// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // Resolver.cc -- // // Author : Richard C. Bilson // Created On : Sun May 17 12:17:01 2015 // Last Modified By : Andrew Beach // Last Modified On : Tus Aug 8 16:06:00 2017 // Update Count : 212 // #include // for NULL #include // for safe_dynamic_cast, assert #include // for allocator, allocator_traits<... #include // for get #include "Alternative.h" // for Alternative, AltList #include "AlternativeFinder.h" // for AlternativeFinder, resolveIn... #include "Common/SemanticError.h" // for SemanticError #include "Common/utility.h" // for ValueGuard, group_iterate #include "CurrentObject.h" // for CurrentObject #include "InitTweak/InitTweak.h" // for isIntrinsicSingleArgCallStmt #include "RenameVars.h" // for RenameVars, global_renamer #include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment #include "ResolveTypeof.h" // for resolveTypeof #include "Resolver.h" #include "SymTab/Autogen.h" // for SizeType #include "SymTab/Indexer.h" // for Indexer #include "SynTree/Declaration.h" // for ObjectDecl, TypeDecl, Declar... #include "SynTree/Expression.h" // for Expression, CastExpr, InitExpr #include "SynTree/Initializer.h" // for ConstructorInit, SingleInit #include "SynTree/Statement.h" // for ForStmt, Statement, BranchStmt #include "SynTree/Type.h" // for Type, BasicType, PointerType #include "SynTree/TypeSubstitution.h" // for TypeSubstitution #include "SynTree/Visitor.h" // for acceptAll, maybeAccept #include "typeops.h" // for extractResultType using namespace std; namespace ResolvExpr { class Resolver final : public SymTab::Indexer { public: Resolver() : SymTab::Indexer( false ) {} Resolver( const SymTab:: Indexer & other ) : SymTab::Indexer( other ) { if ( const Resolver * res = dynamic_cast< const Resolver * >( &other ) ) { functionReturn = res->functionReturn; currentObject = res->currentObject; inEnumDecl = res->inEnumDecl; } } typedef SymTab::Indexer Parent; using Parent::visit; virtual void visit( FunctionDecl *functionDecl ) override; virtual void visit( ObjectDecl *functionDecl ) override; virtual void visit( TypeDecl *typeDecl ) override; virtual void visit( EnumDecl * enumDecl ) override; virtual void visit( ArrayType * at ) override; virtual void visit( PointerType * at ) override; virtual void visit( ExprStmt *exprStmt ) override; virtual void visit( AsmExpr *asmExpr ) override; virtual void visit( AsmStmt *asmStmt ) override; virtual void visit( IfStmt *ifStmt ) override; virtual void visit( WhileStmt *whileStmt ) override; virtual void visit( ForStmt *forStmt ) override; virtual void visit( SwitchStmt *switchStmt ) override; virtual void visit( CaseStmt *caseStmt ) override; virtual void visit( BranchStmt *branchStmt ) override; virtual void visit( ReturnStmt *returnStmt ) override; virtual void visit( ThrowStmt *throwStmt ) override; virtual void visit( CatchStmt *catchStmt ) override; virtual void visit( SingleInit *singleInit ) override; virtual void visit( ListInit *listInit ) override; virtual void visit( ConstructorInit *ctorInit ) override; private: typedef std::list< Initializer * >::iterator InitIterator; template< typename PtrType > void handlePtrType( PtrType * type ); void resolveAggrInit( ReferenceToType *, InitIterator &, InitIterator & ); void resolveSingleAggrInit( Declaration *, InitIterator &, InitIterator &, TypeSubstitution sub ); void fallbackInit( ConstructorInit * ctorInit ); Type * functionReturn = nullptr; CurrentObject currentObject = nullptr; bool inEnumDecl = false; }; void resolve( std::list< Declaration * > translationUnit ) { Resolver resolver; acceptAll( translationUnit, resolver ); } Expression *resolveInVoidContext( Expression *expr, const SymTab::Indexer &indexer ) { TypeEnvironment env; return resolveInVoidContext( expr, indexer, env ); } namespace { void finishExpr( Expression *expr, const TypeEnvironment &env ) { expr->set_env( new TypeSubstitution ); env.makeSubstitution( *expr->get_env() ); } } // namespace Expression *findVoidExpression( Expression *untyped, const SymTab::Indexer &indexer ) { global_renamer.reset(); TypeEnvironment env; Expression *newExpr = resolveInVoidContext( untyped, indexer, env ); finishExpr( newExpr, env ); return newExpr; } namespace { Expression *findSingleExpression( Expression *untyped, const SymTab::Indexer &indexer ) { TypeEnvironment env; AlternativeFinder finder( indexer, env ); finder.find( untyped ); #if 0 if ( finder.get_alternatives().size() != 1 ) { std::cout << "untyped expr is "; untyped->print( std::cout ); std::cout << std::endl << "alternatives are:"; for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) { i->print( std::cout ); } // for } // if #endif assertf( finder.get_alternatives().size() == 1, "findSingleExpression: must have exactly one alternative at the end." ); Alternative &choice = finder.get_alternatives().front(); Expression *newExpr = choice.expr->clone(); finishExpr( newExpr, choice.env ); return newExpr; } bool isIntegralType( Type *type ) { if ( dynamic_cast< EnumInstType * >( type ) ) { return true; } else if ( BasicType *bt = dynamic_cast< BasicType * >( type ) ) { return bt->isInteger(); } else if ( dynamic_cast< ZeroType* >( type ) != nullptr || dynamic_cast< OneType* >( type ) != nullptr ) { return true; } else { return false; } // if } Expression *findIntegralExpression( Expression *untyped, const SymTab::Indexer &indexer ) { TypeEnvironment env; AlternativeFinder finder( indexer, env ); finder.find( untyped ); #if 0 if ( finder.get_alternatives().size() != 1 ) { std::cout << "untyped expr is "; untyped->print( std::cout ); std::cout << std::endl << "alternatives are:"; for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) { i->print( std::cout ); } // for } // if #endif Expression *newExpr = 0; const TypeEnvironment *newEnv = 0; for ( AltList::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) { if ( i->expr->get_result()->size() == 1 && isIntegralType( i->expr->get_result() ) ) { if ( newExpr ) { throw SemanticError( "Too many interpretations for case control expression", untyped ); } else { newExpr = i->expr->clone(); newEnv = &i->env; } // if } // if } // for if ( ! newExpr ) { throw SemanticError( "No interpretations for case control expression", untyped ); } // if finishExpr( newExpr, *newEnv ); return newExpr; } } void Resolver::visit( ObjectDecl *objectDecl ) { Type *new_type = resolveTypeof( objectDecl->get_type(), *this ); objectDecl->set_type( new_type ); // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that class-variable // initContext is changed multiple time because the LHS is analysed twice. The second analysis changes // initContext because of a function type can contain object declarations in the return and parameter types. So // each value of initContext is retained, so the type on the first analysis is preserved and used for selecting // the RHS. ValueGuard temp( currentObject ); currentObject = CurrentObject( objectDecl->get_type() ); if ( inEnumDecl && dynamic_cast< EnumInstType * >( objectDecl->get_type() ) ) { // enumerator initializers should not use the enum type to initialize, since // the enum type is still incomplete at this point. Use signed int instead. currentObject = CurrentObject( new BasicType( Type::Qualifiers(), BasicType::SignedInt ) ); } Parent::visit( objectDecl ); if ( inEnumDecl && dynamic_cast< EnumInstType * >( objectDecl->get_type() ) ) { // delete newly created signed int type // delete currentObject.getType(); } } template< typename PtrType > void Resolver::handlePtrType( PtrType * type ) { if ( type->get_dimension() ) { CastExpr *castExpr = new CastExpr( type->get_dimension(), SymTab::SizeType->clone() ); Expression *newExpr = findSingleExpression( castExpr, *this ); delete type->get_dimension(); type->set_dimension( newExpr ); } } void Resolver::visit( ArrayType * at ) { handlePtrType( at ); Parent::visit( at ); } void Resolver::visit( PointerType * pt ) { handlePtrType( pt ); Parent::visit( pt ); } void Resolver::visit( TypeDecl *typeDecl ) { if ( typeDecl->get_base() ) { Type *new_type = resolveTypeof( typeDecl->get_base(), *this ); typeDecl->set_base( new_type ); } // if Parent::visit( typeDecl ); } void Resolver::visit( FunctionDecl *functionDecl ) { #if 0 std::cout << "resolver visiting functiondecl "; functionDecl->print( std::cout ); std::cout << std::endl; #endif Type *new_type = resolveTypeof( functionDecl->get_type(), *this ); functionDecl->set_type( new_type ); ValueGuard< Type * > oldFunctionReturn( functionReturn ); functionReturn = ResolvExpr::extractResultType( functionDecl->get_functionType() ); Parent::visit( functionDecl ); // default value expressions have an environment which shouldn't be there and trips up later passes. // xxx - it might be necessary to somehow keep the information from this environment, but I can't currently // see how it's useful. for ( Declaration * d : functionDecl->get_functionType()->get_parameters() ) { if ( ObjectDecl * obj = dynamic_cast< ObjectDecl * >( d ) ) { if ( SingleInit * init = dynamic_cast< SingleInit * >( obj->get_init() ) ) { delete init->get_value()->get_env(); init->get_value()->set_env( nullptr ); } } } } void Resolver::visit( EnumDecl * enumDecl ) { // in case we decide to allow nested enums ValueGuard< bool > oldInEnumDecl( inEnumDecl ); inEnumDecl = true; Parent::visit( enumDecl ); } void Resolver::visit( ExprStmt *exprStmt ) { assertf( exprStmt->get_expr(), "ExprStmt has null Expression in resolver" ); Expression *newExpr = findVoidExpression( exprStmt->get_expr(), *this ); delete exprStmt->get_expr(); exprStmt->set_expr( newExpr ); } void Resolver::visit( AsmExpr *asmExpr ) { Expression *newExpr = findVoidExpression( asmExpr->get_operand(), *this ); delete asmExpr->get_operand(); asmExpr->set_operand( newExpr ); if ( asmExpr->get_inout() ) { newExpr = findVoidExpression( asmExpr->get_inout(), *this ); delete asmExpr->get_inout(); asmExpr->set_inout( newExpr ); } // if } void Resolver::visit( AsmStmt *asmStmt ) { acceptAll( asmStmt->get_input(), *this); acceptAll( asmStmt->get_output(), *this); } void Resolver::visit( IfStmt *ifStmt ) { Expression *newExpr = findSingleExpression( ifStmt->get_condition(), *this ); delete ifStmt->get_condition(); ifStmt->set_condition( newExpr ); Parent::visit( ifStmt ); } void Resolver::visit( WhileStmt *whileStmt ) { Expression *newExpr = findSingleExpression( whileStmt->get_condition(), *this ); delete whileStmt->get_condition(); whileStmt->set_condition( newExpr ); Parent::visit( whileStmt ); } void Resolver::visit( ForStmt *forStmt ) { Parent::visit( forStmt ); if ( forStmt->get_condition() ) { Expression * newExpr = findSingleExpression( forStmt->get_condition(), *this ); delete forStmt->get_condition(); forStmt->set_condition( newExpr ); } // if if ( forStmt->get_increment() ) { Expression * newExpr = findVoidExpression( forStmt->get_increment(), *this ); delete forStmt->get_increment(); forStmt->set_increment( newExpr ); } // if } void Resolver::visit( SwitchStmt *switchStmt ) { ValueGuard< CurrentObject > oldCurrentObject( currentObject ); Expression *newExpr; newExpr = findIntegralExpression( switchStmt->get_condition(), *this ); delete switchStmt->get_condition(); switchStmt->set_condition( newExpr ); currentObject = CurrentObject( newExpr->get_result() ); Parent::visit( switchStmt ); } void Resolver::visit( CaseStmt *caseStmt ) { if ( caseStmt->get_condition() ) { std::list< InitAlternative > initAlts = currentObject.getOptions(); assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral expression." ); CastExpr * castExpr = new CastExpr( caseStmt->get_condition(), initAlts.front().type->clone() ); Expression * newExpr = findSingleExpression( castExpr, *this ); castExpr = safe_dynamic_cast< CastExpr * >( newExpr ); caseStmt->set_condition( castExpr->get_arg() ); castExpr->set_arg( nullptr ); delete castExpr; } Parent::visit( caseStmt ); } void Resolver::visit( BranchStmt *branchStmt ) { // must resolve the argument for a computed goto if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement if ( Expression * arg = branchStmt->get_computedTarget() ) { VoidType v = Type::Qualifiers(); // cast to void * for the alternative finder PointerType pt( Type::Qualifiers(), v.clone() ); CastExpr * castExpr = new CastExpr( arg, pt.clone() ); Expression * newExpr = findSingleExpression( castExpr, *this ); // find best expression branchStmt->set_target( newExpr ); } // if } // if } void Resolver::visit( ReturnStmt *returnStmt ) { if ( returnStmt->get_expr() ) { CastExpr *castExpr = new CastExpr( returnStmt->get_expr(), functionReturn->clone() ); Expression *newExpr = findSingleExpression( castExpr, *this ); delete castExpr; returnStmt->set_expr( newExpr ); } // if } void Resolver::visit( ThrowStmt *throwStmt ) { // TODO: Replace *exception type with &exception type. if ( throwStmt->get_expr() ) { StructDecl * exception_decl = lookupStruct( "__cfaehm__base_exception_t" ); assert( exception_decl ); Expression * wrapped = new CastExpr( throwStmt->get_expr(), new PointerType( noQualifiers, new StructInstType( noQualifiers, exception_decl ) ) ); Expression * newExpr = findSingleExpression( wrapped, *this ); throwStmt->set_expr( newExpr ); } } void Resolver::visit( CatchStmt *catchStmt ) { // inline Indexer::visit so that the exception variable is still in-scope for // findSingleExpression() below Parent::enterScope(); Visitor::visit( catchStmt ); if ( catchStmt->get_cond() ) { Expression * wrapped = new CastExpr( catchStmt->get_cond(), new BasicType( noQualifiers, BasicType::Bool ) ); catchStmt->set_cond( findSingleExpression( wrapped, *this ) ); } Parent::leaveScope(); } template< typename T > bool isCharType( T t ) { if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) { return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar || bt->get_kind() == BasicType::UnsignedChar; } return false; } void Resolver::visit( SingleInit *singleInit ) { // resolve initialization using the possibilities as determined by the currentObject cursor UntypedInitExpr * untyped = new UntypedInitExpr( singleInit->get_value(), currentObject.getOptions() ); Expression * newExpr = findSingleExpression( untyped, *this ); InitExpr * initExpr = safe_dynamic_cast< InitExpr * >( newExpr ); // move cursor to the object that is actually initialized currentObject.setNext( initExpr->get_designation() ); // discard InitExpr wrapper and retain relevant pieces newExpr = initExpr->get_expr(); newExpr->set_env( initExpr->get_env() ); initExpr->set_expr( nullptr ); initExpr->set_env( nullptr ); delete initExpr; // get the actual object's type (may not exactly match what comes back from the resolver due to conversions) Type * initContext = currentObject.getCurrentType(); // check if actual object's type is char[] if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) { if ( isCharType( at->get_base() ) ) { // check if the resolved type is char * if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_result() ) ) { if ( isCharType( pt->get_base() ) ) { // strip cast if we're initializing a char[] with a char *, e.g. char x[] = "hello"; CastExpr *ce = safe_dynamic_cast< CastExpr * >( newExpr ); newExpr = ce->get_arg(); ce->set_arg( nullptr ); delete ce; } } } } // set initializer expr to resolved express singleInit->set_value( newExpr ); // move cursor to next object in preparation for next initializer currentObject.increment(); } void Resolver::visit( ListInit * listInit ) { // move cursor into brace-enclosed initializer-list currentObject.enterListInit(); // xxx - fix this so that the list isn't copied, iterator should be used to change current element std::list newDesignations; for ( auto p : group_iterate(listInit->get_designations(), listInit->get_initializers()) ) { // iterate designations and initializers in pairs, moving the cursor to the current designated object and resolving // the initializer against that object. Designation * des = std::get<0>(p); Initializer * init = std::get<1>(p); newDesignations.push_back( currentObject.findNext( des ) ); init->accept( *this ); } // set the set of 'resolved' designations and leave the brace-enclosed initializer-list listInit->get_designations() = newDesignations; // xxx - memory management currentObject.exitListInit(); // xxx - this part has not be folded into CurrentObject yet // } else if ( TypeInstType * tt = dynamic_cast< TypeInstType * >( initContext ) ) { // Type * base = tt->get_baseType()->get_base(); // if ( base ) { // // know the implementation type, so try using that as the initContext // ObjectDecl tmpObj( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, base->clone(), nullptr ); // currentObject = &tmpObj; // visit( listInit ); // } else { // // missing implementation type -- might be an unknown type variable, so try proceeding with the current init context // Parent::visit( listInit ); // } // } else { } // ConstructorInit - fall back on C-style initializer void Resolver::fallbackInit( ConstructorInit * ctorInit ) { // could not find valid constructor, or found an intrinsic constructor // fall back on C-style initializer delete ctorInit->get_ctor(); ctorInit->set_ctor( NULL ); delete ctorInit->get_dtor(); ctorInit->set_dtor( NULL ); maybeAccept( ctorInit->get_init(), *this ); } // needs to be callable from outside the resolver, so this is a standalone function void resolveCtorInit( ConstructorInit * ctorInit, const SymTab::Indexer & indexer ) { assert( ctorInit ); Resolver resolver( indexer ); ctorInit->accept( resolver ); } void resolveStmtExpr( StmtExpr * stmtExpr, const SymTab::Indexer & indexer ) { assert( stmtExpr ); Resolver resolver( indexer ); stmtExpr->accept( resolver ); } void Resolver::visit( ConstructorInit *ctorInit ) { // xxx - fallback init has been removed => remove fallbackInit function and remove complexity from FixInit and remove C-init from ConstructorInit maybeAccept( ctorInit->get_ctor(), *this ); maybeAccept( ctorInit->get_dtor(), *this ); // found a constructor - can get rid of C-style initializer delete ctorInit->get_init(); ctorInit->set_init( NULL ); // intrinsic single parameter constructors and destructors do nothing. Since this was // implicitly generated, there's no way for it to have side effects, so get rid of it // to clean up generated code. if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->get_ctor() ) ) { delete ctorInit->get_ctor(); ctorInit->set_ctor( NULL ); } if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->get_dtor() ) ) { delete ctorInit->get_dtor(); ctorInit->set_dtor( NULL ); } // xxx - todo -- what about arrays? // if ( dtor == NULL && InitTweak::isIntrinsicCallStmt( ctorInit->get_ctor() ) ) { // // can reduce the constructor down to a SingleInit using the // // second argument from the ctor call, since // delete ctorInit->get_ctor(); // ctorInit->set_ctor( NULL ); // Expression * arg = // ctorInit->set_init( new SingleInit( arg ) ); // } } } // namespace ResolvExpr // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //