// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // Unify.cc -- // // Author : Richard C. Bilson // Created On : Sun May 17 12:27:10 2015 // Last Modified By : Peter A. Buhr // Last Modified On : Thu Mar 16 16:22:54 2017 // Update Count : 42 // #include // for assertf, assert #include // for back_insert_iterator, back_inserter #include // for _Rb_tree_const_iterator, _Rb_tree_i... #include // for set #include // for string, operator==, operator!=, bas... #include // for pair #include "Common/PassVisitor.h" // for PassVisitor #include "FindOpenVars.h" // for findOpenVars #include "Parser/LinkageSpec.h" // for C #include "SynTree/Constant.h" // for Constant #include "SynTree/Declaration.h" // for TypeDecl, TypeDecl::Data, Declarati... #include "SynTree/Expression.h" // for TypeExpr, Expression, ConstantExpr #include "SynTree/Mutator.h" // for Mutator #include "SynTree/Type.h" // for Type, TypeInstType, FunctionType #include "SynTree/Visitor.h" // for Visitor #include "Tuples/Tuples.h" // for isTtype #include "TypeEnvironment.h" // for EqvClass, AssertionSet, OpenVarSet #include "Unify.h" #include "typeops.h" // for flatten, occurs, commonType namespace SymTab { class Indexer; } // namespace SymTab // #define DEBUG namespace ResolvExpr { struct Unify : public WithShortCircuiting { Unify( Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer ); bool get_result() const { return result; } void previsit( BaseSyntaxNode * ) { visit_children = false; } void postvisit( VoidType * voidType ); void postvisit( BasicType * basicType ); void postvisit( PointerType * pointerType ); void postvisit( ArrayType * arrayType ); void postvisit( ReferenceType * refType ); void postvisit( FunctionType * functionType ); void postvisit( StructInstType * aggregateUseType ); void postvisit( UnionInstType * aggregateUseType ); void postvisit( EnumInstType * aggregateUseType ); void postvisit( TraitInstType * aggregateUseType ); void postvisit( TypeInstType * aggregateUseType ); void postvisit( TupleType * tupleType ); void postvisit( VarArgsType * varArgsType ); void postvisit( ZeroType * zeroType ); void postvisit( OneType * oneType ); private: template< typename RefType > void handleRefType( RefType *inst, Type *other ); template< typename RefType > void handleGenericRefType( RefType *inst, Type *other ); bool result; Type *type2; // inherited TypeEnvironment &env; AssertionSet &needAssertions; AssertionSet &haveAssertions; const OpenVarSet &openVars; WidenMode widenMode; const SymTab::Indexer &indexer; }; /// Attempts an inexact unification of type1 and type2. /// Returns false if no such unification; if the types can be unified, sets common (unless they unify exactly and have identical type qualifiers) bool unifyInexact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer, Type *&common ); bool unifyExact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer ); bool typesCompatible( Type *first, Type *second, const SymTab::Indexer &indexer, const TypeEnvironment &env ) { TypeEnvironment newEnv; OpenVarSet openVars, closedVars; // added closedVars AssertionSet needAssertions, haveAssertions; Type *newFirst = first->clone(), *newSecond = second->clone(); env.apply( newFirst ); env.apply( newSecond ); // do we need to do this? Seems like we do, types should be able to be compatible if they // have free variables that can unify findOpenVars( newFirst, openVars, closedVars, needAssertions, haveAssertions, false ); findOpenVars( newSecond, openVars, closedVars, needAssertions, haveAssertions, true ); return unifyExact( newFirst, newSecond, newEnv, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); } bool typesCompatibleIgnoreQualifiers( Type *first, Type *second, const SymTab::Indexer &indexer, const TypeEnvironment &env ) { TypeEnvironment newEnv; OpenVarSet openVars; AssertionSet needAssertions, haveAssertions; Type *newFirst = first->clone(), *newSecond = second->clone(); env.apply( newFirst ); env.apply( newSecond ); newFirst->get_qualifiers() = Type::Qualifiers(); newSecond->get_qualifiers() = Type::Qualifiers(); /// std::cerr << "first is "; /// first->print( std::cerr ); /// std::cerr << std::endl << "second is "; /// second->print( std::cerr ); /// std::cerr << std::endl << "newFirst is "; /// newFirst->print( std::cerr ); /// std::cerr << std::endl << "newSecond is "; /// newSecond->print( std::cerr ); /// std::cerr << std::endl; return unifyExact( newFirst, newSecond, newEnv, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); } bool isFtype( Type *type ) { if ( dynamic_cast< FunctionType* >( type ) ) { return true; } else if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( type ) ) { return typeInst->get_isFtype(); } // if return false; } bool tyVarCompatible( const TypeDecl::Data & data, Type *type ) { switch ( data.kind ) { case TypeDecl::Dtype: // to bind to an object type variable, the type must not be a function type. // if the type variable is specified to be a complete type then the incoming // type must also be complete // xxx - should this also check that type is not a tuple type and that it's not a ttype? return ! isFtype( type ) && (! data.isComplete || type->isComplete() ); case TypeDecl::Ftype: return isFtype( type ); case TypeDecl::Ttype: // ttype unifies with any tuple type return dynamic_cast< TupleType * >( type ) || Tuples::isTtype( type ); } // switch return false; } bool bindVar( TypeInstType *typeInst, Type *other, const TypeDecl::Data & data, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer ) { // remove references from other, so that type variables can only bind to value types other = other->stripReferences(); OpenVarSet::const_iterator tyvar = openVars.find( typeInst->get_name() ); assert( tyvar != openVars.end() ); if ( ! tyVarCompatible( tyvar->second, other ) ) { return false; } // if if ( occurs( other, typeInst->get_name(), env ) ) { return false; } // if EqvClass curClass; if ( env.lookup( typeInst->get_name(), curClass ) ) { if ( curClass.type ) { Type *common = 0; // attempt to unify equivalence class type (which has qualifiers stripped, so they must be restored) with the type to bind to Type* newType = curClass.type->clone(); newType->get_qualifiers() = typeInst->get_qualifiers(); if ( unifyInexact( newType, other, env, needAssertions, haveAssertions, openVars, widenMode & WidenMode( curClass.allowWidening, true ), indexer, common ) ) { if ( common ) { common->get_qualifiers() = Type::Qualifiers(); curClass.type = common; env.add( curClass ); } // if return true; } else { return false; } // if } else { curClass.type = other->clone(); curClass.type->get_qualifiers() = Type::Qualifiers(); curClass.allowWidening = widenMode.widenFirst && widenMode.widenSecond; env.add( curClass ); } // if } else { EqvClass newClass; newClass.vars.insert( typeInst->get_name() ); newClass.type = other->clone(); newClass.type->get_qualifiers() = Type::Qualifiers(); newClass.allowWidening = widenMode.widenFirst && widenMode.widenSecond; newClass.data = data; env.add( newClass ); } // if return true; } bool bindVarToVar( TypeInstType *var1, TypeInstType *var2, const TypeDecl::Data & data, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer ) { bool result = true; EqvClass class1, class2; bool hasClass1 = false, hasClass2 = false; bool widen1 = false, widen2 = false; Type *type1 = 0, *type2 = 0; if ( env.lookup( var1->get_name(), class1 ) ) { hasClass1 = true; if ( class1.type ) { if ( occurs( class1.type, var2->get_name(), env ) ) { return false; } // if type1 = class1.type->clone(); } // if widen1 = widenMode.widenFirst && class1.allowWidening; } // if if ( env.lookup( var2->get_name(), class2 ) ) { hasClass2 = true; if ( class2.type ) { if ( occurs( class2.type, var1->get_name(), env ) ) { return false; } // if type2 = class2.type->clone(); } // if widen2 = widenMode.widenSecond && class2.allowWidening; } // if if ( type1 && type2 ) { // std::cerr << "has type1 && type2" << std::endl; WidenMode newWidenMode ( widen1, widen2 ); Type *common = 0; if ( unifyInexact( type1, type2, env, needAssertions, haveAssertions, openVars, newWidenMode, indexer, common ) ) { class1.vars.insert( class2.vars.begin(), class2.vars.end() ); class1.allowWidening = widen1 && widen2; if ( common ) { common->get_qualifiers() = Type::Qualifiers(); class1.type = common; } // if env.add( class1 ); } else { result = false; } // if } else if ( hasClass1 && hasClass2 ) { if ( type1 ) { class1.vars.insert( class2.vars.begin(), class2.vars.end() ); class1.allowWidening = widen1; env.add( class1 ); } else { class2.vars.insert( class1.vars.begin(), class1.vars.end() ); class2.allowWidening = widen2; env.add( class2 ); } // if } else if ( hasClass1 ) { class1.vars.insert( var2->get_name() ); class1.allowWidening = widen1; env.add( class1 ); } else if ( hasClass2 ) { class2.vars.insert( var1->get_name() ); class2.allowWidening = widen2; env.add( class2 ); } else { EqvClass newClass; newClass.vars.insert( var1->get_name() ); newClass.vars.insert( var2->get_name() ); newClass.allowWidening = widen1 && widen2; newClass.data = data; env.add( newClass ); } // if return result; } bool unify( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, OpenVarSet &openVars, const SymTab::Indexer &indexer ) { OpenVarSet closedVars; findOpenVars( type1, openVars, closedVars, needAssertions, haveAssertions, false ); findOpenVars( type2, openVars, closedVars, needAssertions, haveAssertions, true ); Type *commonType = 0; return unifyInexact( type1, type2, env, needAssertions, haveAssertions, openVars, WidenMode( true, true ), indexer, commonType ); } bool unify( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, OpenVarSet &openVars, const SymTab::Indexer &indexer, Type *&commonType ) { OpenVarSet closedVars; findOpenVars( type1, openVars, closedVars, needAssertions, haveAssertions, false ); findOpenVars( type2, openVars, closedVars, needAssertions, haveAssertions, true ); return unifyInexact( type1, type2, env, needAssertions, haveAssertions, openVars, WidenMode( true, true ), indexer, commonType ); } bool unifyExact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer ) { #ifdef DEBUG TypeEnvironment debugEnv( env ); #endif if ( type1->get_qualifiers() != type2->get_qualifiers() ) { return false; } bool result; TypeInstType *var1 = dynamic_cast< TypeInstType* >( type1 ); TypeInstType *var2 = dynamic_cast< TypeInstType* >( type2 ); OpenVarSet::const_iterator entry1, entry2; if ( var1 ) { entry1 = openVars.find( var1->get_name() ); } // if if ( var2 ) { entry2 = openVars.find( var2->get_name() ); } // if bool isopen1 = var1 && ( entry1 != openVars.end() ); bool isopen2 = var2 && ( entry2 != openVars.end() ); if ( isopen1 && isopen2 && entry1->second == entry2->second ) { result = bindVarToVar( var1, var2, entry1->second, env, needAssertions, haveAssertions, openVars, widenMode, indexer ); } else if ( isopen1 ) { result = bindVar( var1, type2, entry1->second, env, needAssertions, haveAssertions, openVars, widenMode, indexer ); } else if ( isopen2 ) { result = bindVar( var2, type1, entry2->second, env, needAssertions, haveAssertions, openVars, widenMode, indexer ); } else { PassVisitor comparator( type2, env, needAssertions, haveAssertions, openVars, widenMode, indexer ); type1->accept( comparator ); result = comparator.pass.get_result(); } // if #ifdef DEBUG std::cerr << "============ unifyExact" << std::endl; std::cerr << "type1 is "; type1->print( std::cerr ); std::cerr << std::endl << "type2 is "; type2->print( std::cerr ); std::cerr << std::endl << "openVars are "; printOpenVarSet( openVars, std::cerr, 8 ); std::cerr << std::endl << "input env is " << std::endl; debugEnv.print( std::cerr, 8 ); std::cerr << std::endl << "result env is " << std::endl; env.print( std::cerr, 8 ); std::cerr << "result is " << result << std::endl; #endif return result; } bool unifyExact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, OpenVarSet &openVars, const SymTab::Indexer &indexer ) { return unifyExact( type1, type2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); } bool unifyInexact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer, Type *&common ) { Type::Qualifiers tq1 = type1->get_qualifiers(), tq2 = type2->get_qualifiers(); type1->get_qualifiers() = Type::Qualifiers(); type2->get_qualifiers() = Type::Qualifiers(); bool result; #ifdef DEBUG std::cerr << "unifyInexact type 1 is "; type1->print( std::cerr ); std::cerr << " type 2 is "; type2->print( std::cerr ); std::cerr << std::endl; #endif if ( ! unifyExact( type1, type2, env, needAssertions, haveAssertions, openVars, widenMode, indexer ) ) { #ifdef DEBUG std::cerr << "unifyInexact: no exact unification found" << std::endl; #endif if ( ( common = commonType( type1, type2, widenMode.widenFirst, widenMode.widenSecond, indexer, env, openVars ) ) ) { common->get_qualifiers() = tq1 | tq2; #ifdef DEBUG std::cerr << "unifyInexact: common type is "; common->print( std::cerr ); std::cerr << std::endl; #endif result = true; } else { #ifdef DEBUG std::cerr << "unifyInexact: no common type found" << std::endl; #endif result = false; } // if } else { if ( tq1 != tq2 ) { if ( ( tq1 > tq2 || widenMode.widenFirst ) && ( tq2 > tq1 || widenMode.widenSecond ) ) { common = type1->clone(); common->get_qualifiers() = tq1 | tq2; result = true; } else { result = false; } // if } else { common = type1->clone(); common->get_qualifiers() = tq1 | tq2; result = true; } // if } // if type1->get_qualifiers() = tq1; type2->get_qualifiers() = tq2; return result; } Unify::Unify( Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer ) : result( false ), type2( type2 ), env( env ), needAssertions( needAssertions ), haveAssertions( haveAssertions ), openVars( openVars ), widenMode( widenMode ), indexer( indexer ) { } void Unify::postvisit( __attribute__((unused)) VoidType *voidType) { result = dynamic_cast< VoidType* >( type2 ); } void Unify::postvisit(BasicType *basicType) { if ( BasicType *otherBasic = dynamic_cast< BasicType* >( type2 ) ) { result = basicType->get_kind() == otherBasic->get_kind(); } // if } void markAssertionSet( AssertionSet &assertions, DeclarationWithType *assert ) { /// std::cerr << "assertion set is" << std::endl; /// printAssertionSet( assertions, std::cerr, 8 ); /// std::cerr << "looking for "; /// assert->print( std::cerr ); /// std::cerr << std::endl; AssertionSet::iterator i = assertions.find( assert ); if ( i != assertions.end() ) { /// std::cerr << "found it!" << std::endl; i->second.isUsed = true; } // if } void markAssertions( AssertionSet &assertion1, AssertionSet &assertion2, Type *type ) { for ( std::list< TypeDecl* >::const_iterator tyvar = type->get_forall().begin(); tyvar != type->get_forall().end(); ++tyvar ) { for ( std::list< DeclarationWithType* >::const_iterator assert = (*tyvar)->get_assertions().begin(); assert != (*tyvar)->get_assertions().end(); ++assert ) { markAssertionSet( assertion1, *assert ); markAssertionSet( assertion2, *assert ); } // for } // for } void Unify::postvisit(PointerType *pointerType) { if ( PointerType *otherPointer = dynamic_cast< PointerType* >( type2 ) ) { result = unifyExact( pointerType->get_base(), otherPointer->get_base(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); markAssertions( haveAssertions, needAssertions, pointerType ); markAssertions( haveAssertions, needAssertions, otherPointer ); } // if } void Unify::postvisit(ReferenceType *refType) { if ( ReferenceType *otherRef = dynamic_cast< ReferenceType* >( type2 ) ) { result = unifyExact( refType->get_base(), otherRef->get_base(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); markAssertions( haveAssertions, needAssertions, refType ); markAssertions( haveAssertions, needAssertions, otherRef ); } // if } void Unify::postvisit(ArrayType *arrayType) { ArrayType *otherArray = dynamic_cast< ArrayType* >( type2 ); // to unify, array types must both be VLA or both not VLA // and must both have a dimension expression or not have a dimension if ( otherArray && arrayType->get_isVarLen() == otherArray->get_isVarLen() ) { if ( ! arrayType->get_isVarLen() && ! otherArray->get_isVarLen() && arrayType->get_dimension() != 0 && otherArray->get_dimension() != 0 ) { ConstantExpr * ce1 = dynamic_cast< ConstantExpr * >( arrayType->get_dimension() ); ConstantExpr * ce2 = dynamic_cast< ConstantExpr * >( otherArray->get_dimension() ); // see C11 Reference Manual 6.7.6.2.6 // two array types with size specifiers that are integer constant expressions are // compatible if both size specifiers have the same constant value if ( ce1 && ce2 ) { Constant * c1 = ce1->get_constant(); Constant * c2 = ce2->get_constant(); if ( c1->get_value() != c2->get_value() ) { // does not unify if the dimension is different return; } } } result = unifyExact( arrayType->get_base(), otherArray->get_base(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); } // if } template< typename Iterator, typename Func > Type* combineTypes( Iterator begin, Iterator end, Func & toType ) { std::list< Type * > types; for ( ; begin != end; ++begin ) { // it's guaranteed that a ttype variable will be bound to a flat tuple, so ensure that this results in a flat tuple flatten( toType( *begin ), back_inserter( types ) ); } return new TupleType{ Type::Qualifiers(), types }; } template< typename Iterator1, typename Iterator2 > bool unifyDeclList( Iterator1 list1Begin, Iterator1 list1End, Iterator2 list2Begin, Iterator2 list2End, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, const SymTab::Indexer &indexer ) { auto get_type = [](DeclarationWithType * dwt){ return dwt->get_type(); }; for ( ; list1Begin != list1End && list2Begin != list2End; ++list1Begin, ++list2Begin ) { Type * t1 = (*list1Begin)->get_type(); Type * t2 = (*list2Begin)->get_type(); bool isTtype1 = Tuples::isTtype( t1 ); bool isTtype2 = Tuples::isTtype( t2 ); // xxx - assumes ttype must be last parameter // xxx - there may be a nice way to refactor this, but be careful because the argument positioning might matter in some cases. if ( isTtype1 && ! isTtype2 ) { // combine all of the things in list2, then unify return unifyExact( t1, combineTypes( list2Begin, list2End, get_type ), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); } else if ( isTtype2 && ! isTtype1 ) { // combine all of the things in list1, then unify return unifyExact( combineTypes( list1Begin, list1End, get_type ), t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); } else if ( ! unifyExact( t1, t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ) ) { return false; } // if } // for // may get to the end of one argument list before the end of the other. This is only okay when the other is a ttype if ( list1Begin != list1End ) { // try unifying empty tuple type with ttype Type * t1 = (*list1Begin)->get_type(); if ( Tuples::isTtype( t1 ) ) { return unifyExact( t1, combineTypes( list2Begin, list2End, get_type ), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); } else return false; } else if ( list2Begin != list2End ) { // try unifying empty tuple type with ttype Type * t2 = (*list2Begin)->get_type(); if ( Tuples::isTtype( t2 ) ) { return unifyExact( combineTypes( list1Begin, list1End, get_type ), t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); } else return false; } else { return true; } // if } /// Finds ttypes and replaces them with their expansion, if known. /// This needs to be done so that satisfying ttype assertions is easier. /// If this isn't done then argument lists can have wildly different /// size and structure, when they should be compatible. struct TtypeExpander : public WithShortCircuiting { TypeEnvironment & tenv; TtypeExpander( TypeEnvironment & tenv ) : tenv( tenv ) {} void premutate( TypeInstType * ) { visit_children = false; } Type * postmutate( TypeInstType * typeInst ) { EqvClass eqvClass; if ( tenv.lookup( typeInst->get_name(), eqvClass ) ) { if ( eqvClass.data.kind == TypeDecl::Ttype ) { // expand ttype parameter into its actual type if ( eqvClass.type ) { return eqvClass.type->clone(); } } } return typeInst; } }; /// flattens a list of declarations, so that each tuple type has a single declaration. /// makes use of TtypeExpander to ensure ttypes are flat as well. void flattenList( std::list< DeclarationWithType * > src, std::list< DeclarationWithType * > & dst, TypeEnvironment & env ) { dst.clear(); for ( DeclarationWithType * dcl : src ) { PassVisitor expander( env ); dcl->acceptMutator( expander ); std::list< Type * > types; flatten( dcl->get_type(), back_inserter( types ) ); for ( Type * t : types ) { // outermost const, volatile, _Atomic qualifiers in parameters should not play a role in the unification of function types, since they do not determine whether a function is callable. // Note: MUST consider at least mutex qualifier, since functions can be overloaded on outermost mutex and a mutex function has different requirements than a non-mutex function. t->get_qualifiers() -= Type::Qualifiers(Type::Const | Type::Volatile | Type::Atomic); dst.push_back( new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::C, nullptr, t, nullptr ) ); } } } void Unify::postvisit(FunctionType *functionType) { FunctionType *otherFunction = dynamic_cast< FunctionType* >( type2 ); if ( otherFunction && functionType->get_isVarArgs() == otherFunction->get_isVarArgs() ) { // flatten the parameter lists for both functions so that tuple structure // doesn't affect unification. Must be a clone so that the types don't change. FunctionType* flatFunc = functionType->clone(); FunctionType* flatOther = otherFunction->clone(); flattenList( flatFunc->get_parameters(), flatFunc->get_parameters(), env ); flattenList( flatOther->get_parameters(), flatOther->get_parameters(), env ); // sizes don't have to match if ttypes are involved; need to be more precise wrt where the ttype is to prevent errors if ( (flatFunc->parameters.size() == flatOther->parameters.size() && flatFunc->returnVals.size() == flatOther->returnVals.size()) || flatFunc->isTtype() || flatOther->isTtype() ) { if ( unifyDeclList( flatFunc->parameters.begin(), flatFunc->parameters.end(), flatOther->parameters.begin(), flatOther->parameters.end(), env, needAssertions, haveAssertions, openVars, indexer ) ) { if ( unifyDeclList( flatFunc->returnVals.begin(), flatFunc->returnVals.end(), flatOther->returnVals.begin(), flatOther->returnVals.end(), env, needAssertions, haveAssertions, openVars, indexer ) ) { // the original types must be used in mark assertions, since pointer comparisons are used markAssertions( haveAssertions, needAssertions, functionType ); markAssertions( haveAssertions, needAssertions, otherFunction ); result = true; } // if } // if } // if } // if } template< typename RefType > void Unify::handleRefType( RefType *inst, Type *other ) { // check that other type is compatible and named the same RefType *otherStruct = dynamic_cast< RefType* >( other ); result = otherStruct && inst->name == otherStruct->name; } template< typename RefType > void Unify::handleGenericRefType( RefType *inst, Type *other ) { // Check that other type is compatible and named the same handleRefType( inst, other ); if ( ! result ) return; // Check that parameters of types unify, if any std::list< Expression* > params = inst->parameters; std::list< Expression* > otherParams = ((RefType*)other)->parameters; std::list< Expression* >::const_iterator it = params.begin(), jt = otherParams.begin(); for ( ; it != params.end() && jt != otherParams.end(); ++it, ++jt ) { TypeExpr *param = dynamic_cast< TypeExpr* >(*it); assertf(param, "Aggregate parameters should be type expressions"); TypeExpr *otherParam = dynamic_cast< TypeExpr* >(*jt); assertf(otherParam, "Aggregate parameters should be type expressions"); Type* paramTy = param->get_type(); Type* otherParamTy = otherParam->get_type(); bool tupleParam = Tuples::isTtype( paramTy ); bool otherTupleParam = Tuples::isTtype( otherParamTy ); if ( tupleParam && otherTupleParam ) { ++it; ++jt; // skip ttype parameters for break } else if ( tupleParam ) { // bundle other parameters into tuple to match std::list< Type * > binderTypes; do { binderTypes.push_back( otherParam->get_type()->clone() ); ++jt; if ( jt == otherParams.end() ) break; otherParam = dynamic_cast< TypeExpr* >(*jt); assertf(otherParam, "Aggregate parameters should be type expressions"); } while (true); otherParamTy = new TupleType{ paramTy->get_qualifiers(), binderTypes }; ++it; // skip ttype parameter for break } else if ( otherTupleParam ) { // bundle parameters into tuple to match other std::list< Type * > binderTypes; do { binderTypes.push_back( param->get_type()->clone() ); ++it; if ( it == params.end() ) break; param = dynamic_cast< TypeExpr* >(*it); assertf(param, "Aggregate parameters should be type expressions"); } while (true); paramTy = new TupleType{ otherParamTy->get_qualifiers(), binderTypes }; ++jt; // skip ttype parameter for break } if ( ! unifyExact( paramTy, otherParamTy, env, needAssertions, haveAssertions, openVars, WidenMode(false, false), indexer ) ) { result = false; return; } // ttype parameter should be last if ( tupleParam || otherTupleParam ) break; } result = ( it == params.end() && jt == otherParams.end() ); } void Unify::postvisit(StructInstType *structInst) { handleGenericRefType( structInst, type2 ); } void Unify::postvisit(UnionInstType *unionInst) { handleGenericRefType( unionInst, type2 ); } void Unify::postvisit(EnumInstType *enumInst) { handleRefType( enumInst, type2 ); } void Unify::postvisit(TraitInstType *contextInst) { handleRefType( contextInst, type2 ); } void Unify::postvisit(TypeInstType *typeInst) { assert( openVars.find( typeInst->get_name() ) == openVars.end() ); TypeInstType *otherInst = dynamic_cast< TypeInstType* >( type2 ); if ( otherInst && typeInst->get_name() == otherInst->get_name() ) { result = true; /// } else { /// NamedTypeDecl *nt = indexer.lookupType( typeInst->get_name() ); /// if ( nt ) { /// TypeDecl *type = dynamic_cast< TypeDecl* >( nt ); /// assert( type ); /// if ( type->get_base() ) { /// result = unifyExact( type->get_base(), typeInst, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); /// } /// } } // if } template< typename Iterator1, typename Iterator2 > bool unifyList( Iterator1 list1Begin, Iterator1 list1End, Iterator2 list2Begin, Iterator2 list2End, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, const SymTab::Indexer &indexer ) { auto get_type = [](Type * t) { return t; }; for ( ; list1Begin != list1End && list2Begin != list2End; ++list1Begin, ++list2Begin ) { Type * t1 = *list1Begin; Type * t2 = *list2Begin; bool isTtype1 = Tuples::isTtype( t1 ); bool isTtype2 = Tuples::isTtype( t2 ); // xxx - assumes ttype must be last parameter // xxx - there may be a nice way to refactor this, but be careful because the argument positioning might matter in some cases. if ( isTtype1 && ! isTtype2 ) { // combine all of the things in list2, then unify return unifyExact( t1, combineTypes( list2Begin, list2End, get_type ), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); } else if ( isTtype2 && ! isTtype1 ) { // combine all of the things in list1, then unify return unifyExact( combineTypes( list1Begin, list1End, get_type ), t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); } else if ( ! unifyExact( t1, t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ) ) { return false; } // if } // for if ( list1Begin != list1End ) { // try unifying empty tuple type with ttype Type * t1 = *list1Begin; if ( Tuples::isTtype( t1 ) ) { return unifyExact( t1, combineTypes( list2Begin, list2End, get_type ), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); } else return false; } else if ( list2Begin != list2End ) { // try unifying empty tuple type with ttype Type * t2 = *list2Begin; if ( Tuples::isTtype( t2 ) ) { return unifyExact( combineTypes( list1Begin, list1End, get_type ), t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); } else return false; } else { return true; } // if } void Unify::postvisit(TupleType *tupleType) { if ( TupleType *otherTuple = dynamic_cast< TupleType* >( type2 ) ) { TupleType* flat1 = tupleType->clone(); TupleType* flat2 = otherTuple->clone(); std::list types1, types2; PassVisitor expander( env ); flat1->acceptMutator( expander ); flat2->acceptMutator( expander ); flatten( flat1, back_inserter( types1 ) ); flatten( flat2, back_inserter( types2 ) ); result = unifyList( types1.begin(), types1.end(), types2.begin(), types2.end(), env, needAssertions, haveAssertions, openVars, indexer ); } // if } void Unify::postvisit( __attribute__((unused)) VarArgsType *varArgsType ) { result = dynamic_cast< VarArgsType* >( type2 ); } void Unify::postvisit( __attribute__((unused)) ZeroType *zeroType ) { result = dynamic_cast< ZeroType* >( type2 ); } void Unify::postvisit( __attribute__((unused)) OneType *oneType ) { result = dynamic_cast< OneType* >( type2 ); } // xxx - compute once and store in the FunctionType? Type * extractResultType( FunctionType * function ) { if ( function->get_returnVals().size() == 0 ) { return new VoidType( Type::Qualifiers() ); } else if ( function->get_returnVals().size() == 1 ) { return function->get_returnVals().front()->get_type()->clone(); } else { std::list< Type * > types; for ( DeclarationWithType * decl : function->get_returnVals() ) { types.push_back( decl->get_type()->clone() ); } // for return new TupleType( Type::Qualifiers(), types ); } } } // namespace ResolvExpr // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //