// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // Resolver.cpp -- // // Author : Aaron B. Moss // Created On : Sun May 17 12:17:01 2015 // Last Modified By : Peter A. Buhr // Last Modified On : Thu Dec 14 18:44:43 2023 // Update Count : 251 // #include // for strict_dynamic_cast, assert #include // for allocator, allocator_traits<... #include // for get #include // for vector #include "Candidate.hpp" #include "CandidateFinder.hpp" #include "CurrentObject.hpp" // for CurrentObject #include "RenameVars.hpp" // for RenameVars, global_renamer #include "Resolver.hpp" #include "ResolveTypeof.hpp" #include "ResolveMode.hpp" // for ResolveMode #include "Typeops.hpp" // for extractResultType #include "Unify.hpp" // for unify #include "CompilationState.hpp" #include "AST/Decl.hpp" #include "AST/Init.hpp" #include "AST/Pass.hpp" #include "AST/Print.hpp" #include "AST/SymbolTable.hpp" #include "AST/Type.hpp" #include "Common/Eval.hpp" // for eval #include "Common/Iterate.hpp" // for group_iterate #include "Common/SemanticError.hpp" // for SemanticError #include "Common/Stats/ResolveTime.hpp" // for ResolveTime::start(), ResolveTime::stop() #include "Common/ToString.hpp" // for toCString #include "Common/UniqueName.hpp" // for UniqueName #include "InitTweak/GenInit.hpp" #include "InitTweak/InitTweak.hpp" // for isIntrinsicSingleArgCallStmt #include "SymTab/Mangler.hpp" // for Mangler #include "Tuples/Tuples.hpp" #include "Validate/FindSpecialDecls.hpp" // for SizeType using namespace std; namespace ResolvExpr { namespace { /// Finds deleted expressions in an expression tree struct DeleteFinder final : public ast::WithShortCircuiting, public ast::WithVisitorRef { const ast::DeletedExpr * result = nullptr; void previsit( const ast::DeletedExpr * expr ) { if ( result ) { visit_children = false; } else { result = expr; } } void previsit( const ast::Expr * expr ) { if ( result ) { visit_children = false; } if (expr->inferred.hasParams()) { for (auto & imp : expr->inferred.inferParams() ) { imp.second.expr->accept(*visitor); } } } }; struct ResolveDesignators final : public ast::WithShortCircuiting { ResolveContext& context; bool result = false; ResolveDesignators( ResolveContext& _context ): context(_context) {}; void previsit( const ast::Node * ) { // short circuit if we already know there are designations if ( result ) visit_children = false; } void previsit( const ast::Designation * des ) { if ( result ) visit_children = false; else if ( ! des->designators.empty() ) { if ( (des->designators.size() == 1) ) { const ast::Expr * designator = des->designators.at(0); if ( const ast::NameExpr * designatorName = dynamic_cast(designator) ) { auto candidates = context.symtab.lookupId(designatorName->name); for ( auto candidate : candidates ) { if ( dynamic_cast(candidate.id->get_type()) ) { result = true; break; } } } } visit_children = false; } } }; } // anonymous namespace /// Check if this expression is or includes a deleted expression const ast::DeletedExpr * findDeletedExpr( const ast::Expr * expr ) { return ast::Pass::read( expr ); } namespace { /// always-accept candidate filter bool anyCandidate( const Candidate & ) { return true; } /// Calls the CandidateFinder and finds the single best candidate CandidateRef findUnfinishedKindExpression( const ast::Expr * untyped, const ResolveContext & context, const std::string & kind, std::function pred = anyCandidate, ResolveMode mode = {} ) { if ( ! untyped ) return nullptr; // xxx - this isn't thread-safe, but should work until we parallelize the resolver static unsigned recursion_level = 0; ++recursion_level; ast::TypeEnvironment env; CandidateFinder finder( context, env ); finder.allowVoid = true; finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode ); --recursion_level; // produce a filtered list of candidates CandidateList candidates; for ( auto & cand : finder.candidates ) { if ( pred( *cand ) ) { candidates.emplace_back( cand ); } } // produce invalid error if no candidates if ( candidates.empty() ) { SemanticError( untyped, toString( "No reasonable alternatives for ", kind, (kind != "" ? " " : ""), "expression: ") ); } // search for cheapest candidate CandidateList winners; bool seen_undeleted = false; for ( CandidateRef & cand : candidates ) { int c = winners.empty() ? -1 : cand->cost.compare( winners.front()->cost ); if ( c > 0 ) continue; // skip more expensive than winner if ( c < 0 ) { // reset on new cheapest seen_undeleted = ! findDeletedExpr( cand->expr ); winners.clear(); } else /* if ( c == 0 ) */ { if ( findDeletedExpr( cand->expr ) ) { // skip deleted expression if already seen one equivalent-cost not if ( seen_undeleted ) continue; } else if ( ! seen_undeleted ) { // replace list of equivalent-cost deleted expressions with one non-deleted winners.clear(); seen_undeleted = true; } } winners.emplace_back( std::move( cand ) ); } // promote candidate.cvtCost to .cost // promoteCvtCost( winners ); // produce ambiguous errors, if applicable if ( winners.size() != 1 ) { std::ostringstream stream; stream << "Cannot choose between " << winners.size() << " alternatives for " << kind << (kind != "" ? " " : "") << "expression\n"; ast::print( stream, untyped ); stream << " Alternatives are:\n"; print( stream, winners, 1 ); SemanticError( untyped->location, stream.str() ); } // single selected choice CandidateRef & choice = winners.front(); // fail on only expression deleted if ( ! seen_undeleted ) { SemanticError( untyped->location, choice->expr.get(), "Unique best alternative " "includes deleted identifier in " ); } return std::move( choice ); } /// Strips extraneous casts out of an expression struct StripCasts final { const ast::Expr * postvisit( const ast::CastExpr * castExpr ) { if ( castExpr->isGenerated == ast::GeneratedCast && typesCompatible( castExpr->arg->result, castExpr->result ) ) { ast::EnumInstType const * arg, * result; if ( ( result = castExpr->result.as() ) && ( arg = castExpr->arg.as() ) && arg->base->name != result->base->name) { return castExpr; } // generated cast is the same type as its argument, remove it after keeping env return ast::mutate_field( castExpr->arg.get(), &ast::Expr::env, castExpr->env ); } return castExpr; } static void strip( ast::ptr< ast::Expr > & expr ) { ast::Pass< StripCasts > stripper; expr = expr->accept( stripper ); } }; /// Swaps argument into expression pointer, saving original environment void swap_and_save_env( ast::ptr< ast::Expr > & expr, const ast::Expr * newExpr ) { ast::ptr< ast::TypeSubstitution > env = expr->env; expr.set_and_mutate( newExpr )->env = env; } /// Removes cast to type of argument (unlike StripCasts, also handles non-generated casts) void removeExtraneousCast( ast::ptr & expr ) { if ( const ast::CastExpr * castExpr = expr.as< ast::CastExpr >() ) { if ( typesCompatible( castExpr->arg->result, castExpr->result ) ) { // cast is to the same type as its argument, remove it swap_and_save_env( expr, castExpr->arg ); } } } } // anonymous namespace /// Establish post-resolver invariants for expressions void finishExpr( ast::ptr< ast::Expr > & expr, const ast::TypeEnvironment & env, const ast::TypeSubstitution * oldenv = nullptr ) { // set up new type substitution for expression ast::ptr< ast::TypeSubstitution > newenv = oldenv ? oldenv : new ast::TypeSubstitution{}; env.writeToSubstitution( *newenv.get_and_mutate() ); expr.get_and_mutate()->env = std::move( newenv ); // remove unncecessary casts StripCasts::strip( expr ); } ast::ptr< ast::Expr > resolveInVoidContext( const ast::Expr * expr, const ResolveContext & context, ast::TypeEnvironment & env ) { assertf( expr, "expected a non-null expression" ); // set up and resolve expression cast to void ast::ptr< ast::CastExpr > untyped = new ast::CastExpr{ expr }; CandidateRef choice = findUnfinishedKindExpression( untyped, context, "", anyCandidate ); // a cast expression has either 0 or 1 interpretations (by language rules); // if 0, an exception has already been thrown, and this code will not run const ast::CastExpr * castExpr = choice->expr.strict_as< ast::CastExpr >(); env = std::move( choice->env ); return castExpr->arg; } /// Resolve `untyped` to the expression whose candidate is the best match for a `void` /// context. ast::ptr< ast::Expr > findVoidExpression( const ast::Expr * untyped, const ResolveContext & context ) { ast::TypeEnvironment env; ast::ptr< ast::Expr > newExpr = resolveInVoidContext( untyped, context, env ); finishExpr( newExpr, env, untyped->env ); return newExpr; } namespace { /// resolve `untyped` to the expression whose candidate satisfies `pred` with the /// lowest cost, returning the resolved version ast::ptr< ast::Expr > findKindExpression( const ast::Expr * untyped, const ResolveContext & context, std::function pred = anyCandidate, const std::string & kind = "", ResolveMode mode = {} ) { if ( ! untyped ) return {}; CandidateRef choice = findUnfinishedKindExpression( untyped, context, kind, pred, mode ); ResolvExpr::finishExpr( choice->expr, choice->env, untyped->env ); return std::move( choice->expr ); } /// Resolve `untyped` to the single expression whose candidate is the best match ast::ptr< ast::Expr > findSingleExpression( const ast::Expr * untyped, const ResolveContext & context ) { Stats::ResolveTime::start( untyped ); auto res = findKindExpression( untyped, context ); Stats::ResolveTime::stop(); return res; } } // anonymous namespace ast::ptr< ast::Expr > findSingleExpression( const ast::Expr * untyped, const ast::Type * type, const ResolveContext & context ) { assert( untyped && type ); ast::ptr< ast::Expr > castExpr = new ast::CastExpr{ untyped, type }; ast::ptr< ast::Expr > newExpr = findSingleExpression( castExpr, context ); removeExtraneousCast( newExpr ); return newExpr; } namespace { bool structOrUnionOrEnum( const Candidate & i ) { const ast::Type * t = i.expr->result->stripReferences(); return dynamic_cast< const ast::StructInstType * >( t ) || dynamic_cast< const ast::UnionInstType * >( t ) || dynamic_cast< const ast::EnumInstType * >( t ); } /// Predicate for "Candidate has integral type" bool hasIntegralType( const Candidate & i ) { const ast::Type * type = i.expr->result; if ( auto bt = dynamic_cast< const ast::BasicType * >( type ) ) { return bt->isInteger(); } else if ( dynamic_cast< const ast::EnumInstType * >( type ) || dynamic_cast< const ast::ZeroType * >( type ) || dynamic_cast< const ast::OneType * >( type ) ) { return true; } else return false; } /// Resolve `untyped` as an integral expression, returning the resolved version ast::ptr< ast::Expr > findIntegralExpression( const ast::Expr * untyped, const ResolveContext & context ) { return findKindExpression( untyped, context, hasIntegralType, "condition" ); } ast::ptr< ast::Expr > findCondExpression( const ast::Expr * untyped, const ResolveContext & context ) { if ( nullptr == untyped ) return untyped; ast::ptr condExpr = createCondExpr( untyped ); return findIntegralExpression( condExpr, context ); } /// check if a type is a character type bool isCharType( const ast::Type * t ) { if ( auto bt = dynamic_cast< const ast::BasicType * >( t ) ) { return bt->kind == ast::BasicKind::Char || bt->kind == ast::BasicKind::SignedChar || bt->kind == ast::BasicKind::UnsignedChar; } return false; } /// Advance a type itertor to the next mutex parameter template inline bool nextMutex( Iter & it, const Iter & end ) { while ( it != end && ! (*it)->is_mutex() ) { ++it; } return it != end; } } // anonymous namespace class Resolver final : public ast::WithSymbolTable, public ast::WithGuards, public ast::WithVisitorRef, public ast::WithShortCircuiting, public ast::WithStmtsToAdd { ast::ptr< ast::Type > functionReturn = nullptr; ast::CurrentObject currentObject; // for work previously in GenInit static InitTweak::ManagedTypes managedTypes; ResolveContext context; bool inEnumDecl = false; public: static size_t traceId; Resolver( const ast::TranslationGlobal & global ) : ast::WithSymbolTable(ast::SymbolTable::ErrorDetection::ValidateOnAdd), context{ symtab, global } {} Resolver( const ResolveContext & context ) : ast::WithSymbolTable{ context.symtab }, context{ symtab, context.global } {} const ast::FunctionDecl * previsit( const ast::FunctionDecl * ); const ast::FunctionDecl * postvisit( const ast::FunctionDecl * ); const ast::ObjectDecl * previsit( const ast::ObjectDecl * ); void previsit( const ast::AggregateDecl * ); void previsit( const ast::StructDecl * ); void previsit( const ast::EnumDecl * ); const ast::StaticAssertDecl * previsit( const ast::StaticAssertDecl * ); const ast::ArrayType * previsit( const ast::ArrayType * ); const ast::PointerType * previsit( const ast::PointerType * ); const ast::ExprStmt * previsit( const ast::ExprStmt * ); const ast::AsmExpr * previsit( const ast::AsmExpr * ); const ast::AsmStmt * previsit( const ast::AsmStmt * ); const ast::IfStmt * previsit( const ast::IfStmt * ); const ast::WhileDoStmt * previsit( const ast::WhileDoStmt * ); const ast::ForStmt * previsit( const ast::ForStmt * ); const ast::SwitchStmt * previsit( const ast::SwitchStmt * ); const ast::CaseClause * previsit( const ast::CaseClause * ); const ast::BranchStmt * previsit( const ast::BranchStmt * ); const ast::ReturnStmt * previsit( const ast::ReturnStmt * ); const ast::ThrowStmt * previsit( const ast::ThrowStmt * ); const ast::CatchClause * previsit( const ast::CatchClause * ); const ast::CatchClause * postvisit( const ast::CatchClause * ); const ast::WaitForStmt * previsit( const ast::WaitForStmt * ); const ast::WithStmt * previsit( const ast::WithStmt * ); const ast::SingleInit * previsit( const ast::SingleInit * ); const ast::ListInit * previsit( const ast::ListInit * ); const ast::ConstructorInit * previsit( const ast::ConstructorInit * ); void resolveWithExprs(std::vector> & exprs, std::list> & stmtsToAdd); bool shouldGenCtorInit( const ast::ObjectDecl * ) const; void beginScope() { managedTypes.beginScope(); } void endScope() { managedTypes.endScope(); } bool on_error(ast::ptr & decl); }; // size_t Resolver::traceId = Stats::Heap::new_stacktrace_id("Resolver"); InitTweak::ManagedTypes Resolver::managedTypes; void resolve( ast::TranslationUnit& translationUnit ) { ast::Pass< Resolver >::run( translationUnit, translationUnit.global ); } ast::ptr< ast::Init > resolveCtorInit( const ast::ConstructorInit * ctorInit, const ResolveContext & context ) { assert( ctorInit ); ast::Pass< Resolver > resolver( context ); return ctorInit->accept( resolver ); } const ast::Expr * resolveStmtExpr( const ast::StmtExpr * stmtExpr, const ResolveContext & context ) { assert( stmtExpr ); ast::Pass< Resolver > resolver( context ); auto ret = mutate(stmtExpr->accept(resolver)); strict_dynamic_cast< ast::StmtExpr * >( ret )->computeResult(); return ret; } namespace { const ast::Attribute * handleAttribute(const CodeLocation & loc, const ast::Attribute * attr, const ResolveContext & context) { std::string name = attr->normalizedName(); if (name == "constructor" || name == "destructor") { if (attr->params.size() == 1) { auto arg = attr->params.front(); auto resolved = ResolvExpr::findSingleExpression( arg, new ast::BasicType( ast::BasicKind::LongLongSignedInt ), context ); auto result = eval(arg); auto mutAttr = mutate(attr); mutAttr->params.front() = resolved; if (! result.hasKnownValue) { SemanticWarning(loc, Warning::GccAttributes, toCString( name, " priorities must be integers from 0 to 65535 inclusive: ", arg ) ); } else { auto priority = result.knownValue; if (priority < 101) { SemanticWarning(loc, Warning::GccAttributes, toCString( name, " priorities from 0 to 100 are reserved for the implementation" ) ); } else if (priority < 201 && ! buildingLibrary()) { SemanticWarning(loc, Warning::GccAttributes, toCString( name, " priorities from 101 to 200 are reserved for the implementation" ) ); } } return mutAttr; } else if (attr->params.size() > 1) { SemanticWarning(loc, Warning::GccAttributes, toCString( "too many arguments to ", name, " attribute" ) ); } else { SemanticWarning(loc, Warning::GccAttributes, toCString( "too few arguments to ", name, " attribute" ) ); } } return attr; } } // Returns a version of `ty`, with some detail redacted. // `ty` is that of a parameter or return of `functionDecl`. // Redaction: // - concerns the dimension expression, when `ty` is a pointer or array // - prevents escape of variables bound by other parameter declarations // - replaces the whole dimension with `*` if it uses such a variable // - produces the caller's view of `functionDecl`, where `ty` is from the callee/body's view // Example 1 // functionDecl: void f( int n, float a[][5][n + 1] ); // outcome: f : void (*)( int , float [][5][*] ), redaction on deepest ArrayType // Example 2 // functionDecl: void f( int n, float a[n] ); // outcome: f : void (*)( int , float [*] ), redaction on PointerType // Example 3 // in scope: int n; // functionDecl: void f( float a[][n] ); // outcome: f : void (*)( float [][n] ), no redaction static const ast::Type * redactBoundDimExprs( const ast::Type * ty, const ast::FunctionDecl * functionDecl ); struct UsesParams { const ast::FunctionDecl * functionDecl; UsesParams( const ast::FunctionDecl * functionDecl ) : functionDecl(functionDecl) {} bool result = false; void postvisit( const ast::VariableExpr * e ) { for ( auto p : functionDecl->params ) { if ( p.get() == e->var ) result = true; } } }; struct Redactor { const ast::FunctionDecl * functionDecl; Redactor( const ast::FunctionDecl * functionDecl ) : functionDecl(functionDecl) {} template< typename PtrType > const PtrType * postvisitImpl( const PtrType * type ) { if ( type->dimension && ast::Pass::read( type->dimension.get(), functionDecl ) ) { // PtrType * newtype = ast::shallowCopy( type ); // newtype->dimension = nullptr; // type = newtype; auto mutType = mutate(type); mutType->dimension = nullptr; type = mutType; } return type; } const ast::ArrayType * postvisit (const ast::ArrayType * arrayType) { return postvisitImpl( arrayType ); } const ast::PointerType * postvisit (const ast::PointerType * pointerType) { return postvisitImpl( pointerType ); } }; static const ast::Type * redactBoundDimExprs( const ast::Type * ty, const ast::FunctionDecl * functionDecl ) { if ( ast::Pass::read( ty, functionDecl ) ) { ast::Type * newty = ast::deepCopy( ty ); ast::Pass visitor(functionDecl); ty = newty->accept(visitor); } return ty; } const ast::FunctionDecl * Resolver::previsit( const ast::FunctionDecl * functionDecl ) { GuardValue( functionReturn ); assert (functionDecl->unique()); if (!functionDecl->has_body() && !functionDecl->withExprs.empty()) { SemanticError(functionDecl->location, functionDecl, "Function without body has with declarations"); } if (!functionDecl->isTypeFixed) { auto mutDecl = mutate(functionDecl); auto mutType = mutDecl->type.get_and_mutate(); for (auto & attr: mutDecl->attributes) { attr = handleAttribute(mutDecl->location, attr, context ); } // handle assertions symtab.enterScope(); mutType->forall.clear(); mutType->assertions.clear(); for (auto & typeParam : mutDecl->type_params) { symtab.addType(typeParam); mutType->forall.emplace_back(new ast::TypeInstType(typeParam)); } for (auto & asst : mutDecl->assertions) { asst = fixObjectType(asst.strict_as(), context); symtab.addId(asst); mutType->assertions.emplace_back(new ast::VariableExpr(functionDecl->location, asst)); } // temporarily adds params to symbol table. // actual scoping rules for params and withexprs differ - see Pass::visit(FunctionDecl) std::vector> paramTypes; std::vector> returnTypes; for (auto & param : mutDecl->params) { param = fixObjectType(param.strict_as(), context); symtab.addId(param); auto exportParamT = redactBoundDimExprs( param->get_type(), mutDecl ); paramTypes.emplace_back( exportParamT ); } for (auto & ret : mutDecl->returns) { ret = fixObjectType(ret.strict_as(), context); auto exportRetT = redactBoundDimExprs( ret->get_type(), mutDecl ); returnTypes.emplace_back( exportRetT ); } // since function type in decl is just a view of param types, need to update that as well mutType->params = std::move(paramTypes); mutType->returns = std::move(returnTypes); auto renamedType = strict_dynamic_cast(renameTyVars(mutType, RenameMode::GEN_EXPR_ID)); std::list> newStmts; resolveWithExprs (mutDecl->withExprs, newStmts); if (mutDecl->stmts) { auto mutStmt = mutDecl->stmts.get_and_mutate(); mutStmt->kids.splice(mutStmt->kids.begin(), std::move(newStmts)); mutDecl->stmts = mutStmt; } symtab.leaveScope(); mutDecl->type = renamedType; mutDecl->mangleName = Mangle::mangle(mutDecl); mutDecl->isTypeFixed = true; functionDecl = mutDecl; } managedTypes.handleDWT(functionDecl); functionReturn = extractResultType( functionDecl->type ); return functionDecl; } const ast::FunctionDecl * Resolver::postvisit( const ast::FunctionDecl * functionDecl ) { // default value expressions have an environment which shouldn't be there and trips up // later passes. assert( functionDecl->unique() ); ast::FunctionType * mutType = mutate( functionDecl->type.get() ); for ( unsigned i = 0 ; i < mutType->params.size() ; ++i ) { if ( const ast::ObjectDecl * obj = mutType->params[i].as< ast::ObjectDecl >() ) { if ( const ast::SingleInit * init = obj->init.as< ast::SingleInit >() ) { if ( init->value->env == nullptr ) continue; // clone initializer minus the initializer environment auto mutParam = mutate( mutType->params[i].strict_as< ast::ObjectDecl >() ); auto mutInit = mutate( mutParam->init.strict_as< ast::SingleInit >() ); auto mutValue = mutate( mutInit->value.get() ); mutValue->env = nullptr; mutInit->value = mutValue; mutParam->init = mutInit; mutType->params[i] = mutParam; assert( ! mutType->params[i].strict_as< ast::ObjectDecl >()->init.strict_as< ast::SingleInit >()->value->env); } } } mutate_field(functionDecl, &ast::FunctionDecl::type, mutType); return functionDecl; } bool Resolver::shouldGenCtorInit( ast::ObjectDecl const * decl ) const { // If we shouldn't try to construct it, then don't. if ( !InitTweak::tryConstruct( decl ) ) return false; // Otherwise, if it is a managed type, we may construct it. if ( managedTypes.isManaged( decl ) ) return true; // Skip construction if it is trivial at compile-time. if ( InitTweak::isConstExpr( decl->init ) ) return false; // Skip construction for local declarations. return ( !isInFunction() || decl->storage.is_static ); } const ast::ObjectDecl * Resolver::previsit( const ast::ObjectDecl * objectDecl ) { // To handle initialization of routine pointers [e.g. int (*fp)(int) = foo()], // class-variable `initContext` is changed multiple times because the LHS is analyzed // twice. The second analysis changes `initContext` because a function type can contain // object declarations in the return and parameter types. Therefore each value of // `initContext` is retained so the type on the first analysis is preserved and used for // selecting the RHS. GuardValue( currentObject ); if ( inEnumDecl && dynamic_cast< const ast::EnumInstType * >( objectDecl->get_type() ) ) { // enumerator initializers should not use the enum type to initialize, since the // enum type is still incomplete at this point. Use `int` instead. if ( auto enumBase = dynamic_cast< const ast::EnumInstType * > ( objectDecl->get_type() )->base->base ) { objectDecl = fixObjectType( objectDecl, context ); currentObject = ast::CurrentObject{ objectDecl->location, enumBase }; } else { objectDecl = fixObjectType( objectDecl, context ); currentObject = ast::CurrentObject{ objectDecl->location, new ast::BasicType{ ast::BasicKind::SignedInt } }; } } else { if ( !objectDecl->isTypeFixed ) { auto newDecl = fixObjectType(objectDecl, context); auto mutDecl = mutate(newDecl); // generate CtorInit wrapper when necessary. // in certain cases, fixObjectType is called before reaching // this object in visitor pass, thus disabling CtorInit codegen. // this happens on aggregate members and function parameters. if ( shouldGenCtorInit( mutDecl ) ) { // constructed objects cannot be designated if ( InitTweak::isDesignated( mutDecl->init ) ) { ast::Pass res( context ); maybe_accept( mutDecl->init.get(), res ); if ( !res.core.result ) { SemanticError( mutDecl, "Cannot include designations in the initializer for a managed Object.\n" "If this is really what you want, initialize with @=." ); } } // constructed objects should not have initializers nested too deeply if ( ! InitTweak::checkInitDepth( mutDecl ) ) SemanticError( mutDecl, "Managed object's initializer is too deep " ); mutDecl->init = InitTweak::genCtorInit( mutDecl->location, mutDecl ); } objectDecl = mutDecl; } currentObject = ast::CurrentObject{ objectDecl->location, objectDecl->get_type() }; } return objectDecl; } void Resolver::previsit( const ast::AggregateDecl * _aggDecl ) { auto aggDecl = mutate(_aggDecl); assertf(aggDecl == _aggDecl, "type declarations must be unique"); for (auto & member: aggDecl->members) { // nested type decls are hoisted already. no need to do anything if (auto obj = member.as()) { member = fixObjectType(obj, context); } } } void Resolver::previsit( const ast::StructDecl * structDecl ) { previsit(static_cast(structDecl)); managedTypes.handleStruct(structDecl); } void Resolver::previsit( const ast::EnumDecl * ) { // in case we decide to allow nested enums GuardValue( inEnumDecl ); inEnumDecl = true; // don't need to fix types for enum fields } const ast::StaticAssertDecl * Resolver::previsit( const ast::StaticAssertDecl * assertDecl ) { return ast::mutate_field( assertDecl, &ast::StaticAssertDecl::cond, findIntegralExpression( assertDecl->cond, context ) ); } template< typename PtrType > const PtrType * handlePtrType( const PtrType * type, const ResolveContext & context ) { // Note: resolving dimension expressions seems to require duplicate logic, // here and ResolveTypeof.cpp:fixArrayType. if ( type->dimension ) { const ast::Type * sizeType = context.global.sizeType.get(); ast::ptr< ast::Expr > dimension = findSingleExpression( type->dimension, sizeType, context ); assertf(dimension->env->empty(), "array dimension expr has nonempty env"); dimension.get_and_mutate()->env = nullptr; type = ast::mutate_field( type, &PtrType::dimension, dimension ); } return type; } const ast::ArrayType * Resolver::previsit( const ast::ArrayType * at ) { return handlePtrType( at, context ); } const ast::PointerType * Resolver::previsit( const ast::PointerType * pt ) { return handlePtrType( pt, context ); } const ast::ExprStmt * Resolver::previsit( const ast::ExprStmt * exprStmt ) { visit_children = false; assertf( exprStmt->expr, "ExprStmt has null expression in resolver" ); return ast::mutate_field( exprStmt, &ast::ExprStmt::expr, findVoidExpression( exprStmt->expr, context ) ); } const ast::AsmExpr * Resolver::previsit( const ast::AsmExpr * asmExpr ) { visit_children = false; asmExpr = ast::mutate_field( asmExpr, &ast::AsmExpr::operand, findVoidExpression( asmExpr->operand, context ) ); return asmExpr; } const ast::AsmStmt * Resolver::previsit( const ast::AsmStmt * asmStmt ) { visitor->maybe_accept( asmStmt, &ast::AsmStmt::input ); visitor->maybe_accept( asmStmt, &ast::AsmStmt::output ); visit_children = false; return asmStmt; } const ast::IfStmt * Resolver::previsit( const ast::IfStmt * ifStmt ) { return ast::mutate_field( ifStmt, &ast::IfStmt::cond, findCondExpression( ifStmt->cond, context ) ); } const ast::WhileDoStmt * Resolver::previsit( const ast::WhileDoStmt * whileDoStmt ) { return ast::mutate_field( whileDoStmt, &ast::WhileDoStmt::cond, findCondExpression( whileDoStmt->cond, context ) ); } const ast::ForStmt * Resolver::previsit( const ast::ForStmt * forStmt ) { if ( forStmt->cond ) { forStmt = ast::mutate_field( forStmt, &ast::ForStmt::cond, findCondExpression( forStmt->cond, context ) ); } if ( forStmt->inc ) { forStmt = ast::mutate_field( forStmt, &ast::ForStmt::inc, findVoidExpression( forStmt->inc, context ) ); } return forStmt; } const ast::SwitchStmt * Resolver::previsit( const ast::SwitchStmt * switchStmt ) { GuardValue( currentObject ); switchStmt = ast::mutate_field( switchStmt, &ast::SwitchStmt::cond, findIntegralExpression( switchStmt->cond, context ) ); currentObject = ast::CurrentObject{ switchStmt->location, switchStmt->cond->result }; return switchStmt; } const ast::CaseClause * Resolver::previsit( const ast::CaseClause * caseStmt ) { if ( caseStmt->cond ) { std::deque< ast::InitAlternative > initAlts = currentObject.getOptions(); assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral " "expression." ); ast::ptr< ast::Expr > untyped = new ast::CastExpr{ caseStmt->location, caseStmt->cond, initAlts.front().type }; ast::ptr< ast::Expr > newExpr = findSingleExpression( untyped, context ); // case condition cannot have a cast in C, so it must be removed here, regardless of // whether it would perform a conversion. if ( const ast::CastExpr * castExpr = newExpr.as< ast::CastExpr >() ) { swap_and_save_env( newExpr, castExpr->arg ); } caseStmt = ast::mutate_field( caseStmt, &ast::CaseClause::cond, newExpr ); } return caseStmt; } const ast::BranchStmt * Resolver::previsit( const ast::BranchStmt * branchStmt ) { visit_children = false; // must resolve the argument of a computed goto if ( branchStmt->kind == ast::BranchStmt::Goto && branchStmt->computedTarget ) { // computed goto argument is void* ast::ptr< ast::Type > target = new ast::PointerType{ new ast::VoidType{} }; branchStmt = ast::mutate_field( branchStmt, &ast::BranchStmt::computedTarget, findSingleExpression( branchStmt->computedTarget, target, context ) ); } return branchStmt; } const ast::ReturnStmt * Resolver::previsit( const ast::ReturnStmt * returnStmt ) { visit_children = false; if ( returnStmt->expr ) { returnStmt = ast::mutate_field( returnStmt, &ast::ReturnStmt::expr, findSingleExpression( returnStmt->expr, functionReturn, context ) ); } return returnStmt; } const ast::ThrowStmt * Resolver::previsit( const ast::ThrowStmt * throwStmt ) { visit_children = false; if ( throwStmt->expr ) { const ast::StructDecl * exceptionDecl = symtab.lookupStruct( "__cfaehm_base_exception_t" ); assert( exceptionDecl ); ast::ptr< ast::Type > exceptType = new ast::PointerType{ new ast::StructInstType{ exceptionDecl } }; throwStmt = ast::mutate_field( throwStmt, &ast::ThrowStmt::expr, findSingleExpression( throwStmt->expr, exceptType, context ) ); } return throwStmt; } const ast::CatchClause * Resolver::previsit( const ast::CatchClause * catchClause ) { // Until we are very sure this invarent (ifs that move between passes have then) // holds, check it. This allows a check for when to decode the mangling. if ( auto ifStmt = catchClause->body.as() ) { assert( ifStmt->then ); } // Encode the catchStmt so the condition can see the declaration. if ( catchClause->cond ) { ast::CatchClause * clause = mutate( catchClause ); clause->body = new ast::IfStmt( clause->location, clause->cond, nullptr, clause->body ); clause->cond = nullptr; return clause; } return catchClause; } const ast::CatchClause * Resolver::postvisit( const ast::CatchClause * catchClause ) { // Decode the catchStmt so everything is stored properly. const ast::IfStmt * ifStmt = catchClause->body.as(); if ( nullptr != ifStmt && nullptr == ifStmt->then ) { assert( ifStmt->cond ); assert( ifStmt->else_ ); ast::CatchClause * clause = ast::mutate( catchClause ); clause->cond = ifStmt->cond; clause->body = ifStmt->else_; // ifStmt should be implicately deleted here. return clause; } return catchClause; } const ast::WaitForStmt * Resolver::previsit( const ast::WaitForStmt * stmt ) { visit_children = false; // Resolve all clauses first for ( unsigned i = 0; i < stmt->clauses.size(); ++i ) { const ast::WaitForClause & clause = *stmt->clauses[i]; ast::TypeEnvironment env; CandidateFinder funcFinder( context, env ); // Find all candidates for a function in canonical form funcFinder.find( clause.target, ResolveMode::withAdjustment() ); if ( funcFinder.candidates.empty() ) { stringstream ss; ss << "Use of undeclared indentifier '"; ss << clause.target.strict_as< ast::NameExpr >()->name; ss << "' in call to waitfor"; SemanticError( stmt->location, ss.str() ); } if ( clause.target_args.empty() ) { SemanticError( stmt->location, "Waitfor clause must have at least one mutex parameter"); } // Find all alternatives for all arguments in canonical form std::vector< CandidateFinder > argFinders = funcFinder.findSubExprs( clause.target_args ); // List all combinations of arguments std::vector< CandidateList > possibilities; combos( argFinders.begin(), argFinders.end(), back_inserter( possibilities ) ); // For every possible function: // * try matching the arguments to the parameters, not the other way around because // more arguments than parameters CandidateList funcCandidates; std::vector< CandidateList > argsCandidates; SemanticErrorException errors; for ( CandidateRef & func : funcFinder.candidates ) { try { auto pointerType = dynamic_cast< const ast::PointerType * >( func->expr->result->stripReferences() ); if ( ! pointerType ) { SemanticError( stmt->location, func->expr->result.get(), "candidate not viable: not a pointer type\n" ); } auto funcType = pointerType->base.as< ast::FunctionType >(); if ( ! funcType ) { SemanticError( stmt->location, func->expr->result.get(), "candidate not viable: not a function type\n" ); } { auto param = funcType->params.begin(); auto paramEnd = funcType->params.end(); if( ! nextMutex( param, paramEnd ) ) { SemanticError( stmt->location, funcType, "candidate function not viable: no mutex parameters\n"); } } CandidateRef func2{ new Candidate{ *func } }; // strip reference from function func2->expr = referenceToRvalueConversion( func->expr, func2->cost ); // Each argument must be matched with a parameter of the current candidate for ( auto & argsList : possibilities ) { try { // Declare data structures needed for resolution ast::OpenVarSet open; ast::AssertionSet need, have; ast::TypeEnvironment resultEnv{ func->env }; // Add all type variables as open so that those not used in the // parameter list are still considered open resultEnv.add( funcType->forall ); // load type variables from arguments into one shared space for ( auto & arg : argsList ) { resultEnv.simpleCombine( arg->env ); } // Make sure we don't widen any existing bindings resultEnv.forbidWidening(); // Find any unbound type variables resultEnv.extractOpenVars( open ); auto param = funcType->params.begin(); auto paramEnd = funcType->params.end(); unsigned n_mutex_param = 0; // For every argument of its set, check if it matches one of the // parameters. The order is important for ( auto & arg : argsList ) { // Ignore non-mutex arguments if ( ! nextMutex( param, paramEnd ) ) { // We ran out of parameters but still have arguments. // This function doesn't match SemanticError( stmt->location, funcType, toString("candidate function not viable: too many mutex " "arguments, expected ", n_mutex_param, "\n" ) ); } ++n_mutex_param; // Check if the argument matches the parameter type in the current scope. // ast::ptr< ast::Type > paramType = (*param)->get_type(); if ( ! unify( arg->expr->result, *param, resultEnv, need, have, open ) ) { // Type doesn't match stringstream ss; ss << "candidate function not viable: no known conversion " "from '"; ast::print( ss, *param ); ss << "' to '"; ast::print( ss, arg->expr->result ); ss << "' with env '"; ast::print( ss, resultEnv ); ss << "'\n"; SemanticError( stmt->location, funcType, ss.str() ); } ++param; } // All arguments match! // Check if parameters are missing if ( nextMutex( param, paramEnd ) ) { do { ++n_mutex_param; ++param; } while ( nextMutex( param, paramEnd ) ); // We ran out of arguments but still have parameters left; this // function doesn't match SemanticError( stmt->location, funcType, toString( "candidate function not viable: too few mutex " "arguments, expected ", n_mutex_param, "\n" ) ); } // All parameters match! // Finish the expressions to tie in proper environments finishExpr( func2->expr, resultEnv ); for ( CandidateRef & arg : argsList ) { finishExpr( arg->expr, resultEnv ); } // This is a match, store it and save it for later funcCandidates.emplace_back( std::move( func2 ) ); argsCandidates.emplace_back( std::move( argsList ) ); } catch ( SemanticErrorException & e ) { errors.append( e ); } } } catch ( SemanticErrorException & e ) { errors.append( e ); } } // Make sure correct number of arguments if( funcCandidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for function in call to waitfor" ); top.append( errors ); throw top; } if( argsCandidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for arguments in call to waitfor" ); top.append( errors ); throw top; } if( funcCandidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous function in call to waitfor" ); top.append( errors ); throw top; } if( argsCandidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous arguments in call to waitfor" ); top.append( errors ); throw top; } // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used. // build new clause auto clause2 = new ast::WaitForClause( clause.location ); clause2->target = funcCandidates.front()->expr; clause2->target_args.reserve( clause.target_args.size() ); const ast::StructDecl * decl_monitor = symtab.lookupStruct( "monitor$" ); for ( auto arg : argsCandidates.front() ) { const auto & loc = stmt->location; ast::Expr * init = new ast::CastExpr( loc, new ast::UntypedExpr( loc, new ast::NameExpr( loc, "get_monitor" ), { arg->expr } ), new ast::PointerType( new ast::StructInstType( decl_monitor ) ) ); clause2->target_args.emplace_back( findSingleExpression( init, context ) ); } // Resolve the conditions as if it were an IfStmt, statements normally clause2->when_cond = findCondExpression( clause.when_cond, context ); clause2->stmt = clause.stmt->accept( *visitor ); // set results into stmt auto n = mutate( stmt ); n->clauses[i] = clause2; stmt = n; } if ( stmt->timeout_stmt ) { // resolve the timeout as a size_t, the conditions like IfStmt, and stmts normally ast::ptr< ast::Type > target = new ast::BasicType{ ast::BasicKind::LongLongUnsignedInt }; auto timeout_time = findSingleExpression( stmt->timeout_time, target, context ); auto timeout_cond = findCondExpression( stmt->timeout_cond, context ); auto timeout_stmt = stmt->timeout_stmt->accept( *visitor ); // set results into stmt auto n = mutate( stmt ); n->timeout_time = std::move( timeout_time ); n->timeout_cond = std::move( timeout_cond ); n->timeout_stmt = std::move( timeout_stmt ); stmt = n; } if ( stmt->else_stmt ) { // resolve the condition like IfStmt, stmts normally auto else_cond = findCondExpression( stmt->else_cond, context ); auto else_stmt = stmt->else_stmt->accept( *visitor ); // set results into stmt auto n = mutate( stmt ); n->else_cond = std::move( else_cond ); n->else_stmt = std::move( else_stmt ); stmt = n; } return stmt; } const ast::WithStmt * Resolver::previsit( const ast::WithStmt * withStmt ) { auto mutStmt = mutate(withStmt); resolveWithExprs(mutStmt->exprs, stmtsToAddBefore); return mutStmt; } void Resolver::resolveWithExprs(std::vector> & exprs, std::list> & stmtsToAdd) { for (auto & expr : exprs) { // only struct- and union-typed expressions are viable candidates expr = findKindExpression( expr, context, structOrUnionOrEnum, "with expression" ); // if with expression might be impure, create a temporary so that it is evaluated once if ( Tuples::maybeImpure( expr ) ) { static UniqueName tmpNamer( "_with_tmp_" ); const CodeLocation loc = expr->location; auto tmp = new ast::ObjectDecl(loc, tmpNamer.newName(), expr->result, new ast::SingleInit(loc, expr ) ); expr = new ast::VariableExpr( loc, tmp ); stmtsToAdd.push_back( new ast::DeclStmt(loc, tmp ) ); if ( InitTweak::isConstructable( tmp->type ) ) { // generate ctor/dtor and resolve them tmp->init = InitTweak::genCtorInit( loc, tmp ); } // since tmp is freshly created, this should modify tmp in-place tmp->accept( *visitor ); } else if (expr->env && expr->env->empty()) { expr = ast::mutate_field(expr.get(), &ast::Expr::env, nullptr); } } } const ast::SingleInit * Resolver::previsit( const ast::SingleInit * singleInit ) { visit_children = false; // resolve initialization using the possibilities as determined by the `currentObject` // cursor. ast::ptr< ast::Expr > untyped = new ast::UntypedInitExpr{ singleInit->location, singleInit->value, currentObject.getOptions() }; ast::ptr newExpr = findSingleExpression( untyped, context ); const ast::InitExpr * initExpr = newExpr.strict_as< ast::InitExpr >(); // move cursor to the object that is actually initialized currentObject.setNext( initExpr->designation ); // discard InitExpr wrapper and retain relevant pieces. // `initExpr` may have inferred params in the case where the expression specialized a // function pointer, and newExpr may already have inferParams of its own, so a simple // swap is not sufficient ast::Expr::InferUnion inferred = initExpr->inferred; swap_and_save_env( newExpr, initExpr->expr ); newExpr.get_and_mutate()->inferred.splice( std::move(inferred) ); // get the actual object's type (may not exactly match what comes back from the resolver // due to conversions) const ast::Type * initContext = currentObject.getCurrentType(); removeExtraneousCast( newExpr ); // check if actual object's type is char[] if ( auto at = dynamic_cast< const ast::ArrayType * >( initContext ) ) { if ( isCharType( at->base ) ) { // check if the resolved type is char* if ( auto pt = newExpr->result.as< ast::PointerType >() ) { if ( isCharType( pt->base ) ) { // strip cast if we're initializing a char[] with a char* // e.g. char x[] = "hello" if ( auto ce = newExpr.as< ast::CastExpr >() ) { swap_and_save_env( newExpr, ce->arg ); } } } } } // move cursor to next object in preparation for next initializer currentObject.increment(); // set initializer expression to resolved expression return ast::mutate_field( singleInit, &ast::SingleInit::value, std::move(newExpr) ); } const ast::ListInit * Resolver::previsit( const ast::ListInit * listInit ) { // move cursor into brace-enclosed initializer-list currentObject.enterListInit( listInit->location ); assert( listInit->designations.size() == listInit->initializers.size() ); for ( unsigned i = 0; i < listInit->designations.size(); ++i ) { // iterate designations and initializers in pairs, moving the cursor to the current // designated object and resolving the initializer against that object listInit = ast::mutate_field_index( listInit, &ast::ListInit::designations, i, currentObject.findNext( listInit->designations[i] ) ); listInit = ast::mutate_field_index( listInit, &ast::ListInit::initializers, i, listInit->initializers[i]->accept( *visitor ) ); } // move cursor out of brace-enclosed initializer-list currentObject.exitListInit(); visit_children = false; return listInit; } const ast::ConstructorInit * Resolver::previsit( const ast::ConstructorInit * ctorInit ) { visitor->maybe_accept( ctorInit, &ast::ConstructorInit::ctor ); visitor->maybe_accept( ctorInit, &ast::ConstructorInit::dtor ); // found a constructor - can get rid of C-style initializer // xxx - Rob suggests this field is dead code ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::init, nullptr ); // intrinsic single-parameter constructors and destructors do nothing. Since this was // implicitly generated, there's no way for it to have side effects, so get rid of it to // clean up generated code if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) { ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::ctor, nullptr ); } if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) { ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::dtor, nullptr ); } return ctorInit; } // suppress error on autogen functions and mark invalid autogen as deleted. bool Resolver::on_error(ast::ptr & decl) { if (auto functionDecl = decl.as()) { // xxx - can intrinsic gen ever fail? if (functionDecl->linkage == ast::Linkage::AutoGen) { auto mutDecl = mutate(functionDecl); mutDecl->isDeleted = true; mutDecl->stmts = nullptr; symtab.reviseSpecialAsDeleted( functionDecl ); decl = mutDecl; return false; } } return true; } } // namespace ResolvExpr // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //