// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // Indexer.cc -- // // Author : Richard C. Bilson // Created On : Sun May 17 21:37:33 2015 // Last Modified By : Peter A. Buhr // Last Modified On : Thu Aug 17 16:08:40 2017 // Update Count : 20 // #include "Indexer.h" #include // for assert, strict_dynamic_cast #include // for operator<<, basic_ostream, ostream #include // for string, operator<<, operator!= #include // for operator!=, unordered_map<>::const... #include // for unordered_set #include // for pair, make_pair, move #include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign #include "Common/SemanticError.h" // for SemanticError #include "Common/utility.h" // for cloneAll #include "GenPoly/GenPoly.h" #include "InitTweak/InitTweak.h" // for isConstructor, isCopyFunction, isC... #include "Mangler.h" // for Mangler #include "Parser/LinkageSpec.h" // for isMangled, isOverridable, Spec #include "ResolvExpr/typeops.h" // for typesCompatible #include "SynTree/Constant.h" // for Constant #include "SynTree/Declaration.h" // for DeclarationWithType, FunctionDecl #include "SynTree/Expression.h" // for Expression, ImplicitCopyCtorExpr #include "SynTree/Initializer.h" // for Initializer #include "SynTree/Statement.h" // for CompoundStmt, Statement, ForStmt (... #include "SynTree/Type.h" // for Type, StructInstType, UnionInstType #define debugPrint(x) if ( doDebug ) { std::cerr << x; } namespace SymTab { std::ostream & operator<<( std::ostream & out, const Indexer::IdData & data ) { return out << "(" << data.id << "," << data.baseExpr << ")"; } typedef std::unordered_map< std::string, Indexer::IdData > MangleTable; typedef std::unordered_map< std::string, MangleTable > IdTable; typedef std::unordered_map< std::string, NamedTypeDecl* > TypeTable; typedef std::unordered_map< std::string, StructDecl* > StructTable; typedef std::unordered_map< std::string, EnumDecl* > EnumTable; typedef std::unordered_map< std::string, UnionDecl* > UnionTable; typedef std::unordered_map< std::string, TraitDecl* > TraitTable; void dump( const IdTable &table, std::ostream &os ) { for ( IdTable::const_iterator id = table.begin(); id != table.end(); ++id ) { for ( MangleTable::const_iterator mangle = id->second.begin(); mangle != id->second.end(); ++mangle ) { os << mangle->second << std::endl; } } } template< typename Decl > void dump( const std::unordered_map< std::string, Decl* > &table, std::ostream &os ) { for ( typename std::unordered_map< std::string, Decl* >::const_iterator it = table.begin(); it != table.end(); ++it ) { os << it->second << std::endl; } // for } struct Indexer::Impl { Impl( unsigned long _scope ) : refCount(1), scope( _scope ), size( 0 ), base(), idTable(), typeTable(), structTable(), enumTable(), unionTable(), traitTable() {} Impl( unsigned long _scope, Indexer &&_base ) : refCount(1), scope( _scope ), size( 0 ), base( _base ), idTable(), typeTable(), structTable(), enumTable(), unionTable(), traitTable() {} unsigned long refCount; ///< Number of references to these tables unsigned long scope; ///< Scope these tables are associated with unsigned long size; ///< Number of elements stored in this table const Indexer base; ///< Base indexer this extends IdTable idTable; ///< Identifier namespace TypeTable typeTable; ///< Type namespace StructTable structTable; ///< Struct namespace EnumTable enumTable; ///< Enum namespace UnionTable unionTable; ///< Union namespace TraitTable traitTable; ///< Trait namespace }; Indexer::Impl *Indexer::newRef( Indexer::Impl *toClone ) { if ( ! toClone ) return 0; // shorten the search chain by skipping empty links Indexer::Impl *ret = toClone->size == 0 ? toClone->base.tables : toClone; if ( ret ) { ++ret->refCount; } return ret; } void Indexer::deleteRef( Indexer::Impl *toFree ) { if ( ! toFree ) return; if ( --toFree->refCount == 0 ) delete toFree; } void Indexer::removeSpecialOverrides( const std::string &id, std::list< IdData > & out ) const { // only need to perform this step for constructors, destructors, and assignment functions if ( ! CodeGen::isCtorDtorAssign( id ) ) return; // helpful data structure struct ValueType { struct DeclBall { IdData decl; bool isUserDefinedFunc; // properties for this particular decl bool isDefaultCtor; bool isDtor; bool isCopyFunc; }; // properties for this type bool existsUserDefinedFunc = false; // any user-defined function found bool existsUserDefinedCtor = false; // any user-defined constructor found bool existsUserDefinedDtor = false; // any user-defined destructor found bool existsUserDefinedCopyFunc = false; // user-defined copy ctor found bool existsUserDefinedDefaultCtor = false; // user-defined default ctor found std::list< DeclBall > decls; // another FunctionDecl for the current type was found - determine // if it has special properties and update data structure accordingly ValueType & operator+=( IdData data ) { DeclarationWithType * function = data.id; bool isUserDefinedFunc = ! LinkageSpec::isOverridable( function->get_linkage() ); bool isDefaultCtor = InitTweak::isDefaultConstructor( function ); bool isDtor = InitTweak::isDestructor( function ); bool isCopyFunc = InitTweak::isCopyFunction( function, function->get_name() ); decls.push_back( DeclBall{ data, isUserDefinedFunc, isDefaultCtor, isDtor, isCopyFunc } ); existsUserDefinedFunc = existsUserDefinedFunc || isUserDefinedFunc; existsUserDefinedCtor = existsUserDefinedCtor || (isUserDefinedFunc && CodeGen::isConstructor( function->get_name() ) ); existsUserDefinedDtor = existsUserDefinedDtor || (isUserDefinedFunc && isDtor); existsUserDefinedCopyFunc = existsUserDefinedCopyFunc || (isUserDefinedFunc && isCopyFunc); existsUserDefinedDefaultCtor = existsUserDefinedDefaultCtor || (isUserDefinedFunc && isDefaultCtor); return *this; } }; // ValueType std::list< IdData > copy; copy.splice( copy.end(), out ); // organize discovered declarations by type std::unordered_map< std::string, ValueType > funcMap; for ( auto decl : copy ) { if ( FunctionDecl * function = dynamic_cast< FunctionDecl * >( decl.id ) ) { std::list< DeclarationWithType * > & params = function->get_functionType()->get_parameters(); assert( ! params.empty() ); // use base type of pointer, so that qualifiers on the pointer type aren't considered. Type * base = InitTweak::getPointerBase( params.front()->get_type() ); assert( base ); funcMap[ Mangler::mangle( base ) ] += decl; } else { out.push_back( decl ); } } // if a type contains user defined ctor/dtor/assign, then special rules trigger, which determine // the set of ctor/dtor/assign that are seen by the requester. In particular, if the user defines // a default ctor, then the generated default ctor should never be seen, likewise for copy ctor // and dtor. If the user defines any ctor/dtor, then no generated field ctors should be seen. // If the user defines any ctor then the generated default ctor should not be seen (intrinsic default // ctor must be overridden exactly). for ( std::pair< const std::string, ValueType > & pair : funcMap ) { ValueType & val = pair.second; for ( ValueType::DeclBall ball : val.decls ) { bool noUserDefinedFunc = ! val.existsUserDefinedFunc; bool isUserDefinedFunc = ball.isUserDefinedFunc; bool isAcceptableDefaultCtor = (! val.existsUserDefinedCtor || (! val.existsUserDefinedDefaultCtor && ball.decl.id->get_linkage() == LinkageSpec::Intrinsic)) && ball.isDefaultCtor; // allow default constructors only when no user-defined constructors exist, except in the case of intrinsics, which require exact overrides bool isAcceptableCopyFunc = ! val.existsUserDefinedCopyFunc && ball.isCopyFunc; // handles copy ctor and assignment operator bool isAcceptableDtor = ! val.existsUserDefinedDtor && ball.isDtor; if ( noUserDefinedFunc || isUserDefinedFunc || isAcceptableDefaultCtor || isAcceptableCopyFunc || isAcceptableDtor ) { // decl conforms to the rules described above, so it should be seen by the requester out.push_back( ball.decl ); } } } } void Indexer::makeWritable() { if ( ! tables ) { // create indexer if not yet set tables = new Indexer::Impl( scope ); } else if ( tables->refCount > 1 || tables->scope != scope ) { // make this indexer the base of a fresh indexer at the current scope tables = new Indexer::Impl( scope, std::move( *this ) ); } } Indexer::Indexer() : tables( 0 ), scope( 0 ) {} Indexer::Indexer( const Indexer &that ) : doDebug( that.doDebug ), tables( newRef( that.tables ) ), scope( that.scope ) {} Indexer::Indexer( Indexer &&that ) : doDebug( that.doDebug ), tables( that.tables ), scope( that.scope ) { that.tables = 0; } Indexer::~Indexer() { deleteRef( tables ); } Indexer& Indexer::operator= ( const Indexer &that ) { deleteRef( tables ); tables = newRef( that.tables ); scope = that.scope; doDebug = that.doDebug; return *this; } Indexer& Indexer::operator= ( Indexer &&that ) { deleteRef( tables ); tables = that.tables; scope = that.scope; doDebug = that.doDebug; that.tables = 0; return *this; } void Indexer::lookupId( const std::string &id, std::list< IdData > &out ) const { std::unordered_set< std::string > foundMangleNames; Indexer::Impl *searchTables = tables; while ( searchTables ) { IdTable::const_iterator decls = searchTables->idTable.find( id ); if ( decls != searchTables->idTable.end() ) { const MangleTable &mangleTable = decls->second; for ( MangleTable::const_iterator decl = mangleTable.begin(); decl != mangleTable.end(); ++decl ) { // mark the mangled name as found, skipping this insertion if a declaration for that name has already been found if ( foundMangleNames.insert( decl->first ).second == false ) continue; out.push_back( decl->second ); } } // get declarations from base indexers searchTables = searchTables->base.tables; } // some special functions, e.g. constructors and destructors // remove autogenerated functions when they are defined so that // they can never be matched removeSpecialOverrides( id, out ); } NamedTypeDecl *Indexer::lookupType( const std::string &id ) const { if ( ! tables ) return 0; TypeTable::const_iterator ret = tables->typeTable.find( id ); return ret != tables->typeTable.end() ? ret->second : tables->base.lookupType( id ); } StructDecl *Indexer::lookupStruct( const std::string &id ) const { if ( ! tables ) return 0; StructTable::const_iterator ret = tables->structTable.find( id ); return ret != tables->structTable.end() ? ret->second : tables->base.lookupStruct( id ); } EnumDecl *Indexer::lookupEnum( const std::string &id ) const { if ( ! tables ) return 0; EnumTable::const_iterator ret = tables->enumTable.find( id ); return ret != tables->enumTable.end() ? ret->second : tables->base.lookupEnum( id ); } UnionDecl *Indexer::lookupUnion( const std::string &id ) const { if ( ! tables ) return 0; UnionTable::const_iterator ret = tables->unionTable.find( id ); return ret != tables->unionTable.end() ? ret->second : tables->base.lookupUnion( id ); } TraitDecl *Indexer::lookupTrait( const std::string &id ) const { if ( ! tables ) return 0; TraitTable::const_iterator ret = tables->traitTable.find( id ); return ret != tables->traitTable.end() ? ret->second : tables->base.lookupTrait( id ); } const Indexer::IdData * Indexer::lookupIdAtScope( const std::string &id, const std::string &mangleName, unsigned long scope ) const { if ( ! tables ) return nullptr; if ( tables->scope < scope ) return nullptr; IdTable::const_iterator decls = tables->idTable.find( id ); if ( decls != tables->idTable.end() ) { const MangleTable &mangleTable = decls->second; MangleTable::const_iterator decl = mangleTable.find( mangleName ); if ( decl != mangleTable.end() ) return &decl->second; } return tables->base.lookupIdAtScope( id, mangleName, scope ); } Indexer::IdData * Indexer::lookupIdAtScope( const std::string &id, const std::string &mangleName, unsigned long scope ) { return const_cast(const_cast(this)->lookupIdAtScope( id, mangleName, scope )); } bool Indexer::hasIncompatibleCDecl( const std::string &id, const std::string &mangleName, unsigned long scope ) const { if ( ! tables ) return false; if ( tables->scope < scope ) return false; IdTable::const_iterator decls = tables->idTable.find( id ); if ( decls != tables->idTable.end() ) { const MangleTable &mangleTable = decls->second; for ( MangleTable::const_iterator decl = mangleTable.begin(); decl != mangleTable.end(); ++decl ) { // check for C decls with the same name, skipping those with a compatible type (by mangleName) if ( ! LinkageSpec::isMangled( decl->second.id->get_linkage() ) && decl->first != mangleName ) return true; } } return tables->base.hasIncompatibleCDecl( id, mangleName, scope ); } bool Indexer::hasCompatibleCDecl( const std::string &id, const std::string &mangleName, unsigned long scope ) const { if ( ! tables ) return false; if ( tables->scope < scope ) return false; IdTable::const_iterator decls = tables->idTable.find( id ); if ( decls != tables->idTable.end() ) { const MangleTable &mangleTable = decls->second; for ( MangleTable::const_iterator decl = mangleTable.begin(); decl != mangleTable.end(); ++decl ) { // check for C decls with the same name, skipping // those with an incompatible type (by mangleName) if ( ! LinkageSpec::isMangled( decl->second.id->get_linkage() ) && decl->first == mangleName ) return true; } } return tables->base.hasCompatibleCDecl( id, mangleName, scope ); } NamedTypeDecl *Indexer::lookupTypeAtScope( const std::string &id, unsigned long scope ) const { if ( ! tables ) return 0; if ( tables->scope < scope ) return 0; TypeTable::const_iterator ret = tables->typeTable.find( id ); return ret != tables->typeTable.end() ? ret->second : tables->base.lookupTypeAtScope( id, scope ); } StructDecl *Indexer::lookupStructAtScope( const std::string &id, unsigned long scope ) const { if ( ! tables ) return 0; if ( tables->scope < scope ) return 0; StructTable::const_iterator ret = tables->structTable.find( id ); return ret != tables->structTable.end() ? ret->second : tables->base.lookupStructAtScope( id, scope ); } EnumDecl *Indexer::lookupEnumAtScope( const std::string &id, unsigned long scope ) const { if ( ! tables ) return 0; if ( tables->scope < scope ) return 0; EnumTable::const_iterator ret = tables->enumTable.find( id ); return ret != tables->enumTable.end() ? ret->second : tables->base.lookupEnumAtScope( id, scope ); } UnionDecl *Indexer::lookupUnionAtScope( const std::string &id, unsigned long scope ) const { if ( ! tables ) return 0; if ( tables->scope < scope ) return 0; UnionTable::const_iterator ret = tables->unionTable.find( id ); return ret != tables->unionTable.end() ? ret->second : tables->base.lookupUnionAtScope( id, scope ); } TraitDecl *Indexer::lookupTraitAtScope( const std::string &id, unsigned long scope ) const { if ( ! tables ) return 0; if ( tables->scope < scope ) return 0; TraitTable::const_iterator ret = tables->traitTable.find( id ); return ret != tables->traitTable.end() ? ret->second : tables->base.lookupTraitAtScope( id, scope ); } bool isFunction( DeclarationWithType * decl ) { return GenPoly::getFunctionType( decl->get_type() ); } bool isObject( DeclarationWithType * decl ) { return ! isFunction( decl ); } bool isDefinition( DeclarationWithType * decl ) { if ( FunctionDecl * func = dynamic_cast< FunctionDecl * >( decl ) ) { // a function is a definition if it has a body return func->statements; } else { // an object is a definition if it is not marked extern. // both objects must be marked extern return ! decl->get_storageClasses().is_extern; } } bool addedIdConflicts( Indexer::IdData & existing, DeclarationWithType *added, BaseSyntaxNode * deleteStmt, Indexer::ConflictFunction handleConflicts ) { // if we're giving the same name mangling to things of different types then there is something wrong assert( (isObject( added ) && isObject( existing.id ) ) || ( isFunction( added ) && isFunction( existing.id ) ) ); if ( LinkageSpec::isOverridable( existing.id->get_linkage() ) ) { // new definition shadows the autogenerated one, even at the same scope return false; } else if ( LinkageSpec::isMangled( added->get_linkage() ) || ResolvExpr::typesCompatible( added->get_type(), existing.id->get_type(), Indexer() ) ) { // it is a conflict if one declaration is deleted and the other is not if ( deleteStmt && ! existing.deleteStmt ) { return handleConflicts( existing, "deletion of defined identifier " ); } else if ( ! deleteStmt && existing.deleteStmt ) { return handleConflicts( existing, "definition of deleted identifier " ); } if ( isDefinition( added ) && isDefinition( existing.id ) ) { if ( isFunction( added ) ) { return handleConflicts( existing, "duplicate function definition for " ); } else { return handleConflicts( existing, "duplicate object definition for " ); } // if } // if } else { return handleConflicts( existing, "duplicate definition for " ); } // if return true; } void Indexer::addId( DeclarationWithType *decl, ConflictFunction handleConflicts, Expression * baseExpr, BaseSyntaxNode * deleteStmt ) { if ( decl->name == "" ) return; debugPrint( "Adding Id " << decl->name << std::endl ); makeWritable(); const std::string &name = decl->name; std::string mangleName; if ( LinkageSpec::isOverridable( decl->linkage ) ) { // mangle the name without including the appropriate suffix, so overridable routines are placed into the // same "bucket" as their user defined versions. mangleName = Mangler::mangle( decl, false ); } else { mangleName = Mangler::mangle( decl ); } // if // this ensures that no two declarations with the same unmangled name at the same scope both have C linkage if ( ! LinkageSpec::isMangled( decl->linkage ) ) { // NOTE this is broken in Richard's original code in such a way that it never triggers (it // doesn't check decls that have the same manglename, and all C-linkage decls are defined to // have their name as their manglename, hence the error can never trigger). // The code here is closer to correct, but name mangling would have to be completely // isomorphic to C type-compatibility, which it may not be. if ( hasIncompatibleCDecl( name, mangleName, scope ) ) { SemanticError( decl, "conflicting overload of C function " ); } } else { // Check that a Cforall declaration doesn't override any C declaration if ( hasCompatibleCDecl( name, mangleName, scope ) ) { SemanticError( decl, "Cforall declaration hides C function " ); } } // Skip repeat declarations of the same identifier IdData * existing = lookupIdAtScope( name, mangleName, scope ); if ( existing && existing->id && addedIdConflicts( *existing, decl, deleteStmt, handleConflicts ) ) return; // add to indexer tables->idTable[ name ][ mangleName ] = IdData{ decl, baseExpr, deleteStmt }; ++tables->size; } void Indexer::addId( DeclarationWithType * decl, Expression * baseExpr ) { // default handling of conflicts is to raise an error addId( decl, [decl](IdData &, const std::string & msg) { SemanticError( decl, msg ); return true; }, baseExpr, decl->isDeleted ? decl : nullptr ); } void Indexer::addDeletedId( DeclarationWithType * decl, BaseSyntaxNode * deleteStmt ) { // default handling of conflicts is to raise an error addId( decl, [decl](IdData &, const std::string & msg) { SemanticError( decl, msg ); return true; }, nullptr, deleteStmt ); } bool addedTypeConflicts( NamedTypeDecl *existing, NamedTypeDecl *added ) { if ( existing->get_base() == 0 ) { return false; } else if ( added->get_base() == 0 ) { return true; } else { SemanticError( added, "redeclaration of " ); } } void Indexer::addType( NamedTypeDecl *decl ) { debugPrint( "Adding type " << decl->name << std::endl ); makeWritable(); const std::string &id = decl->get_name(); TypeTable::iterator existing = tables->typeTable.find( id ); if ( existing == tables->typeTable.end() ) { NamedTypeDecl *parent = tables->base.lookupTypeAtScope( id, scope ); if ( ! parent || ! addedTypeConflicts( parent, decl ) ) { tables->typeTable.insert( existing, std::make_pair( id, decl ) ); ++tables->size; } } else { if ( ! addedTypeConflicts( existing->second, decl ) ) { existing->second = decl; } } } bool addedDeclConflicts( AggregateDecl *existing, AggregateDecl *added ) { if ( ! existing->body ) { return false; } else if ( added->body ) { SemanticError( added, "redeclaration of " ); } // if return true; } void Indexer::addStruct( const std::string &id ) { debugPrint( "Adding fwd decl for struct " << id << std::endl ); addStruct( new StructDecl( id ) ); } void Indexer::addStruct( StructDecl *decl ) { debugPrint( "Adding struct " << decl->name << std::endl ); makeWritable(); const std::string &id = decl->get_name(); StructTable::iterator existing = tables->structTable.find( id ); if ( existing == tables->structTable.end() ) { StructDecl *parent = tables->base.lookupStructAtScope( id, scope ); if ( ! parent || ! addedDeclConflicts( parent, decl ) ) { tables->structTable.insert( existing, std::make_pair( id, decl ) ); ++tables->size; } } else { if ( ! addedDeclConflicts( existing->second, decl ) ) { existing->second = decl; } } } void Indexer::addEnum( EnumDecl *decl ) { debugPrint( "Adding enum " << decl->name << std::endl ); makeWritable(); const std::string &id = decl->get_name(); EnumTable::iterator existing = tables->enumTable.find( id ); if ( existing == tables->enumTable.end() ) { EnumDecl *parent = tables->base.lookupEnumAtScope( id, scope ); if ( ! parent || ! addedDeclConflicts( parent, decl ) ) { tables->enumTable.insert( existing, std::make_pair( id, decl ) ); ++tables->size; } } else { if ( ! addedDeclConflicts( existing->second, decl ) ) { existing->second = decl; } } } void Indexer::addUnion( const std::string &id ) { debugPrint( "Adding fwd decl for union " << id << std::endl ); addUnion( new UnionDecl( id ) ); } void Indexer::addUnion( UnionDecl *decl ) { debugPrint( "Adding union " << decl->name << std::endl ); makeWritable(); const std::string &id = decl->get_name(); UnionTable::iterator existing = tables->unionTable.find( id ); if ( existing == tables->unionTable.end() ) { UnionDecl *parent = tables->base.lookupUnionAtScope( id, scope ); if ( ! parent || ! addedDeclConflicts( parent, decl ) ) { tables->unionTable.insert( existing, std::make_pair( id, decl ) ); ++tables->size; } } else { if ( ! addedDeclConflicts( existing->second, decl ) ) { existing->second = decl; } } } void Indexer::addTrait( TraitDecl *decl ) { debugPrint( "Adding trait " << decl->name << std::endl ); makeWritable(); const std::string &id = decl->get_name(); TraitTable::iterator existing = tables->traitTable.find( id ); if ( existing == tables->traitTable.end() ) { TraitDecl *parent = tables->base.lookupTraitAtScope( id, scope ); if ( ! parent || ! addedDeclConflicts( parent, decl ) ) { tables->traitTable.insert( existing, std::make_pair( id, decl ) ); ++tables->size; } } else { if ( ! addedDeclConflicts( existing->second, decl ) ) { existing->second = decl; } } } void Indexer::addMembers( AggregateDecl * aggr, Expression * expr, ConflictFunction handleConflicts ) { for ( Declaration * decl : aggr->members ) { if ( DeclarationWithType * dwt = dynamic_cast< DeclarationWithType * >( decl ) ) { addId( dwt, handleConflicts, expr ); if ( dwt->name == "" ) { Type * t = dwt->get_type()->stripReferences(); if ( dynamic_cast< StructInstType * >( t ) || dynamic_cast< UnionInstType * >( t ) ) { Expression * base = expr->clone(); ResolvExpr::Cost cost = ResolvExpr::Cost::zero; // xxx - carry this cost into the indexer as a base cost? ResolvExpr::referenceToRvalueConversion( base, cost ); addMembers( t->getAggr(), new MemberExpr( dwt, base ), handleConflicts ); } } } } } void Indexer::addWith( std::list< Expression * > & withExprs, BaseSyntaxNode * withStmt ) { for ( Expression * expr : withExprs ) { if ( expr->result ) { AggregateDecl * aggr = expr->result->stripReferences()->getAggr(); assertf( aggr, "WithStmt expr has non-aggregate type: %s", toString( expr->result ).c_str() ); addMembers( aggr, expr, [withStmt](IdData & existing, const std::string &) { // on conflict, delete the identifier existing.deleteStmt = withStmt; return true; }); } } } void Indexer::addIds( const std::list< DeclarationWithType * > & decls ) { for ( auto d : decls ) { addId( d ); } } void Indexer::addTypes( const std::list< TypeDecl * > & tds ) { for ( auto td : tds ) { addType( td ); addIds( td->assertions ); } } void Indexer::addFunctionType( FunctionType * ftype ) { addTypes( ftype->forall ); addIds( ftype->returnVals ); addIds( ftype->parameters ); } void Indexer::enterScope() { ++scope; if ( doDebug ) { std::cerr << "--- Entering scope " << scope << std::endl; } } void Indexer::leaveScope() { using std::cerr; assert( scope > 0 && "cannot leave initial scope" ); if ( doDebug ) { cerr << "--- Leaving scope " << scope << " containing" << std::endl; } --scope; while ( tables && tables->scope > scope ) { if ( doDebug ) { dump( tables->idTable, cerr ); dump( tables->typeTable, cerr ); dump( tables->structTable, cerr ); dump( tables->enumTable, cerr ); dump( tables->unionTable, cerr ); dump( tables->traitTable, cerr ); } // swap tables for base table until we find one at an appropriate scope Indexer::Impl *base = newRef( tables->base.tables ); deleteRef( tables ); tables = base; } } void Indexer::print( std::ostream &os, int indent ) const { using std::cerr; if ( tables ) { os << "--- scope " << tables->scope << " ---" << std::endl; os << "===idTable===" << std::endl; dump( tables->idTable, os ); os << "===typeTable===" << std::endl; dump( tables->typeTable, os ); os << "===structTable===" << std::endl; dump( tables->structTable, os ); os << "===enumTable===" << std::endl; dump( tables->enumTable, os ); os << "===unionTable===" << std::endl; dump( tables->unionTable, os ); os << "===contextTable===" << std::endl; dump( tables->traitTable, os ); tables->base.print( os, indent ); } else { os << "--- end ---" << std::endl; } } Expression * Indexer::IdData::combine( ResolvExpr::Cost & cost ) const { Expression * ret = nullptr; if ( baseExpr ) { Expression * base = baseExpr->clone(); ResolvExpr::referenceToRvalueConversion( base, cost ); ret = new MemberExpr( id, base ); // xxx - this introduces hidden environments, for now remove them. // std::swap( base->env, ret->env ); delete base->env; base->env = nullptr; } else { ret = new VariableExpr( id ); } if ( deleteStmt ) ret = new DeletedExpr( ret, deleteStmt ); return ret; } } // namespace SymTab // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //