// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // Unify.cpp -- // // Author : Richard C. Bilson // Created On : Sun May 17 12:27:10 2015 // Last Modified By : Peter A. Buhr // Last Modified On : Fri Dec 13 23:43:05 2019 // Update Count : 46 // #include "Unify.hpp" #include // for assertf, assert #include // for back_insert_iterator, back_inserter #include // for _Rb_tree_const_iterator, _Rb_tree_i... #include // for unique_ptr #include // for set #include // for string, operator==, operator!=, bas... #include // for pair, move #include #include "AST/Copy.hpp" #include "AST/Decl.hpp" #include "AST/Node.hpp" #include "AST/Pass.hpp" #include "AST/Print.hpp" #include "AST/Type.hpp" #include "AST/TypeEnvironment.hpp" #include "Common/Eval.hpp" // for eval #include "CommonType.hpp" // for commonType #include "FindOpenVars.hpp" // for findOpenVars #include "SpecCost.hpp" // for SpecCost #include "Tuples/Tuples.hpp" // for isTtype #include "Typeops.hpp" // for flatten, occurs namespace ast { class SymbolTable; } // #define DEBUG namespace ResolvExpr { bool typesCompatible( const ast::Type * first, const ast::Type * second, const ast::TypeEnvironment & env ) { ast::TypeEnvironment newEnv; ast::OpenVarSet open, closed; ast::AssertionSet need, have; ast::ptr newFirst( first ), newSecond( second ); env.apply( newFirst ); env.apply( newSecond ); // findOpenVars( newFirst, open, closed, need, have, FirstClosed ); findOpenVars( newSecond, open, closed, need, have, newEnv, FirstOpen ); return unifyExact(newFirst, newSecond, newEnv, need, have, open, noWiden() ); } bool typesCompatibleIgnoreQualifiers( const ast::Type * first, const ast::Type * second, const ast::TypeEnvironment & env ) { ast::TypeEnvironment newEnv; ast::OpenVarSet open; ast::AssertionSet need, have; ast::Type * newFirst = shallowCopy( first ); ast::Type * newSecond = shallowCopy( second ); newFirst ->qualifiers = {}; newSecond->qualifiers = {}; ast::ptr< ast::Type > t1_(newFirst ); ast::ptr< ast::Type > t2_(newSecond); ast::ptr< ast::Type > subFirst = env.apply(newFirst).node; ast::ptr< ast::Type > subSecond = env.apply(newSecond).node; return unifyExact( subFirst, subSecond, newEnv, need, have, open, noWiden() ); } namespace { /// Replaces ttype variables with their bound types. /// If this isn't done when satifying ttype assertions, then argument lists can have /// different size and structure when they should be compatible. struct TtypeExpander : public ast::WithShortCircuiting, public ast::PureVisitor { ast::TypeEnvironment & tenv; TtypeExpander( ast::TypeEnvironment & env ) : tenv( env ) {} const ast::Type * postvisit( const ast::TypeInstType * typeInst ) { if ( const ast::EqvClass * clz = tenv.lookup( *typeInst ) ) { // expand ttype parameter into its actual type if ( clz->data.kind == ast::TypeDecl::Ttype && clz->bound ) { return clz->bound; } } return typeInst; } }; } std::vector< ast::ptr< ast::Type > > flattenList( const std::vector< ast::ptr< ast::Type > > & src, ast::TypeEnvironment & env ) { std::vector< ast::ptr< ast::Type > > dst; dst.reserve( src.size() ); for ( const auto & d : src ) { ast::Pass expander( env ); // TtypeExpander pass is impure (may mutate nodes in place) // need to make nodes shared to prevent accidental mutation ast::ptr dc = d->accept(expander); auto types = flatten( dc ); for ( ast::ptr< ast::Type > & t : types ) { // outermost const, volatile, _Atomic qualifiers in parameters should not play // a role in the unification of function types, since they do not determine // whether a function is callable. // NOTE: **must** consider at least mutex qualifier, since functions can be // overloaded on outermost mutex and a mutex function has different // requirements than a non-mutex function remove_qualifiers( t, ast::CV::Const | ast::CV::Volatile | ast::CV::Atomic ); dst.emplace_back( t ); } } return dst; } // Unification of Expressions // // Boolean outcome (obvious): Are they basically spelled the same? // Side effect of binding variables (subtle): if `sizeof(int)` ===_expr `sizeof(T)` then `int` ===_ty `T` // // Context: if `float[VAREXPR1]` ===_ty `float[VAREXPR2]` then `VAREXPR1` ===_expr `VAREXPR2` // where the VAREXPR are meant as notational metavariables representing the fact that unification always // sees distinct ast::VariableExpr objects at these positions static bool unify( const ast::Expr * e1, const ast::Expr * e2, ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open, WidenMode widen ); class UnifyExpr final : public ast::WithShortCircuiting { const ast::Expr * e2; ast::TypeEnvironment & tenv; ast::AssertionSet & need; ast::AssertionSet & have; const ast::OpenVarSet & open; WidenMode widen; public: bool result; private: void tryMatchOnStaticValue( const ast::Expr * e1 ) { Evaluation r1 = eval(e1); Evaluation r2 = eval(e2); if ( !r1.hasKnownValue ) return; if ( !r2.hasKnownValue ) return; if ( r1.knownValue != r2.knownValue ) return; visit_children = false; result = true; } public: void previsit( const ast::Node * ) { assert(false); } void previsit( const ast::Expr * e1 ) { tryMatchOnStaticValue( e1 ); visit_children = false; } void previsit( const ast::CastExpr * e1 ) { tryMatchOnStaticValue( e1 ); if ( result ) { assert( visit_children == false ); } else { assert( visit_children == true ); visit_children = false; auto e2c = dynamic_cast< const ast::CastExpr * >( e2 ); if ( !e2c ) return; // inspect casts' target types if ( !unifyExact( e1->result, e2c->result, tenv, need, have, open, widen ) ) return; // inspect casts' inner expressions result = unify( e1->arg, e2c->arg, tenv, need, have, open, widen ); } } void previsit( const ast::VariableExpr * e1 ) { tryMatchOnStaticValue( e1 ); if ( result ) { assert( visit_children == false ); } else { assert( visit_children == true ); visit_children = false; auto e2v = dynamic_cast< const ast::VariableExpr * >( e2 ); if ( !e2v ) return; assert(e1->var); assert(e2v->var); // conservative: variable exprs match if their declarations are represented by the same C++ AST object result = (e1->var == e2v->var); } } void previsit( const ast::SizeofExpr * e1 ) { tryMatchOnStaticValue( e1 ); if ( result ) { assert( visit_children == false ); } else { assert( visit_children == true ); visit_children = false; auto e2so = dynamic_cast< const ast::SizeofExpr * >( e2 ); if ( !e2so ) return; // expression unification calls type unification (mutual recursion) result = unifyExact( e1->type, e2so->type, tenv, need, have, open, widen ); } } UnifyExpr( const ast::Expr * e2, ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open, WidenMode widen ) : e2( e2 ), tenv(env), need(need), have(have), open(open), widen(widen), result(false) {} }; static bool unify( const ast::Expr * e1, const ast::Expr * e2, ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open, WidenMode widen ) { assert( e1 && e2 ); return ast::Pass::read( e1, e2, env, need, have, open, widen ); } class Unify final : public ast::WithShortCircuiting { const ast::Type * type2; ast::TypeEnvironment & tenv; ast::AssertionSet & need; ast::AssertionSet & have; const ast::OpenVarSet & open; WidenMode widen; public: static size_t traceId; bool result; Unify( const ast::Type * type2, ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open, WidenMode widen ) : type2(type2), tenv(env), need(need), have(have), open(open), widen(widen), result(false) {} void previsit( const ast::Node * ) { visit_children = false; } void postvisit( const ast::VoidType * ) { result = dynamic_cast< const ast::VoidType * >( type2 ); } void postvisit( const ast::BasicType * basic ) { if ( auto basic2 = dynamic_cast< const ast::BasicType * >( type2 ) ) { result = basic->kind == basic2->kind; } } void postvisit( const ast::PointerType * pointer ) { if ( auto pointer2 = dynamic_cast< const ast::PointerType * >( type2 ) ) { result = unifyExact( pointer->base, pointer2->base, tenv, need, have, open, noWiden()); } } void postvisit( const ast::ArrayType * array ) { auto array2 = dynamic_cast< const ast::ArrayType * >( type2 ); if ( !array2 ) return; // Permit cases where one side has a dimension or isVarLen, // while the other side is the opposite. // Acheves a wildcard-iterpretation semantics, where lack of // dimension (`float a[]` or `float a[25][*]`) means // "anything here is fine." // Sole known case where a verbatim-match semantics is intended // is typedef redefinition, for which extra checking is added // in src/Validate/ReplaceTypedef.cpp. if ( array->dimension && array2->dimension ) { assert( array2->dimension ); // type unification calls expression unification (mutual recursion) if ( !unify(array->dimension, array2->dimension, tenv, need, have, open, widen) ) return; } result = unifyExact( array->base, array2->base, tenv, need, have, open, noWiden()); } void postvisit( const ast::ReferenceType * ref ) { if ( auto ref2 = dynamic_cast< const ast::ReferenceType * >( type2 ) ) { result = unifyExact( ref->base, ref2->base, tenv, need, have, open, noWiden()); } } private: template< typename Iter > static bool unifyTypeList( Iter crnt1, Iter end1, Iter crnt2, Iter end2, ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open ) { while ( crnt1 != end1 && crnt2 != end2 ) { const ast::Type * t1 = *crnt1; const ast::Type * t2 = *crnt2; bool isTuple1 = Tuples::isTtype( t1 ); bool isTuple2 = Tuples::isTtype( t2 ); // assumes here that ttype *must* be last parameter if ( isTuple1 && !isTuple2 ) { // combine remainder of list2, then unify return unifyExact( t1, tupleFromTypes( crnt2, end2 ), env, need, have, open, noWiden() ); } else if ( !isTuple1 && isTuple2 ) { // combine remainder of list1, then unify return unifyExact( tupleFromTypes( crnt1, end1 ), t2, env, need, have, open, noWiden() ); } if ( !unifyExact( t1, t2, env, need, have, open, noWiden() ) ) return false; ++crnt1; ++crnt2; } // May get to the end of one argument list before the other. This is only okay if the // other is a ttype if ( crnt1 != end1 ) { // try unifying empty tuple with ttype const ast::Type * t1 = *crnt1; if ( !Tuples::isTtype( t1 ) ) return false; return unifyExact( t1, tupleFromTypes( crnt2, end2 ), env, need, have, open, noWiden() ); } else if ( crnt2 != end2 ) { // try unifying empty tuple with ttype const ast::Type * t2 = *crnt2; if ( !Tuples::isTtype( t2 ) ) return false; return unifyExact( tupleFromTypes( crnt1, end1 ), t2, env, need, have, open, noWiden() ); } return true; } static bool unifyTypeList( const std::vector< ast::ptr< ast::Type > > & list1, const std::vector< ast::ptr< ast::Type > > & list2, ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open ) { return unifyTypeList( list1.begin(), list1.end(), list2.begin(), list2.end(), env, need, have, open); } static void markAssertionSet( ast::AssertionSet & assns, const ast::VariableExpr * assn ) { auto i = assns.find( assn ); if ( i != assns.end() ) { i->second.isUsed = true; } } /// mark all assertions in `type` used in both `assn1` and `assn2` static void markAssertions( ast::AssertionSet & assn1, ast::AssertionSet & assn2, const ast::FunctionType * type ) { for ( auto & assert : type->assertions ) { markAssertionSet( assn1, assert ); markAssertionSet( assn2, assert ); } } public: void postvisit( const ast::FunctionType * func ) { auto func2 = dynamic_cast< const ast::FunctionType * >( type2 ); if ( !func2 ) return; if ( func->isVarArgs != func2->isVarArgs ) return; // Flatten the parameter lists for both functions so that tuple structure does not // affect unification. Does not actually mutate function parameters. auto params = flattenList( func->params, tenv ); auto params2 = flattenList( func2->params, tenv ); // sizes don't have to match if ttypes are involved; need to be more precise w.r.t. // where the ttype is to prevent errors if ( ( params.size() != params2.size() || func->returns.size() != func2->returns.size() ) && !func->isTtype() && !func2->isTtype() ) return; if ( !unifyTypeList( params, params2, tenv, need, have, open ) ) return; if ( !unifyTypeList( func->returns, func2->returns, tenv, need, have, open ) ) return; markAssertions( have, need, func ); markAssertions( have, need, func2 ); result = true; } private: // Returns: other, cast as XInstType // Assigns this->result: whether types are compatible (up to generic parameters) template< typename XInstType > const XInstType * handleRefType( const XInstType * inst, const ast::Type * other ) { // check that the other type is compatible and named the same auto otherInst = dynamic_cast< const XInstType * >( other ); if ( otherInst && inst->name == otherInst->name ) { this->result = otherInst; } return otherInst; } /// Creates a tuple type based on a list of TypeExpr template< typename Iter > static const ast::Type * tupleFromExprs( const ast::TypeExpr * param, Iter & crnt, Iter end, ast::CV::Qualifiers qs ) { std::vector< ast::ptr< ast::Type > > types; do { types.emplace_back( param->type ); ++crnt; if ( crnt == end ) break; param = strict_dynamic_cast< const ast::TypeExpr * >( crnt->get() ); } while(true); return new ast::TupleType( std::move(types), qs ); } template< typename XInstType > void handleGenericRefType( const XInstType * inst, const ast::Type * other ) { // check that other type is compatible and named the same const XInstType * otherInst = handleRefType( inst, other ); if ( !this->result ) return; // check that parameters of types unify, if any const std::vector< ast::ptr< ast::Expr > > & params = inst->params; const std::vector< ast::ptr< ast::Expr > > & params2 = otherInst->params; auto it = params.begin(); auto jt = params2.begin(); for ( ; it != params.end() && jt != params2.end(); ++it, ++jt ) { auto param = strict_dynamic_cast< const ast::TypeExpr * >( it->get() ); auto param2 = strict_dynamic_cast< const ast::TypeExpr * >( jt->get() ); ast::ptr< ast::Type > pty = param->type; ast::ptr< ast::Type > pty2 = param2->type; bool isTuple = Tuples::isTtype( pty ); bool isTuple2 = Tuples::isTtype( pty2 ); if ( isTuple && isTuple2 ) { ++it; ++jt; // skip ttype parameters before break } else if ( isTuple ) { // bundle remaining params into tuple pty2 = tupleFromExprs( param2, jt, params2.end(), pty->qualifiers ); ++it; // skip ttype parameter for break } else if ( isTuple2 ) { // bundle remaining params into tuple pty = tupleFromExprs( param, it, params.end(), pty2->qualifiers ); ++jt; // skip ttype parameter for break } if ( !unifyExact( pty, pty2, tenv, need, have, open, noWiden() ) ) { result = false; return; } // ttype parameter should be last if ( isTuple || isTuple2 ) break; } result = it == params.end() && jt == params2.end(); } public: void postvisit( const ast::StructInstType * aggrType ) { handleGenericRefType( aggrType, type2 ); } void postvisit( const ast::UnionInstType * aggrType ) { handleGenericRefType( aggrType, type2 ); } void postvisit( const ast::EnumInstType * aggrType ) { handleRefType( aggrType, type2 ); } void postvisit( const ast::TraitInstType * aggrType ) { handleRefType( aggrType, type2 ); } void postvisit( const ast::TypeInstType * typeInst ) { // assert( open.find( *typeInst ) == open.end() ); auto otherInst = dynamic_cast< const ast::TypeInstType * >( type2 ); if ( otherInst && typeInst->name == otherInst->name ) { this->result = otherInst; } } private: /// Creates a tuple type based on a list of Type static bool unifyList( const std::vector< ast::ptr< ast::Type > > & list1, const std::vector< ast::ptr< ast::Type > > & list2, ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open ) { auto crnt1 = list1.begin(); auto crnt2 = list2.begin(); while ( crnt1 != list1.end() && crnt2 != list2.end() ) { const ast::Type * t1 = *crnt1; const ast::Type * t2 = *crnt2; bool isTuple1 = Tuples::isTtype( t1 ); bool isTuple2 = Tuples::isTtype( t2 ); // assumes ttype must be last parameter if ( isTuple1 && !isTuple2 ) { // combine entirety of list2, then unify return unifyExact( t1, tupleFromTypes( list2 ), env, need, have, open, noWiden() ); } else if ( !isTuple1 && isTuple2 ) { // combine entirety of list1, then unify return unifyExact( tupleFromTypes( list1 ), t2, env, need, have, open, noWiden() ); } if ( !unifyExact( t1, t2, env, need, have, open, noWiden() ) ) return false; ++crnt1; ++crnt2; } if ( crnt1 != list1.end() ) { // try unifying empty tuple type with ttype const ast::Type * t1 = *crnt1; if ( !Tuples::isTtype( t1 ) ) return false; // xxx - this doesn't generate an empty tuple, contrary to comment; both ported // from Rob's code return unifyExact( t1, tupleFromTypes( list2 ), env, need, have, open, noWiden() ); } else if ( crnt2 != list2.end() ) { // try unifying empty tuple with ttype const ast::Type * t2 = *crnt2; if ( !Tuples::isTtype( t2 ) ) return false; // xxx - this doesn't generate an empty tuple, contrary to comment; both ported // from Rob's code return unifyExact( tupleFromTypes( list1 ), t2, env, need, have, open, noWiden() ); } return true; } public: void postvisit( const ast::TupleType * tuple ) { auto tuple2 = dynamic_cast< const ast::TupleType * >( type2 ); if ( ! tuple2 ) return; ast::Pass expander{ tenv }; const ast::Type * flat = tuple->accept( expander ); const ast::Type * flat2 = tuple2->accept( expander ); auto types = flatten( flat ); auto types2 = flatten( flat2 ); result = unifyList( types, types2, tenv, need, have, open ); } void postvisit( const ast::VarArgsType * ) { result = dynamic_cast< const ast::VarArgsType * >( type2 ); } void postvisit( const ast::ZeroType * ) { result = dynamic_cast< const ast::ZeroType * >( type2 ); } void postvisit( const ast::OneType * ) { result = dynamic_cast< const ast::OneType * >( type2 ); } }; // size_t Unify::traceId = Stats::Heap::new_stacktrace_id("Unify"); bool unify( const ast::ptr & type1, const ast::ptr & type2, ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, ast::OpenVarSet & open ) { ast::ptr common; return unify( type1, type2, env, need, have, open, common ); } bool unify( const ast::ptr & type1, const ast::ptr & type2, ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, ast::OpenVarSet & open, ast::ptr & common ) { ast::OpenVarSet closed; // findOpenVars( type1, open, closed, need, have, FirstClosed ); findOpenVars( type2, open, closed, need, have, env, FirstOpen ); return unifyInexact( type1, type2, env, need, have, open, WidenMode{ true, true }, common ); } bool unifyExact( const ast::Type * type1, const ast::Type * type2, ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open, WidenMode widen ) { if ( type1->qualifiers != type2->qualifiers ) return false; auto var1 = dynamic_cast< const ast::TypeInstType * >( type1 ); auto var2 = dynamic_cast< const ast::TypeInstType * >( type2 ); bool isopen1 = var1 && env.lookup(*var1); bool isopen2 = var2 && env.lookup(*var2); if ( isopen1 && isopen2 ) { if ( var1->base->kind != var2->base->kind ) return false; return env.bindVarToVar( var1, var2, ast::TypeData{ var1->base->kind, var1->base->sized||var2->base->sized }, need, have, open, widen ); } else if ( isopen1 ) { return env.bindVar( var1, type2, ast::TypeData{var1->base}, need, have, open, widen ); } else if ( isopen2 ) { return env.bindVar( var2, type1, ast::TypeData{var2->base}, need, have, open, widen ); } else { return ast::Pass::read( type1, type2, env, need, have, open, widen ); } } bool unifyInexact( const ast::ptr & type1, const ast::ptr & type2, ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open, WidenMode widen, ast::ptr & common ) { ast::CV::Qualifiers q1 = type1->qualifiers, q2 = type2->qualifiers; // force t1 and t2 to be cloned if their qualifiers must be stripped, so that type1 and // type2 are left unchanged; calling convention forces type{1,2}->strong_ref >= 1 ast::Type * t1 = shallowCopy(type1.get()); ast::Type * t2 = shallowCopy(type2.get()); t1->qualifiers = {}; t2->qualifiers = {}; ast::ptr< ast::Type > t1_(t1); ast::ptr< ast::Type > t2_(t2); if ( unifyExact( t1, t2, env, need, have, open, widen ) ) { // if exact unification on unqualified types, try to merge qualifiers if ( q1 == q2 || ( ( q1 > q2 || widen.first ) && ( q2 > q1 || widen.second ) ) ) { t1->qualifiers = q1 | q2; common = t1; return true; } else { return false; } } else if (( common = commonType( t1, t2, env, need, have, open, widen ))) { // no exact unification, but common type auto c = shallowCopy(common.get()); c->qualifiers = q1 | q2; common = c; return true; } else { return false; } } ast::ptr extractResultType( const ast::FunctionType * func ) { if ( func->returns.empty() ) return new ast::VoidType(); if ( func->returns.size() == 1 ) return func->returns[0]; std::vector> tys; for ( const auto & decl : func->returns ) { tys.emplace_back( decl ); } return new ast::TupleType( std::move(tys) ); } } // namespace ResolvExpr // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //