// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // Resolver.cc -- // // Author : Richard C. Bilson // Created On : Sun May 17 12:17:01 2015 // Last Modified By : Andrew Beach // Last Modified On : Tus Aug 8 16:06:00 2017 // Update Count : 212 // #include // for NULL #include // for strict_dynamic_cast, assert #include // for allocator, allocator_traits<... #include // for get #include #include "Alternative.h" // for Alternative, AltList #include "AlternativeFinder.h" // for AlternativeFinder, resolveIn... #include "Common/PassVisitor.h" // for PassVisitor #include "Common/SemanticError.h" // for SemanticError #include "Common/utility.h" // for ValueGuard, group_iterate #include "CurrentObject.h" // for CurrentObject #include "InitTweak/InitTweak.h" // for isIntrinsicSingleArgCallStmt #include "RenameVars.h" // for RenameVars, global_renamer #include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment #include "ResolveTypeof.h" // for resolveTypeof #include "Resolver.h" #include "SymTab/Autogen.h" // for SizeType #include "SymTab/Indexer.h" // for Indexer #include "SynTree/Declaration.h" // for ObjectDecl, TypeDecl, Declar... #include "SynTree/Expression.h" // for Expression, CastExpr, InitExpr #include "SynTree/Initializer.h" // for ConstructorInit, SingleInit #include "SynTree/Statement.h" // for ForStmt, Statement, BranchStmt #include "SynTree/Type.h" // for Type, BasicType, PointerType #include "SynTree/TypeSubstitution.h" // for TypeSubstitution #include "SynTree/Visitor.h" // for acceptAll, maybeAccept #include "typeops.h" // for extractResultType #include "Unify.h" // for unify using namespace std; namespace ResolvExpr { struct Resolver final : public WithIndexer, public WithGuards, public WithVisitorRef, public WithShortCircuiting { Resolver() {} Resolver( const SymTab::Indexer & other ) { indexer = other; } void previsit( FunctionDecl *functionDecl ); void postvisit( FunctionDecl *functionDecl ); void previsit( ObjectDecl *objectDecll ); void previsit( TypeDecl *typeDecl ); void previsit( EnumDecl * enumDecl ); void previsit( ArrayType * at ); void previsit( PointerType * at ); void previsit( ExprStmt *exprStmt ); void previsit( AsmExpr *asmExpr ); void previsit( AsmStmt *asmStmt ); void previsit( IfStmt *ifStmt ); void previsit( WhileStmt *whileStmt ); void previsit( ForStmt *forStmt ); void previsit( SwitchStmt *switchStmt ); void previsit( CaseStmt *caseStmt ); void previsit( BranchStmt *branchStmt ); void previsit( ReturnStmt *returnStmt ); void previsit( ThrowStmt *throwStmt ); void previsit( CatchStmt *catchStmt ); void previsit( WaitForStmt * stmt ); void previsit( WithStmt * withStmt ); void previsit( SingleInit *singleInit ); void previsit( ListInit *listInit ); void previsit( ConstructorInit *ctorInit ); private: typedef std::list< Initializer * >::iterator InitIterator; template< typename PtrType > void handlePtrType( PtrType * type ); void resolveAggrInit( ReferenceToType *, InitIterator &, InitIterator & ); void resolveSingleAggrInit( Declaration *, InitIterator &, InitIterator &, TypeSubstitution sub ); void fallbackInit( ConstructorInit * ctorInit ); Type * functionReturn = nullptr; CurrentObject currentObject = nullptr; bool inEnumDecl = false; }; void resolve( std::list< Declaration * > translationUnit ) { PassVisitor resolver; acceptAll( translationUnit, resolver ); } void resolveDecl( Declaration * decl, const SymTab::Indexer &indexer ) { PassVisitor resolver( indexer ); maybeAccept( decl, resolver ); } // used in resolveTypeof Expression *resolveInVoidContext( Expression *expr, const SymTab::Indexer &indexer ) { TypeEnvironment env; return resolveInVoidContext( expr, indexer, env ); } namespace { void finishExpr( Expression *expr, const TypeEnvironment &env, TypeSubstitution * oldenv = nullptr ) { expr->env = oldenv ? oldenv->clone() : new TypeSubstitution; env.makeSubstitution( *expr->get_env() ); } void removeExtraneousCast( Expression *& expr, const SymTab::Indexer & indexer ) { if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( expr ) ) { if ( ResolvExpr::typesCompatible( castExpr->arg->result, castExpr->result, indexer ) ) { // cast is to the same type as its argument, so it's unnecessary -- remove it expr = castExpr->arg; castExpr->arg = nullptr; std::swap( expr->env, castExpr->env ); delete castExpr; } } } } // namespace void findVoidExpression( Expression *& untyped, const SymTab::Indexer &indexer ) { global_renamer.reset(); TypeEnvironment env; Expression *newExpr = resolveInVoidContext( untyped, indexer, env ); finishExpr( newExpr, env, untyped->env ); delete untyped; untyped = newExpr; } void findSingleExpression( Expression *&untyped, const SymTab::Indexer &indexer ) { if ( ! untyped ) return; TypeEnvironment env; AlternativeFinder finder( indexer, env ); finder.find( untyped ); #if 0 if ( finder.get_alternatives().size() != 1 ) { std::cerr << "untyped expr is "; untyped->print( std::cerr ); std::cerr << std::endl << "alternatives are:"; for ( const Alternative & alt : finder.get_alternatives() ) { alt.print( std::cerr ); } // for } // if #endif assertf( finder.get_alternatives().size() == 1, "findSingleExpression: must have exactly one alternative at the end." ); Alternative &choice = finder.get_alternatives().front(); Expression *newExpr = choice.expr->clone(); finishExpr( newExpr, choice.env, untyped->env ); delete untyped; untyped = newExpr; } void findSingleExpression( Expression *& untyped, Type * type, const SymTab::Indexer & indexer ) { assert( untyped && type ); untyped = new CastExpr( untyped, type ); findSingleExpression( untyped, indexer ); removeExtraneousCast( untyped, indexer ); } namespace { bool isIntegralType( Type *type ) { if ( dynamic_cast< EnumInstType * >( type ) ) { return true; } else if ( BasicType *bt = dynamic_cast< BasicType * >( type ) ) { return bt->isInteger(); } else if ( dynamic_cast< ZeroType* >( type ) != nullptr || dynamic_cast< OneType* >( type ) != nullptr ) { return true; } else { return false; } // if } void findIntegralExpression( Expression *& untyped, const SymTab::Indexer &indexer ) { TypeEnvironment env; AlternativeFinder finder( indexer, env ); finder.find( untyped ); #if 0 if ( finder.get_alternatives().size() != 1 ) { std::cout << "untyped expr is "; untyped->print( std::cout ); std::cout << std::endl << "alternatives are:"; for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) { i->print( std::cout ); } // for } // if #endif Expression *newExpr = 0; const TypeEnvironment *newEnv = 0; for ( AltList::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) { if ( i->expr->get_result()->size() == 1 && isIntegralType( i->expr->get_result() ) ) { if ( newExpr ) { throw SemanticError( "Too many interpretations for case control expression", untyped ); } else { newExpr = i->expr->clone(); newEnv = &i->env; } // if } // if } // for if ( ! newExpr ) { throw SemanticError( "No interpretations for case control expression", untyped ); } // if finishExpr( newExpr, *newEnv, untyped->env ); delete untyped; untyped = newExpr; } } void Resolver::previsit( ObjectDecl *objectDecl ) { Type *new_type = resolveTypeof( objectDecl->get_type(), indexer ); objectDecl->set_type( new_type ); // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that class-variable // initContext is changed multiple time because the LHS is analysed twice. The second analysis changes // initContext because of a function type can contain object declarations in the return and parameter types. So // each value of initContext is retained, so the type on the first analysis is preserved and used for selecting // the RHS. GuardValue( currentObject ); currentObject = CurrentObject( objectDecl->get_type() ); if ( inEnumDecl && dynamic_cast< EnumInstType * >( objectDecl->get_type() ) ) { // enumerator initializers should not use the enum type to initialize, since // the enum type is still incomplete at this point. Use signed int instead. currentObject = CurrentObject( new BasicType( Type::Qualifiers(), BasicType::SignedInt ) ); } } template< typename PtrType > void Resolver::handlePtrType( PtrType * type ) { if ( type->get_dimension() ) { findSingleExpression( type->dimension, SymTab::SizeType->clone(), indexer ); } } void Resolver::previsit( ArrayType * at ) { handlePtrType( at ); } void Resolver::previsit( PointerType * pt ) { handlePtrType( pt ); } void Resolver::previsit( TypeDecl *typeDecl ) { if ( typeDecl->get_base() ) { Type *new_type = resolveTypeof( typeDecl->get_base(), indexer ); typeDecl->set_base( new_type ); } // if } void Resolver::previsit( FunctionDecl *functionDecl ) { #if 0 std::cerr << "resolver visiting functiondecl "; functionDecl->print( std::cerr ); std::cerr << std::endl; #endif Type *new_type = resolveTypeof( functionDecl->get_type(), indexer ); functionDecl->set_type( new_type ); GuardValue( functionReturn ); functionReturn = ResolvExpr::extractResultType( functionDecl->get_functionType() ); } void Resolver::postvisit( FunctionDecl *functionDecl ) { // default value expressions have an environment which shouldn't be there and trips up later passes. // xxx - it might be necessary to somehow keep the information from this environment, but I can't currently // see how it's useful. for ( Declaration * d : functionDecl->get_functionType()->get_parameters() ) { if ( ObjectDecl * obj = dynamic_cast< ObjectDecl * >( d ) ) { if ( SingleInit * init = dynamic_cast< SingleInit * >( obj->get_init() ) ) { delete init->get_value()->get_env(); init->get_value()->set_env( nullptr ); } } } } void Resolver::previsit( EnumDecl * ) { // in case we decide to allow nested enums GuardValue( inEnumDecl ); inEnumDecl = true; } void Resolver::previsit( ExprStmt *exprStmt ) { visit_children = false; assertf( exprStmt->expr, "ExprStmt has null Expression in resolver" ); findVoidExpression( exprStmt->expr, indexer ); } void Resolver::previsit( AsmExpr *asmExpr ) { visit_children = false; findVoidExpression( asmExpr->operand, indexer ); if ( asmExpr->get_inout() ) { findVoidExpression( asmExpr->inout, indexer ); } // if } void Resolver::previsit( AsmStmt *asmStmt ) { visit_children = false; acceptAll( asmStmt->get_input(), *visitor ); acceptAll( asmStmt->get_output(), *visitor ); } void Resolver::previsit( IfStmt *ifStmt ) { findSingleExpression( ifStmt->condition, indexer ); } void Resolver::previsit( WhileStmt *whileStmt ) { findSingleExpression( whileStmt->condition, indexer ); } void Resolver::previsit( ForStmt *forStmt ) { if ( forStmt->condition ) { findSingleExpression( forStmt->condition, indexer ); } // if if ( forStmt->increment ) { findVoidExpression( forStmt->increment, indexer ); } // if } void Resolver::previsit( SwitchStmt *switchStmt ) { GuardValue( currentObject ); findIntegralExpression( switchStmt->condition, indexer ); currentObject = CurrentObject( switchStmt->condition->result ); } void Resolver::previsit( CaseStmt *caseStmt ) { if ( caseStmt->get_condition() ) { std::list< InitAlternative > initAlts = currentObject.getOptions(); assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral expression." ); // must remove cast from case statement because RangeExpr cannot be cast. Expression * newExpr = new CastExpr( caseStmt->condition, initAlts.front().type->clone() ); findSingleExpression( newExpr, indexer ); CastExpr * castExpr = strict_dynamic_cast< CastExpr * >( newExpr ); caseStmt->condition = castExpr->arg; castExpr->arg = nullptr; delete castExpr; } } void Resolver::previsit( BranchStmt *branchStmt ) { visit_children = false; // must resolve the argument for a computed goto if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement if ( branchStmt->computedTarget ) { // computed goto argument is void * findSingleExpression( branchStmt->computedTarget, new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ), indexer ); } // if } // if } void Resolver::previsit( ReturnStmt *returnStmt ) { visit_children = false; if ( returnStmt->expr ) { findSingleExpression( returnStmt->expr, functionReturn->clone(), indexer ); } // if } void Resolver::previsit( ThrowStmt *throwStmt ) { visit_children = false; // TODO: Replace *exception type with &exception type. if ( throwStmt->get_expr() ) { StructDecl * exception_decl = indexer.lookupStruct( "__cfaabi_ehm__base_exception_t" ); assert( exception_decl ); Type * exceptType = new PointerType( noQualifiers, new StructInstType( noQualifiers, exception_decl ) ); findSingleExpression( throwStmt->expr, exceptType, indexer ); } } void Resolver::previsit( CatchStmt *catchStmt ) { if ( catchStmt->cond ) { findSingleExpression( catchStmt->cond, new BasicType( noQualifiers, BasicType::Bool ), indexer ); } } template< typename iterator_t > inline bool advance_to_mutex( iterator_t & it, const iterator_t & end ) { while( it != end && !(*it)->get_type()->get_mutex() ) { it++; } return it != end; } void Resolver::previsit( WaitForStmt * stmt ) { visit_children = false; // Resolve all clauses first for( auto& clause : stmt->clauses ) { TypeEnvironment env; AlternativeFinder funcFinder( indexer, env ); // Find all alternatives for a function in canonical form funcFinder.findWithAdjustment( clause.target.function ); if ( funcFinder.get_alternatives().empty() ) { stringstream ss; ss << "Use of undeclared indentifier '"; ss << strict_dynamic_cast( clause.target.function )->name; ss << "' in call to waitfor"; throw SemanticError( ss.str() ); } // Find all alternatives for all arguments in canonical form std::vector< AlternativeFinder > argAlternatives; funcFinder.findSubExprs( clause.target.arguments.begin(), clause.target.arguments.end(), back_inserter( argAlternatives ) ); // List all combinations of arguments std::vector< AltList > possibilities; combos( argAlternatives.begin(), argAlternatives.end(), back_inserter( possibilities ) ); AltList func_candidates; std::vector< AltList > args_candidates; // For every possible function : // try matching the arguments to the parameters // not the other way around because we have more arguments than parameters SemanticError errors; for ( Alternative & func : funcFinder.get_alternatives() ) { try { PointerType * pointer = dynamic_cast< PointerType* >( func.expr->get_result()->stripReferences() ); if( !pointer ) { throw SemanticError( "candidate not viable: not a pointer type\n", func.expr->get_result() ); } FunctionType * function = dynamic_cast< FunctionType* >( pointer->get_base() ); if( !function ) { throw SemanticError( "candidate not viable: not a function type\n", pointer->get_base() ); } { auto param = function->parameters.begin(); auto param_end = function->parameters.end(); if( !advance_to_mutex( param, param_end ) ) { throw SemanticError("candidate function not viable: no mutex parameters\n", function); } } Alternative newFunc( func ); // Strip reference from function referenceToRvalueConversion( newFunc.expr ); // For all the set of arguments we have try to match it with the parameter of the current function alternative for ( auto & argsList : possibilities ) { try { // Declare data structures need for resolution OpenVarSet openVars; AssertionSet resultNeed, resultHave; TypeEnvironment resultEnv; // Load type variables from arguemnts into one shared space simpleCombineEnvironments( argsList.begin(), argsList.end(), resultEnv ); // Make sure we don't widen any existing bindings for ( auto & i : resultEnv ) { i.allowWidening = false; } // Find any unbound type variables resultEnv.extractOpenVars( openVars ); auto param = function->parameters.begin(); auto param_end = function->parameters.end(); // For every arguments of its set, check if it matches one of the parameter // The order is important for( auto & arg : argsList ) { // Ignore non-mutex arguments if( !advance_to_mutex( param, param_end ) ) { // We ran out of parameters but still have arguments // this function doesn't match throw SemanticError("candidate function not viable: too many mutex arguments\n", function); } // Check if the argument matches the parameter type in the current scope if( ! unify( (*param)->get_type(), arg.expr->get_result(), resultEnv, resultNeed, resultHave, openVars, this->indexer ) ) { // Type doesn't match stringstream ss; ss << "candidate function not viable: no known convertion from '"; arg.expr->get_result()->print( ss ); ss << "' to '"; (*param)->get_type()->print( ss ); ss << "'\n"; throw SemanticError(ss.str(), function); } param++; } // All arguments match ! // Check if parameters are missing if( advance_to_mutex( param, param_end ) ) { // We ran out of arguments but still have parameters left // this function doesn't match throw SemanticError("candidate function not viable: too few mutex arguments\n", function); } // All parameters match ! // Finish the expressions to tie in the proper environments finishExpr( newFunc.expr, resultEnv ); for( Alternative & alt : argsList ) { finishExpr( alt.expr, resultEnv ); } // This is a match store it and save it for later func_candidates.push_back( newFunc ); args_candidates.push_back( argsList ); } catch( SemanticError &e ) { errors.append( e ); } } } catch( SemanticError &e ) { errors.append( e ); } } // Make sure we got the right number of arguments if( func_candidates.empty() ) { SemanticError top( "No alternatives for function in call to waitfor" ); top.append( errors ); throw top; } if( args_candidates.empty() ) { SemanticError top( "No alternatives for arguments in call to waitfor" ); top.append( errors ); throw top; } if( func_candidates.size() > 1 ) { SemanticError top( "Ambiguous function in call to waitfor" ); top.append( errors ); throw top; } if( args_candidates.size() > 1 ) { SemanticError top( "Ambiguous arguments in call to waitfor" ); top.append( errors ); throw top; } // Swap the results from the alternative with the unresolved values. // Alternatives will handle deletion on destruction std::swap( clause.target.function, func_candidates.front().expr ); for( auto arg_pair : group_iterate( clause.target.arguments, args_candidates.front() ) ) { std::swap ( std::get<0>( arg_pair), std::get<1>( arg_pair).expr ); } // Resolve the conditions as if it were an IfStmt // Resolve the statments normally findSingleExpression( clause.condition, this->indexer ); clause.statement->accept( *visitor ); } if( stmt->timeout.statement ) { // Resolve the timeout as an size_t for now // Resolve the conditions as if it were an IfStmt // Resolve the statments normally findSingleExpression( stmt->timeout.time, new BasicType( noQualifiers, BasicType::LongLongUnsignedInt ), this->indexer ); findSingleExpression( stmt->timeout.condition, this->indexer ); stmt->timeout.statement->accept( *visitor ); } if( stmt->orelse.statement ) { // Resolve the conditions as if it were an IfStmt // Resolve the statments normally findSingleExpression( stmt->orelse.condition, this->indexer ); stmt->orelse.statement->accept( *visitor ); } } bool isStructOrUnion( Type * t ) { t = t->stripReferences(); return dynamic_cast< StructInstType * >( t ) || dynamic_cast< UnionInstType * >( t ); } void Resolver::previsit( WithStmt * withStmt ) { for ( Expression *& expr : withStmt->exprs ) { TypeEnvironment env; AlternativeFinder finder( indexer, env ); finder.findWithAdjustment( expr ); // only struct- and union-typed expressions are viable candidates AltList candidates; for ( Alternative & alt : finder.get_alternatives() ) { if ( isStructOrUnion( alt.expr->result ) ) { candidates.push_back( std::move( alt ) ); } } // choose the lowest cost expression among the candidates AltList winners; findMinCost( candidates.begin(), candidates.end(), back_inserter( winners ) ); if ( winners.size() == 0 ) { throw SemanticError( "No reasonable alternatives for with statement expression: ", expr ); } else if ( winners.size() != 1 ) { std::ostringstream stream; stream << "Cannot choose between " << winners.size() << " alternatives for with statement expression\n"; expr->print( stream ); stream << "Alternatives are:\n"; printAlts( winners, stream, 1 ); throw SemanticError( stream.str() ); } // there is one unambiguous interpretation - move the expression into the with statement Alternative & alt = winners.front(); finishExpr( alt.expr, alt.env, expr->env ); delete expr; expr = alt.expr; alt.expr = nullptr; } } template< typename T > bool isCharType( T t ) { if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) { return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar || bt->get_kind() == BasicType::UnsignedChar; } return false; } void Resolver::previsit( SingleInit *singleInit ) { visit_children = false; // resolve initialization using the possibilities as determined by the currentObject cursor Expression * newExpr = new UntypedInitExpr( singleInit->value, currentObject.getOptions() ); findSingleExpression( newExpr, indexer ); InitExpr * initExpr = strict_dynamic_cast< InitExpr * >( newExpr ); // move cursor to the object that is actually initialized currentObject.setNext( initExpr->get_designation() ); // discard InitExpr wrapper and retain relevant pieces newExpr = initExpr->expr; initExpr->expr = nullptr; std::swap( initExpr->env, newExpr->env ); std::swap( initExpr->inferParams, newExpr->inferParams ) ; delete initExpr; // get the actual object's type (may not exactly match what comes back from the resolver due to conversions) Type * initContext = currentObject.getCurrentType(); removeExtraneousCast( newExpr, indexer ); // check if actual object's type is char[] if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) { if ( isCharType( at->get_base() ) ) { // check if the resolved type is char * if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_result() ) ) { if ( isCharType( pt->get_base() ) ) { if ( CastExpr *ce = dynamic_cast< CastExpr * >( newExpr ) ) { // strip cast if we're initializing a char[] with a char *, e.g. char x[] = "hello"; newExpr = ce->get_arg(); ce->set_arg( nullptr ); std::swap( ce->env, newExpr->env ); delete ce; } } } } } // set initializer expr to resolved express singleInit->value = newExpr; // move cursor to next object in preparation for next initializer currentObject.increment(); } void Resolver::previsit( ListInit * listInit ) { visit_children = false; // move cursor into brace-enclosed initializer-list currentObject.enterListInit(); // xxx - fix this so that the list isn't copied, iterator should be used to change current element std::list newDesignations; for ( auto p : group_iterate(listInit->get_designations(), listInit->get_initializers()) ) { // iterate designations and initializers in pairs, moving the cursor to the current designated object and resolving // the initializer against that object. Designation * des = std::get<0>(p); Initializer * init = std::get<1>(p); newDesignations.push_back( currentObject.findNext( des ) ); init->accept( *visitor ); } // set the set of 'resolved' designations and leave the brace-enclosed initializer-list listInit->get_designations() = newDesignations; // xxx - memory management currentObject.exitListInit(); // xxx - this part has not be folded into CurrentObject yet // } else if ( TypeInstType * tt = dynamic_cast< TypeInstType * >( initContext ) ) { // Type * base = tt->get_baseType()->get_base(); // if ( base ) { // // know the implementation type, so try using that as the initContext // ObjectDecl tmpObj( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, base->clone(), nullptr ); // currentObject = &tmpObj; // visit( listInit ); // } else { // // missing implementation type -- might be an unknown type variable, so try proceeding with the current init context // Parent::visit( listInit ); // } // } else { } // ConstructorInit - fall back on C-style initializer void Resolver::fallbackInit( ConstructorInit * ctorInit ) { // could not find valid constructor, or found an intrinsic constructor // fall back on C-style initializer delete ctorInit->get_ctor(); ctorInit->set_ctor( NULL ); delete ctorInit->get_dtor(); ctorInit->set_dtor( NULL ); maybeAccept( ctorInit->get_init(), *visitor ); } // needs to be callable from outside the resolver, so this is a standalone function void resolveCtorInit( ConstructorInit * ctorInit, const SymTab::Indexer & indexer ) { assert( ctorInit ); PassVisitor resolver( indexer ); ctorInit->accept( resolver ); } void resolveStmtExpr( StmtExpr * stmtExpr, const SymTab::Indexer & indexer ) { assert( stmtExpr ); PassVisitor resolver( indexer ); stmtExpr->accept( resolver ); } void Resolver::previsit( ConstructorInit *ctorInit ) { visit_children = false; // xxx - fallback init has been removed => remove fallbackInit function and remove complexity from FixInit and remove C-init from ConstructorInit maybeAccept( ctorInit->get_ctor(), *visitor ); maybeAccept( ctorInit->get_dtor(), *visitor ); // found a constructor - can get rid of C-style initializer delete ctorInit->get_init(); ctorInit->set_init( NULL ); // intrinsic single parameter constructors and destructors do nothing. Since this was // implicitly generated, there's no way for it to have side effects, so get rid of it // to clean up generated code. if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->get_ctor() ) ) { delete ctorInit->get_ctor(); ctorInit->set_ctor( NULL ); } if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->get_dtor() ) ) { delete ctorInit->get_dtor(); ctorInit->set_dtor( NULL ); } // xxx - todo -- what about arrays? // if ( dtor == NULL && InitTweak::isIntrinsicCallStmt( ctorInit->get_ctor() ) ) { // // can reduce the constructor down to a SingleInit using the // // second argument from the ctor call, since // delete ctorInit->get_ctor(); // ctorInit->set_ctor( NULL ); // Expression * arg = // ctorInit->set_init( new SingleInit( arg ) ); // } } } // namespace ResolvExpr // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //