 3, so change this into /// int x[3] = { 1, 2, 3 }; /// int y[3][2] = { { 1, 2, 3 }, { 1, 2, 3 } }; static void computeLength( std::list< Declaration * > & translationUnit ); void previsit( ObjectDecl * objDecl ); }; class CompoundLiteral final : public GenPoly::DeclMutator { Type::StorageClasses storageClasses; using GenPoly::DeclMutator::mutate; DeclarationWithType * mutate( ObjectDecl *objectDecl ) final; Expression *mutate( CompoundLiteralExpr *compLitExpr ) final; }; void validate( std::list< Declaration * > &translationUnit, bool doDebug ) { PassVisitor epc; LinkReferenceToTypes lrt( doDebug, 0 ); ForallPointerDecay fpd( 0 ); CompoundLiteral compoundliteral; PassVisitor genericParams; EliminateTypedef::eliminateTypedef( translationUnit ); HoistStruct::hoistStruct( translationUnit ); // must happen after EliminateTypedef, so that aggregate typedefs occur in the correct order ReturnTypeFixer::fix( translationUnit ); // must happen before autogen acceptAll( translationUnit, lrt ); // must happen before autogen, because sized flag needs to propagate to generated functions acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes acceptAll( translationUnit, epc ); // must happen before VerifyCtorDtorAssign, because void return objects should not exist VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors Concurrency::applyKeywords( translationUnit ); autogenerateRoutines( translationUnit ); // moved up, used to be below compoundLiteral - currently needs EnumAndPointerDecay Concurrency::implementMutexFuncs( translationUnit ); Concurrency::implementThreadStarter( translationUnit ); ReturnChecker::checkFunctionReturns( translationUnit ); compoundliteral.mutateDeclarationList( translationUnit ); acceptAll( translationUnit, fpd ); ArrayLength::computeLength( translationUnit ); } void validateType( Type *type, const Indexer *indexer ) { PassVisitor epc; LinkReferenceToTypes lrt( false, indexer ); ForallPointerDecay fpd( indexer ); type->accept( epc ); type->accept( lrt ); type->accept( fpd ); } void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) { HoistStruct hoister; acceptAndAdd( translationUnit, hoister ); } HoistStruct::HoistStruct() : inStruct( false ) { } void filter( std::list< Declaration * > &declList, bool (*pred)( Declaration * ), bool doDelete ) { std::list< Declaration * >::iterator i = declList.begin(); while ( i != declList.end() ) { std::list< Declaration * >::iterator next = i; ++next; if ( pred( *i ) ) { if ( doDelete ) { delete *i; } // if declList.erase( i ); } // if i = next; } // while } bool isStructOrUnion( Declaration *decl ) { return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ); } template< typename AggDecl > void HoistStruct::handleAggregate( AggDecl *aggregateDecl ) { if ( inStruct ) { // Add elements in stack order corresponding to nesting structure. declsToAdd.push_front( aggregateDecl ); Visitor::visit( aggregateDecl ); } else { inStruct = true; Visitor::visit( aggregateDecl ); inStruct = false; } // if // Always remove the hoisted aggregate from the inner structure. filter( aggregateDecl->get_members(), isStructOrUnion, false ); } void HoistStruct::visit( EnumInstType *structInstType ) { if ( structInstType->get_baseEnum() ) { declsToAdd.push_front( structInstType->get_baseEnum() ); } } void HoistStruct::visit( StructInstType *structInstType ) { if ( structInstType->get_baseStruct() ) { declsToAdd.push_front( structInstType->get_baseStruct() ); } } void HoistStruct::visit( UnionInstType *structInstType ) { if ( structInstType->get_baseUnion() ) { declsToAdd.push_front( structInstType->get_baseUnion() ); } } void HoistStruct::visit( StructDecl *aggregateDecl ) { handleAggregate( aggregateDecl ); } void HoistStruct::visit( UnionDecl *aggregateDecl ) { handleAggregate( aggregateDecl ); } void HoistStruct::visit( CompoundStmt *compoundStmt ) { addVisit( compoundStmt, *this ); } void HoistStruct::visit( SwitchStmt *switchStmt ) { addVisit( switchStmt, *this ); } void EnumAndPointerDecay::previsit( EnumDecl *enumDecl ) { // Set the type of each member of the enumeration to be EnumConstant for ( std::list< Declaration * >::iterator i = enumDecl->get_members().begin(); i != enumDecl->get_members().end(); ++i ) { ObjectDecl * obj = dynamic_cast< ObjectDecl * >( *i ); assert( obj ); obj->set_type( new EnumInstType( Type::Qualifiers( Type::Const ), enumDecl->get_name() ) ); } // for } namespace { template< typename DWTList > void fixFunctionList( DWTList & dwts, FunctionType * func ) { // the only case in which "void" is valid is where it is the only one in the list; then it should be removed // entirely. other fix ups are handled by the FixFunction class typedef typename DWTList::iterator DWTIterator; DWTIterator begin( dwts.begin() ), end( dwts.end() ); if ( begin == end ) return; FixFunction fixer; DWTIterator i = begin; *i = (*i)->acceptMutator( fixer ); if ( fixer.get_isVoid() ) { DWTIterator j = i; ++i; delete *j; dwts.erase( j ); if ( i != end ) { throw SemanticError( "invalid type void in function type ", func ); } // if } else { ++i; for ( ; i != end; ++i ) { FixFunction fixer; *i = (*i)->acceptMutator( fixer ); if ( fixer.get_isVoid() ) { throw SemanticError( "invalid type void in function type ", func ); } // if } // for } // if } } void EnumAndPointerDecay::previsit( FunctionType *func ) { // Fix up parameters and return types fixFunctionList( func->get_parameters(), func ); fixFunctionList( func->get_returnVals(), func ); } LinkReferenceToTypes::LinkReferenceToTypes( bool doDebug, const Indexer *other_indexer ) : Indexer( doDebug ) { if ( other_indexer ) { indexer = other_indexer; } else { indexer = this; } // if } void LinkReferenceToTypes::visit( EnumInstType *enumInst ) { Parent::visit( enumInst ); EnumDecl *st = indexer->lookupEnum( enumInst->get_name() ); // it's not a semantic error if the enum is not found, just an implicit forward declaration if ( st ) { //assert( ! enumInst->get_baseEnum() || enumInst->get_baseEnum()->get_members().empty() || ! st->get_members().empty() ); enumInst->set_baseEnum( st ); } // if if ( ! st || st->get_members().empty() ) { // use of forward declaration forwardEnums[ enumInst->get_name() ].push_back( enumInst ); } // if } void LinkReferenceToTypes::visit( StructInstType *structInst ) { Parent::visit( structInst ); StructDecl *st = indexer->lookupStruct( structInst->get_name() ); // it's not a semantic error if the struct is not found, just an implicit forward declaration if ( st ) { //assert( ! structInst->get_baseStruct() || structInst->get_baseStruct()->get_members().empty() || ! st->get_members().empty() ); structInst->set_baseStruct( st ); } // if if ( ! st || st->get_members().empty() ) { // use of forward declaration forwardStructs[ structInst->get_name() ].push_back( structInst ); } // if } void LinkReferenceToTypes::visit( UnionInstType *unionInst ) { Parent::visit( unionInst ); UnionDecl *un = indexer->lookupUnion( unionInst->get_name() ); // it's not a semantic error if the union is not found, just an implicit forward declaration if ( un ) { unionInst->set_baseUnion( un ); } // if if ( ! un || un->get_members().empty() ) { // use of forward declaration forwardUnions[ unionInst->get_name() ].push_back( unionInst ); } // if } void LinkReferenceToTypes::visit( TraitInstType *traitInst ) { Parent::visit( traitInst ); if ( traitInst->get_name() == "sized" ) { // "sized" is a special trait with no members - just flick the sized status on for the type variable if ( traitInst->get_parameters().size() != 1 ) { throw SemanticError( "incorrect number of trait parameters: ", traitInst ); } TypeExpr * param = safe_dynamic_cast< TypeExpr * > ( traitInst->get_parameters().front() ); TypeInstType * inst = safe_dynamic_cast< TypeInstType * > ( param->get_type() ); TypeDecl * decl = inst->get_baseType(); decl->set_sized( true ); // since "sized" is special, the next few steps don't apply return; } TraitDecl *traitDecl = indexer->lookupTrait( traitInst->get_name() ); if ( ! traitDecl ) { throw SemanticError( "use of undeclared trait " + traitInst->get_name() ); } // if if ( traitDecl->get_parameters().size() != traitInst->get_parameters().size() ) { throw SemanticError( "incorrect number of trait parameters: ", traitInst ); } // if for ( TypeDecl * td : traitDecl->get_parameters() ) { for ( DeclarationWithType * assert : td->get_assertions() ) { traitInst->get_members().push_back( assert->clone() ); } // for } // for // need to clone members of the trait for ownership purposes std::list< Declaration * > members; std::transform( traitDecl->get_members().begin(), traitDecl->get_members().end(), back_inserter( members ), [](Declaration * dwt) { return dwt->clone(); } ); applySubstitution( traitDecl->get_parameters().begin(), traitDecl->get_parameters().end(), traitInst->get_parameters().begin(), members.begin(), members.end(), back_inserter( traitInst->get_members() ) ); // need to carry over the 'sized' status of each decl in the instance for ( auto p : group_iterate( traitDecl->get_parameters(), traitInst->get_parameters() ) ) { TypeExpr * expr = safe_dynamic_cast< TypeExpr * >( std::get<1>(p) ); if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( expr->get_type() ) ) { TypeDecl * formalDecl = std::get<0>(p); TypeDecl * instDecl = inst->get_baseType(); if ( formalDecl->get_sized() ) instDecl->set_sized( true ); } } } void LinkReferenceToTypes::visit( EnumDecl *enumDecl ) { // visit enum members first so that the types of self-referencing members are updated properly Parent::visit( enumDecl ); if ( ! enumDecl->get_members().empty() ) { ForwardEnumsType::iterator fwds = forwardEnums.find( enumDecl->get_name() ); if ( fwds != forwardEnums.end() ) { for ( std::list< EnumInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) { (*inst )->set_baseEnum( enumDecl ); } // for forwardEnums.erase( fwds ); } // if } // if } void LinkReferenceToTypes::visit( StructDecl *structDecl ) { // visit struct members first so that the types of self-referencing members are updated properly // xxx - need to ensure that type parameters match up between forward declarations and definition (most importantly, number of type parameters and and their defaults) Parent::visit( structDecl ); if ( ! structDecl->get_members().empty() ) { ForwardStructsType::iterator fwds = forwardStructs.find( structDecl->get_name() ); if ( fwds != forwardStructs.end() ) { for ( std::list< StructInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) { (*inst )->set_baseStruct( structDecl ); } // for forwardStructs.erase( fwds ); } // if } // if } void LinkReferenceToTypes::visit( UnionDecl *unionDecl ) { Parent::visit( unionDecl ); if ( ! unionDecl->get_members().empty() ) { ForwardUnionsType::iterator fwds = forwardUnions.find( unionDecl->get_name() ); if ( fwds != forwardUnions.end() ) { for ( std::list< UnionInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) { (*inst )->set_baseUnion( unionDecl ); } // for forwardUnions.erase( fwds ); } // if } // if } void LinkReferenceToTypes::visit( TypeInstType *typeInst ) { if ( NamedTypeDecl *namedTypeDecl = lookupType( typeInst->get_name() ) ) { if ( TypeDecl *typeDecl = dynamic_cast< TypeDecl * >( namedTypeDecl ) ) { typeInst->set_isFtype( typeDecl->get_kind() == TypeDecl::Ftype ); } // if } // if } ForallPointerDecay::ForallPointerDecay( const Indexer *other_indexer ) : Indexer( false ) { if ( other_indexer ) { indexer = other_indexer; } else { indexer = this; } // if } /// Fix up assertions - flattens assertion lists, removing all trait instances void forallFixer( Type * func ) { for ( TypeDecl * type : func->get_forall() ) { std::list< DeclarationWithType * > toBeDone, nextRound; toBeDone.splice( toBeDone.end(), type->get_assertions() ); while ( ! toBeDone.empty() ) { for ( DeclarationWithType * assertion : toBeDone ) { if ( TraitInstType *traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) { // expand trait instance into all of its members for ( Declaration * member : traitInst->get_members() ) { DeclarationWithType *dwt = safe_dynamic_cast< DeclarationWithType * >( member ); nextRound.push_back( dwt->clone() ); } delete traitInst; } else { // pass assertion through FixFunction fixer; assertion = assertion->acceptMutator( fixer ); if ( fixer.get_isVoid() ) { throw SemanticError( "invalid type void in assertion of function ", func ); } type->get_assertions().push_back( assertion ); } // if } // for toBeDone.clear(); toBeDone.splice( toBeDone.end(), nextRound ); } // while } // for } void ForallPointerDecay::visit( ObjectDecl *object ) { forallFixer( object->get_type() ); if ( PointerType *pointer = dynamic_cast< PointerType * >( object->get_type() ) ) { forallFixer( pointer->get_base() ); } // if Parent::visit( object ); object->fixUniqueId(); } void ForallPointerDecay::visit( FunctionDecl *func ) { forallFixer( func->get_type() ); Parent::visit( func ); func->fixUniqueId(); } void ReturnChecker::checkFunctionReturns( std::list< Declaration * > & translationUnit ) { PassVisitor checker; acceptAll( translationUnit, checker ); } void ReturnChecker::previsit( FunctionDecl * functionDecl ) { GuardValue( returnVals ); returnVals = functionDecl->get_functionType()->get_returnVals(); } void ReturnChecker::previsit( ReturnStmt * returnStmt ) { // Previously this also checked for the existence of an expr paired with no return values on // the function return type. This is incorrect, since you can have an expression attached to // a return statement in a void-returning function in C. The expression is treated as if it // were cast to void. if ( returnStmt->get_expr() == NULL && returnVals.size() != 0 ) { throw SemanticError( "Non-void function returns no values: " , returnStmt ); } } bool isTypedef( Declaration *decl ) { return dynamic_cast< TypedefDecl * >( decl ); } void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) { EliminateTypedef eliminator; mutateAll( translationUnit, eliminator ); if ( eliminator.typedefNames.count( "size_t" ) ) { // grab and remember declaration of size_t SizeType = eliminator.typedefNames["size_t"].first->get_base()->clone(); } else { // xxx - missing global typedef for size_t - default to long unsigned int, even though that may be wrong // eventually should have a warning for this case. SizeType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ); } filter( translationUnit, isTypedef, true ); } Type *EliminateTypedef::mutate( TypeInstType * typeInst ) { // instances of typedef types will come here. If it is an instance // of a typdef type, link the instance to its actual type. TypedefMap::const_iterator def = typedefNames.find( typeInst->get_name() ); if ( def != typedefNames.end() ) { Type *ret = def->second.first->get_base()->clone(); ret->get_qualifiers() |= typeInst->get_qualifiers(); // place instance parameters on the typedef'd type if ( ! typeInst->get_parameters().empty() ) { ReferenceToType *rtt = dynamic_cast(ret); if ( ! rtt ) { throw SemanticError("cannot apply type parameters to base type of " + typeInst->get_name()); } rtt->get_parameters().clear(); cloneAll( typeInst->get_parameters(), rtt->get_parameters() ); mutateAll( rtt->get_parameters(), *this ); // recursively fix typedefs on parameters } // if delete typeInst; return ret; } else { TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->get_name() ); assertf( base != typedeclNames.end(), "Can't find typedecl name %s", typeInst->get_name().c_str() ); typeInst->set_baseType( base->second ); } // if return typeInst; } Declaration *EliminateTypedef::mutate( TypedefDecl * tyDecl ) { Declaration *ret = Mutator::mutate( tyDecl ); if ( typedefNames.count( tyDecl->get_name() ) == 1 && typedefNames[ tyDecl->get_name() ].second == scopeLevel ) { // typedef to the same name from the same scope // must be from the same type Type * t1 = tyDecl->get_base(); Type * t2 = typedefNames[ tyDecl->get_name() ].first->get_base(); if ( ! ResolvExpr::typesCompatible( t1, t2, Indexer() ) ) { throw SemanticError( "cannot redefine typedef: " + tyDecl->get_name() ); } } else { typedefNames[ tyDecl->get_name() ] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel ); } // if // When a typedef is a forward declaration: // typedef struct screen SCREEN; // the declaration portion must be retained: // struct screen; // because the expansion of the typedef is: // void rtn( SCREEN *p ) => void rtn( struct screen *p ) // hence the type-name "screen" must be defined. // Note, qualifiers on the typedef are superfluous for the forward declaration. Type *designatorType = tyDecl->get_base()->stripDeclarator(); if ( StructInstType *aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) { return new StructDecl( aggDecl->get_name() ); } else if ( UnionInstType *aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) { return new UnionDecl( aggDecl->get_name() ); } else if ( EnumInstType *enumDecl = dynamic_cast< EnumInstType * >( designatorType ) ) { return new EnumDecl( enumDecl->get_name() ); } else { return ret->clone(); } // if } TypeDecl *EliminateTypedef::mutate( TypeDecl * typeDecl ) { TypedefMap::iterator i = typedefNames.find( typeDecl->get_name() ); if ( i != typedefNames.end() ) { typedefNames.erase( i ) ; } // if typedeclNames[ typeDecl->get_name() ] = typeDecl; return Mutator::mutate( typeDecl ); } DeclarationWithType *EliminateTypedef::mutate( FunctionDecl * funcDecl ) { typedefNames.beginScope(); DeclarationWithType *ret = Mutator::mutate( funcDecl ); typedefNames.endScope(); return ret; } DeclarationWithType *EliminateTypedef::mutate( ObjectDecl * objDecl ) { typedefNames.beginScope(); DeclarationWithType *ret = Mutator::mutate( objDecl ); typedefNames.endScope(); if ( FunctionType *funtype = dynamic_cast( ret->get_type() ) ) { // function type? // replace the current object declaration with a function declaration FunctionDecl * newDecl = new FunctionDecl( ret->get_name(), ret->get_storageClasses(), ret->get_linkage(), funtype, 0, objDecl->get_attributes(), ret->get_funcSpec() ); objDecl->get_attributes().clear(); objDecl->set_type( nullptr ); delete objDecl; return newDecl; } // if return ret; } Expression *EliminateTypedef::mutate( CastExpr * castExpr ) { typedefNames.beginScope(); Expression *ret = Mutator::mutate( castExpr ); typedefNames.endScope(); return ret; } CompoundStmt *EliminateTypedef::mutate( CompoundStmt * compoundStmt ) { typedefNames.beginScope(); scopeLevel += 1; CompoundStmt *ret = Mutator::mutate( compoundStmt ); scopeLevel -= 1; std::list< Statement * >::iterator i = compoundStmt->get_kids().begin(); while ( i != compoundStmt->get_kids().end() ) { std::list< Statement * >::iterator next = i+1; if ( DeclStmt *declStmt = dynamic_cast< DeclStmt * >( *i ) ) { if ( dynamic_cast< TypedefDecl * >( declStmt->get_decl() ) ) { delete *i; compoundStmt->get_kids().erase( i ); } // if } // if i = next; } // while typedefNames.endScope(); return ret; } // there may be typedefs nested within aggregates. in order for everything to work properly, these should be removed // as well template AggDecl *EliminateTypedef::handleAggregate( AggDecl * aggDecl ) { std::list::iterator it = aggDecl->get_members().begin(); for ( ; it != aggDecl->get_members().end(); ) { std::list< Declaration * >::iterator next = it+1; if ( dynamic_cast< TypedefDecl * >( *it ) ) { delete *it; aggDecl->get_members().erase( it ); } // if it = next; } return aggDecl; } template void EliminateTypedef::addImplicitTypedef( AggDecl * aggDecl ) { if ( typedefNames.count( aggDecl->get_name() ) == 0 ) { Type *type = nullptr; if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( aggDecl ) ) { type = new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() ); } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( aggDecl ) ) { type = new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() ); } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( aggDecl ) ) { type = new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() ); } // if TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), Type::StorageClasses(), type ) ); typedefNames[ aggDecl->get_name() ] = std::make_pair( std::move( tyDecl ), scopeLevel ); } // if } Declaration *EliminateTypedef::mutate( StructDecl * structDecl ) { addImplicitTypedef( structDecl ); Mutator::mutate( structDecl ); return handleAggregate( structDecl ); } Declaration *EliminateTypedef::mutate( UnionDecl * unionDecl ) { addImplicitTypedef( unionDecl ); Mutator::mutate( unionDecl ); return handleAggregate( unionDecl ); } Declaration *EliminateTypedef::mutate( EnumDecl * enumDecl ) { addImplicitTypedef( enumDecl ); Mutator::mutate( enumDecl ); return handleAggregate( enumDecl ); } Declaration *EliminateTypedef::mutate( TraitDecl * contextDecl ) { Mutator::mutate( contextDecl ); return handleAggregate( contextDecl ); } void VerifyCtorDtorAssign::verify( std::list< Declaration * > & translationUnit ) { PassVisitor verifier; acceptAll( translationUnit, verifier ); } void VerifyCtorDtorAssign::previsit( FunctionDecl * funcDecl ) { FunctionType * funcType = funcDecl->get_functionType(); std::list< DeclarationWithType * > &returnVals = funcType->get_returnVals(); std::list< DeclarationWithType * > ¶ms = funcType->get_parameters(); if ( InitTweak::isCtorDtorAssign( funcDecl->get_name() ) ) { if ( params.size() == 0 ) { throw SemanticError( "Constructors, destructors, and assignment functions require at least one parameter ", funcDecl ); } PointerType * ptrType = dynamic_cast< PointerType * >( params.front()->get_type() ); if ( ! ptrType || ptrType->is_array() ) { throw SemanticError( "First parameter of a constructor, destructor, or assignment function must be a pointer ", funcDecl ); } if ( InitTweak::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) { throw SemanticError( "Constructors and destructors cannot have explicit return values ", funcDecl ); } } } template< typename Aggr > void validateGeneric( Aggr * inst ) { std::list< TypeDecl * > * params = inst->get_baseParameters(); if ( params != NULL ) { std::list< Expression * > & args = inst->get_parameters(); // insert defaults arguments when a type argument is missing (currently only supports missing arguments at the end of the list). // A substitution is used to ensure that defaults are replaced correctly, e.g., // forall(otype T, otype alloc = heap_allocator(T)) struct vector; // vector(int) v; // after insertion of default values becomes // vector(int, heap_allocator(T)) // and the substitution is built with T=int so that after substitution, the result is // vector(int, heap_allocator(int)) TypeSubstitution sub; auto paramIter = params->begin(); for ( size_t i = 0; paramIter != params->end(); ++paramIter, ++i ) { if ( i < args.size() ) { TypeExpr * expr = safe_dynamic_cast< TypeExpr * >( *std::next( args.begin(), i ) ); sub.add( (*paramIter)->get_name(), expr->get_type()->clone() ); } else if ( i == args.size() ) { Type * defaultType = (*paramIter)->get_init(); if ( defaultType ) { args.push_back( new TypeExpr( defaultType->clone() ) ); sub.add( (*paramIter)->get_name(), defaultType->clone() ); } } } sub.apply( inst ); if ( args.size() < params->size() ) throw SemanticError( "Too few type arguments in generic type ", inst ); if ( args.size() > params->size() ) throw SemanticError( "Too many type arguments in generic type ", inst ); } } void ValidateGenericParameters::previsit( StructInstType * inst ) { validateGeneric( inst ); } void ValidateGenericParameters::previsit( UnionInstType * inst ) { validateGeneric( inst ); } DeclarationWithType * CompoundLiteral::mutate( ObjectDecl *objectDecl ) { storageClasses = objectDecl->get_storageClasses(); DeclarationWithType * temp = Mutator::mutate( objectDecl ); return temp; } Expression *CompoundLiteral::mutate( CompoundLiteralExpr *compLitExpr ) { // transform [storage_class] ... (struct S){ 3, ... }; // into [storage_class] struct S temp = { 3, ... }; static UniqueName indexName( "_compLit" ); ObjectDecl *tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, 0, compLitExpr->get_result(), compLitExpr->get_initializer() ); compLitExpr->set_result( 0 ); compLitExpr->set_initializer( 0 ); delete compLitExpr; DeclarationWithType * newtempvar = mutate( tempvar ); addDeclaration( newtempvar ); // add modified temporary to current block return new VariableExpr( newtempvar ); } void ReturnTypeFixer::fix( std::list< Declaration * > &translationUnit ) { PassVisitor fixer; acceptAll( translationUnit, fixer ); } void ReturnTypeFixer::postvisit( FunctionDecl * functionDecl ) { FunctionType * ftype = functionDecl->get_functionType(); std::list< DeclarationWithType * > & retVals = ftype->get_returnVals(); assertf( retVals.size() == 0 || retVals.size() == 1, "Function %s has too many return values: %d", functionDecl->get_name().c_str(), retVals.size() ); if ( retVals.size() == 1 ) { // ensure all function return values have a name - use the name of the function to disambiguate (this also provides a nice bit of help for debugging). // ensure other return values have a name. DeclarationWithType * ret = retVals.front(); if ( ret->get_name() == "" ) { ret->set_name( toString( "_retval_", CodeGen::genName( functionDecl ) ) ); } ret->get_attributes().push_back( new Attribute( "unused" ) ); } } void ReturnTypeFixer::postvisit( FunctionType * ftype ) { // xxx - need to handle named return values - this information needs to be saved somehow // so that resolution has access to the names. // Note that this pass needs to happen early so that other passes which look for tuple types // find them in all of the right places, including function return types. std::list< DeclarationWithType * > & retVals = ftype->get_returnVals(); if ( retVals.size() > 1 ) { // generate a single return parameter which is the tuple of all of the return values TupleType * tupleType = safe_dynamic_cast< TupleType * >( ResolvExpr::extractResultType( ftype ) ); // ensure return value is not destructed by explicitly creating an empty ListInit node wherein maybeConstruct is false. ObjectDecl * newRet = new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, tupleType, new ListInit( std::list(), noDesignators, false ) ); deleteAll( retVals ); retVals.clear(); retVals.push_back( newRet ); } } void ArrayLength::computeLength( std::list< Declaration * > & translationUnit ) { PassVisitor len; acceptAll( translationUnit, len ); } void ArrayLength::previsit( ObjectDecl * objDecl ) { if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->get_type() ) ) { if ( at->get_dimension() != nullptr ) return; if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->get_init() ) ) { at->set_dimension( new ConstantExpr( Constant::from_ulong( init->get_initializers().size() ) ) ); } } } } // namespace SymTab // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //