// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // Resolver.cc -- // // Author : Aaron B. Moss // Created On : Sun May 17 12:17:01 2015 // Last Modified By : Andrew Beach // Last Modified On : Fri Mar 18 10:41:00 2022 // Update Count : 247 // #include // for strict_dynamic_cast, assert #include // for allocator, allocator_traits<... #include // for get #include // for vector #include "Alternative.h" // for Alternative, AltList #include "AlternativeFinder.h" // for AlternativeFinder, resolveIn... #include "Candidate.hpp" #include "CandidateFinder.hpp" #include "CurrentObject.h" // for CurrentObject #include "RenameVars.h" // for RenameVars, global_renamer #include "Resolver.h" #include "ResolveTypeof.h" #include "ResolvMode.h" // for ResolvMode #include "typeops.h" // for extractResultType #include "Unify.h" // for unify #include "CompilationState.h" #include "AST/Chain.hpp" #include "AST/Decl.hpp" #include "AST/Init.hpp" #include "AST/Pass.hpp" #include "AST/Print.hpp" #include "AST/SymbolTable.hpp" #include "AST/Type.hpp" #include "Common/PassVisitor.h" // for PassVisitor #include "Common/SemanticError.h" // for SemanticError #include "Common/Stats/ResolveTime.h" // for ResolveTime::start(), ResolveTime::stop() #include "Common/utility.h" // for ValueGuard, group_iterate #include "InitTweak/GenInit.h" #include "InitTweak/InitTweak.h" // for isIntrinsicSingleArgCallStmt #include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment #include "SymTab/Autogen.h" // for SizeType #include "SymTab/Indexer.h" // for Indexer #include "SymTab/Mangler.h" // for Mangler #include "SynTree/Declaration.h" // for ObjectDecl, TypeDecl, Declar... #include "SynTree/Expression.h" // for Expression, CastExpr, InitExpr #include "SynTree/Initializer.h" // for ConstructorInit, SingleInit #include "SynTree/Statement.h" // for ForStmt, Statement, BranchStmt #include "SynTree/Type.h" // for Type, BasicType, PointerType #include "SynTree/TypeSubstitution.h" // for TypeSubstitution #include "SynTree/Visitor.h" // for acceptAll, maybeAccept #include "Tuples/Tuples.h" #include "Validate/FindSpecialDecls.h" // for SizeType using namespace std; namespace ResolvExpr { struct Resolver_old final : public WithIndexer, public WithGuards, public WithVisitorRef, public WithShortCircuiting, public WithStmtsToAdd { Resolver_old() {} Resolver_old( const SymTab::Indexer & other ) { indexer = other; } void previsit( FunctionDecl * functionDecl ); void postvisit( FunctionDecl * functionDecl ); void previsit( ObjectDecl * objectDecll ); void previsit( EnumDecl * enumDecl ); void previsit( StaticAssertDecl * assertDecl ); void previsit( ArrayType * at ); void previsit( PointerType * at ); void previsit( ExprStmt * exprStmt ); void previsit( AsmExpr * asmExpr ); void previsit( AsmStmt * asmStmt ); void previsit( IfStmt * ifStmt ); void previsit( WhileDoStmt * whileDoStmt ); void previsit( ForStmt * forStmt ); void previsit( SwitchStmt * switchStmt ); void previsit( CaseStmt * caseStmt ); void previsit( BranchStmt * branchStmt ); void previsit( ReturnStmt * returnStmt ); void previsit( ThrowStmt * throwStmt ); void previsit( CatchStmt * catchStmt ); void postvisit( CatchStmt * catchStmt ); void previsit( WaitForStmt * stmt ); void previsit( SingleInit * singleInit ); void previsit( ListInit * listInit ); void previsit( ConstructorInit * ctorInit ); private: typedef std::list< Initializer * >::iterator InitIterator; template< typename PtrType > void handlePtrType( PtrType * type ); void fallbackInit( ConstructorInit * ctorInit ); Type * functionReturn = nullptr; CurrentObject currentObject = nullptr; bool inEnumDecl = false; }; struct ResolveWithExprs : public WithIndexer, public WithGuards, public WithVisitorRef, public WithShortCircuiting, public WithStmtsToAdd { void previsit( FunctionDecl * ); void previsit( WithStmt * ); void resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts ); }; void resolve( std::list< Declaration * > translationUnit ) { PassVisitor resolver; acceptAll( translationUnit, resolver ); } void resolveDecl( Declaration * decl, const SymTab::Indexer & indexer ) { PassVisitor resolver( indexer ); maybeAccept( decl, resolver ); } namespace { struct DeleteFinder_old : public WithShortCircuiting { DeletedExpr * delExpr = nullptr; void previsit( DeletedExpr * expr ) { if ( delExpr ) visit_children = false; else delExpr = expr; } void previsit( Expression * ) { if ( delExpr ) visit_children = false; } }; } DeletedExpr * findDeletedExpr( Expression * expr ) { PassVisitor finder; expr->accept( finder ); return finder.pass.delExpr; } namespace { struct StripCasts_old { Expression * postmutate( CastExpr * castExpr ) { if ( castExpr->isGenerated && ResolvExpr::typesCompatible( castExpr->arg->result, castExpr->result, SymTab::Indexer() ) ) { // generated cast is to the same type as its argument, so it's unnecessary -- remove it Expression * expr = castExpr->arg; castExpr->arg = nullptr; std::swap( expr->env, castExpr->env ); return expr; } return castExpr; } static void strip( Expression *& expr ) { PassVisitor stripper; expr = expr->acceptMutator( stripper ); } }; void finishExpr( Expression *& expr, const TypeEnvironment & env, TypeSubstitution * oldenv = nullptr ) { expr->env = oldenv ? oldenv->clone() : new TypeSubstitution; env.makeSubstitution( *expr->env ); StripCasts_old::strip( expr ); // remove unnecessary casts that may be buried in an expression } void removeExtraneousCast( Expression *& expr, const SymTab::Indexer & indexer ) { if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( expr ) ) { if ( typesCompatible( castExpr->arg->result, castExpr->result, indexer ) ) { // cast is to the same type as its argument, so it's unnecessary -- remove it expr = castExpr->arg; castExpr->arg = nullptr; std::swap( expr->env, castExpr->env ); delete castExpr; } } } } // namespace namespace { void findUnfinishedKindExpression(Expression * untyped, Alternative & alt, const SymTab::Indexer & indexer, const std::string & kindStr, std::function pred, ResolvMode mode = ResolvMode{} ) { assertf( untyped, "expected a non-null expression." ); // xxx - this isn't thread-safe, but should work until we parallelize the resolver static unsigned recursion_level = 0; ++recursion_level; TypeEnvironment env; AlternativeFinder finder( indexer, env ); finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode ); --recursion_level; #if 0 if ( finder.get_alternatives().size() != 1 ) { std::cerr << "untyped expr is "; untyped->print( std::cerr ); std::cerr << std::endl << "alternatives are:"; for ( const Alternative & alt : finder.get_alternatives() ) { alt.print( std::cerr ); } // for } // if #endif // produce filtered list of alternatives AltList candidates; for ( Alternative & alt : finder.get_alternatives() ) { if ( pred( alt ) ) { candidates.push_back( std::move( alt ) ); } } // produce invalid error if no candidates if ( candidates.empty() ) { SemanticError( untyped, toString( "No reasonable alternatives for ", kindStr, (kindStr != "" ? " " : ""), "expression: ") ); } // search for cheapest candidate AltList winners; bool seen_undeleted = false; for ( unsigned i = 0; i < candidates.size(); ++i ) { int c = winners.empty() ? -1 : candidates[i].cost.compare( winners.front().cost ); if ( c > 0 ) continue; // skip more expensive than winner if ( c < 0 ) { // reset on new cheapest seen_undeleted = ! findDeletedExpr( candidates[i].expr ); winners.clear(); } else /* if ( c == 0 ) */ { if ( findDeletedExpr( candidates[i].expr ) ) { // skip deleted expression if already seen one equivalent-cost not if ( seen_undeleted ) continue; } else if ( ! seen_undeleted ) { // replace list of equivalent-cost deleted expressions with one non-deleted winners.clear(); seen_undeleted = true; } } winners.emplace_back( std::move( candidates[i] ) ); } // promote alternative.cvtCost to .cost // xxx - I don't know why this is done, but I'm keeping the behaviour from findMinCost for ( Alternative& winner : winners ) { winner.cost = winner.cvtCost; } // produce ambiguous errors, if applicable if ( winners.size() != 1 ) { std::ostringstream stream; stream << "Cannot choose between " << winners.size() << " alternatives for " << kindStr << (kindStr != "" ? " " : "") << "expression\n"; untyped->print( stream ); stream << " Alternatives are:\n"; printAlts( winners, stream, 1 ); SemanticError( untyped->location, stream.str() ); } // single selected choice Alternative& choice = winners.front(); // fail on only expression deleted if ( ! seen_undeleted ) { SemanticError( untyped->location, choice.expr, "Unique best alternative includes deleted identifier in " ); } // xxx - check for ambiguous expressions // output selected choice alt = std::move( choice ); } /// resolve `untyped` to the expression whose alternative satisfies `pred` with the lowest cost; kindStr is used for providing better error messages void findKindExpression(Expression *& untyped, const SymTab::Indexer & indexer, const std::string & kindStr, std::function pred, ResolvMode mode = ResolvMode{}) { if ( ! untyped ) return; Alternative choice; findUnfinishedKindExpression( untyped, choice, indexer, kindStr, pred, mode ); finishExpr( choice.expr, choice.env, untyped->env ); delete untyped; untyped = choice.expr; choice.expr = nullptr; } bool standardAlternativeFilter( const Alternative & ) { // currently don't need to filter, under normal circumstances. // in the future, this may be useful for removing deleted expressions return true; } } // namespace // used in resolveTypeof Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer ) { TypeEnvironment env; return resolveInVoidContext( expr, indexer, env ); } Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer, TypeEnvironment & env ) { // it's a property of the language that a cast expression has either 1 or 0 interpretations; if it has 0 // interpretations, an exception has already been thrown. assertf( expr, "expected a non-null expression." ); CastExpr * untyped = new CastExpr( expr ); // cast to void untyped->location = expr->location; // set up and resolve expression cast to void Alternative choice; findUnfinishedKindExpression( untyped, choice, indexer, "", standardAlternativeFilter, ResolvMode::withAdjustment() ); CastExpr * castExpr = strict_dynamic_cast< CastExpr * >( choice.expr ); assert( castExpr ); env = std::move( choice.env ); // clean up resolved expression Expression * ret = castExpr->arg; castExpr->arg = nullptr; // unlink the arg so that it isn't deleted twice at the end of the program untyped->arg = nullptr; return ret; } void findVoidExpression( Expression *& untyped, const SymTab::Indexer & indexer ) { resetTyVarRenaming(); TypeEnvironment env; Expression * newExpr = resolveInVoidContext( untyped, indexer, env ); finishExpr( newExpr, env, untyped->env ); delete untyped; untyped = newExpr; } void findSingleExpression( Expression *& untyped, const SymTab::Indexer & indexer ) { findKindExpression( untyped, indexer, "", standardAlternativeFilter ); } void findSingleExpression( Expression *& untyped, Type * type, const SymTab::Indexer & indexer ) { assert( untyped && type ); // transfer location to generated cast for error purposes CodeLocation location = untyped->location; untyped = new CastExpr( untyped, type ); untyped->location = location; findSingleExpression( untyped, indexer ); removeExtraneousCast( untyped, indexer ); } namespace { bool isIntegralType( const Alternative & alt ) { Type * type = alt.expr->result; if ( dynamic_cast< EnumInstType * >( type ) ) { return true; } else if ( BasicType * bt = dynamic_cast< BasicType * >( type ) ) { return bt->isInteger(); } else if ( dynamic_cast< ZeroType* >( type ) != nullptr || dynamic_cast< OneType* >( type ) != nullptr ) { return true; } else { return false; } // if } void findIntegralExpression( Expression *& untyped, const SymTab::Indexer & indexer ) { findKindExpression( untyped, indexer, "condition", isIntegralType ); } } bool isStructOrUnion( const Alternative & alt ) { Type * t = alt.expr->result->stripReferences(); return dynamic_cast< StructInstType * >( t ) || dynamic_cast< UnionInstType * >( t ); } void resolveWithExprs( std::list< Declaration * > & translationUnit ) { PassVisitor resolver; acceptAll( translationUnit, resolver ); } void ResolveWithExprs::resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts ) { for ( Expression *& expr : withExprs ) { // only struct- and union-typed expressions are viable candidates findKindExpression( expr, indexer, "with statement", isStructOrUnion ); // if with expression might be impure, create a temporary so that it is evaluated once if ( Tuples::maybeImpure( expr ) ) { static UniqueName tmpNamer( "_with_tmp_" ); ObjectDecl * tmp = ObjectDecl::newObject( tmpNamer.newName(), expr->result->clone(), new SingleInit( expr ) ); expr = new VariableExpr( tmp ); newStmts.push_back( new DeclStmt( tmp ) ); if ( InitTweak::isConstructable( tmp->type ) ) { // generate ctor/dtor and resolve them tmp->init = InitTweak::genCtorInit( tmp ); tmp->accept( *visitor ); } } } } void ResolveWithExprs::previsit( WithStmt * withStmt ) { resolveWithExprs( withStmt->exprs, stmtsToAddBefore ); } void ResolveWithExprs::previsit( FunctionDecl * functionDecl ) { { // resolve with-exprs with parameters in scope and add any newly generated declarations to the // front of the function body. auto guard = makeFuncGuard( [this]() { indexer.enterScope(); }, [this](){ indexer.leaveScope(); } ); indexer.addFunctionType( functionDecl->type ); std::list< Statement * > newStmts; resolveWithExprs( functionDecl->withExprs, newStmts ); if ( functionDecl->statements ) { functionDecl->statements->kids.splice( functionDecl->statements->kids.begin(), newStmts ); } else { assertf( functionDecl->withExprs.empty() && newStmts.empty(), "Function %s without a body has with-clause and/or generated with declarations.", functionDecl->name.c_str() ); } } } void Resolver_old::previsit( ObjectDecl * objectDecl ) { // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that // class-variable initContext is changed multiple time because the LHS is analysed twice. // The second analysis changes initContext because of a function type can contain object // declarations in the return and parameter types. So each value of initContext is // retained, so the type on the first analysis is preserved and used for selecting the RHS. GuardValue( currentObject ); currentObject = CurrentObject( objectDecl->get_type() ); if ( inEnumDecl && dynamic_cast< EnumInstType * >( objectDecl->get_type() ) ) { // enumerator initializers should not use the enum type to initialize, since // the enum type is still incomplete at this point. Use signed int instead. currentObject = CurrentObject( new BasicType( Type::Qualifiers(), BasicType::SignedInt ) ); } } template< typename PtrType > void Resolver_old::handlePtrType( PtrType * type ) { if ( type->get_dimension() ) { findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer ); } } void Resolver_old::previsit( ArrayType * at ) { handlePtrType( at ); } void Resolver_old::previsit( PointerType * pt ) { handlePtrType( pt ); } void Resolver_old::previsit( FunctionDecl * functionDecl ) { #if 0 std::cerr << "resolver visiting functiondecl "; functionDecl->print( std::cerr ); std::cerr << std::endl; #endif GuardValue( functionReturn ); functionReturn = ResolvExpr::extractResultType( functionDecl->type ); } void Resolver_old::postvisit( FunctionDecl * functionDecl ) { // default value expressions have an environment which shouldn't be there and trips up // later passes. // xxx - it might be necessary to somehow keep the information from this environment, but I // can't currently see how it's useful. for ( Declaration * d : functionDecl->type->parameters ) { if ( ObjectDecl * obj = dynamic_cast< ObjectDecl * >( d ) ) { if ( SingleInit * init = dynamic_cast< SingleInit * >( obj->init ) ) { delete init->value->env; init->value->env = nullptr; } } } } void Resolver_old::previsit( EnumDecl * ) { // in case we decide to allow nested enums GuardValue( inEnumDecl ); inEnumDecl = true; } void Resolver_old::previsit( StaticAssertDecl * assertDecl ) { findIntegralExpression( assertDecl->condition, indexer ); } void Resolver_old::previsit( ExprStmt * exprStmt ) { visit_children = false; assertf( exprStmt->expr, "ExprStmt has null Expression in resolver" ); findVoidExpression( exprStmt->expr, indexer ); } void Resolver_old::previsit( AsmExpr * asmExpr ) { visit_children = false; findVoidExpression( asmExpr->operand, indexer ); } void Resolver_old::previsit( AsmStmt * asmStmt ) { visit_children = false; acceptAll( asmStmt->get_input(), *visitor ); acceptAll( asmStmt->get_output(), *visitor ); } void Resolver_old::previsit( IfStmt * ifStmt ) { findIntegralExpression( ifStmt->condition, indexer ); } void Resolver_old::previsit( WhileDoStmt * whileDoStmt ) { findIntegralExpression( whileDoStmt->condition, indexer ); } void Resolver_old::previsit( ForStmt * forStmt ) { if ( forStmt->condition ) { findIntegralExpression( forStmt->condition, indexer ); } // if if ( forStmt->increment ) { findVoidExpression( forStmt->increment, indexer ); } // if } void Resolver_old::previsit( SwitchStmt * switchStmt ) { GuardValue( currentObject ); findIntegralExpression( switchStmt->condition, indexer ); currentObject = CurrentObject( switchStmt->condition->result ); } void Resolver_old::previsit( CaseStmt * caseStmt ) { if ( caseStmt->condition ) { std::list< InitAlternative > initAlts = currentObject.getOptions(); assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral expression." ); // must remove cast from case statement because RangeExpr cannot be cast. Expression * newExpr = new CastExpr( caseStmt->condition, initAlts.front().type->clone() ); findSingleExpression( newExpr, indexer ); // case condition cannot have a cast in C, so it must be removed, regardless of whether it performs a conversion. // Ideally we would perform the conversion internally here. if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( newExpr ) ) { newExpr = castExpr->arg; castExpr->arg = nullptr; std::swap( newExpr->env, castExpr->env ); delete castExpr; } caseStmt->condition = newExpr; } } void Resolver_old::previsit( BranchStmt * branchStmt ) { visit_children = false; // must resolve the argument for a computed goto if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement if ( branchStmt->computedTarget ) { // computed goto argument is void * findSingleExpression( branchStmt->computedTarget, new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ), indexer ); } // if } // if } void Resolver_old::previsit( ReturnStmt * returnStmt ) { visit_children = false; if ( returnStmt->expr ) { findSingleExpression( returnStmt->expr, functionReturn->clone(), indexer ); } // if } void Resolver_old::previsit( ThrowStmt * throwStmt ) { visit_children = false; // TODO: Replace *exception type with &exception type. if ( throwStmt->get_expr() ) { const StructDecl * exception_decl = indexer.lookupStruct( "__cfaehm_base_exception_t" ); assert( exception_decl ); Type * exceptType = new PointerType( noQualifiers, new StructInstType( noQualifiers, const_cast(exception_decl) ) ); findSingleExpression( throwStmt->expr, exceptType, indexer ); } } void Resolver_old::previsit( CatchStmt * catchStmt ) { // Until we are very sure this invarent (ifs that move between passes have then) // holds, check it. This allows a check for when to decode the mangling. if ( IfStmt * ifStmt = dynamic_cast( catchStmt->body ) ) { assert( ifStmt->then ); } // Encode the catchStmt so the condition can see the declaration. if ( catchStmt->cond ) { IfStmt * ifStmt = new IfStmt( catchStmt->cond, nullptr, catchStmt->body ); catchStmt->cond = nullptr; catchStmt->body = ifStmt; } } void Resolver_old::postvisit( CatchStmt * catchStmt ) { // Decode the catchStmt so everything is stored properly. IfStmt * ifStmt = dynamic_cast( catchStmt->body ); if ( nullptr != ifStmt && nullptr == ifStmt->then ) { assert( ifStmt->condition ); assert( ifStmt->else_ ); catchStmt->cond = ifStmt->condition; catchStmt->body = ifStmt->else_; ifStmt->condition = nullptr; ifStmt->else_ = nullptr; delete ifStmt; } } template< typename iterator_t > inline bool advance_to_mutex( iterator_t & it, const iterator_t & end ) { while( it != end && !(*it)->get_type()->get_mutex() ) { it++; } return it != end; } void Resolver_old::previsit( WaitForStmt * stmt ) { visit_children = false; // Resolve all clauses first for( auto& clause : stmt->clauses ) { TypeEnvironment env; AlternativeFinder funcFinder( indexer, env ); // Find all alternatives for a function in canonical form funcFinder.findWithAdjustment( clause.target.function ); if ( funcFinder.get_alternatives().empty() ) { stringstream ss; ss << "Use of undeclared indentifier '"; ss << strict_dynamic_cast( clause.target.function )->name; ss << "' in call to waitfor"; SemanticError( stmt->location, ss.str() ); } if(clause.target.arguments.empty()) { SemanticError( stmt->location, "Waitfor clause must have at least one mutex parameter"); } // Find all alternatives for all arguments in canonical form std::vector< AlternativeFinder > argAlternatives; funcFinder.findSubExprs( clause.target.arguments.begin(), clause.target.arguments.end(), back_inserter( argAlternatives ) ); // List all combinations of arguments std::vector< AltList > possibilities; combos( argAlternatives.begin(), argAlternatives.end(), back_inserter( possibilities ) ); AltList func_candidates; std::vector< AltList > args_candidates; // For every possible function : // try matching the arguments to the parameters // not the other way around because we have more arguments than parameters SemanticErrorException errors; for ( Alternative & func : funcFinder.get_alternatives() ) { try { PointerType * pointer = dynamic_cast< PointerType* >( func.expr->get_result()->stripReferences() ); if( !pointer ) { SemanticError( func.expr->get_result(), "candidate not viable: not a pointer type\n" ); } FunctionType * function = dynamic_cast< FunctionType* >( pointer->get_base() ); if( !function ) { SemanticError( pointer->get_base(), "candidate not viable: not a function type\n" ); } { auto param = function->parameters.begin(); auto param_end = function->parameters.end(); if( !advance_to_mutex( param, param_end ) ) { SemanticError(function, "candidate function not viable: no mutex parameters\n"); } } Alternative newFunc( func ); // Strip reference from function referenceToRvalueConversion( newFunc.expr, newFunc.cost ); // For all the set of arguments we have try to match it with the parameter of the current function alternative for ( auto & argsList : possibilities ) { try { // Declare data structures need for resolution OpenVarSet openVars; AssertionSet resultNeed, resultHave; TypeEnvironment resultEnv( func.env ); makeUnifiableVars( function, openVars, resultNeed ); // add all type variables as open variables now so that those not used in the parameter // list are still considered open. resultEnv.add( function->forall ); // Load type variables from arguemnts into one shared space simpleCombineEnvironments( argsList.begin(), argsList.end(), resultEnv ); // Make sure we don't widen any existing bindings resultEnv.forbidWidening(); // Find any unbound type variables resultEnv.extractOpenVars( openVars ); auto param = function->parameters.begin(); auto param_end = function->parameters.end(); int n_mutex_param = 0; // For every arguments of its set, check if it matches one of the parameter // The order is important for( auto & arg : argsList ) { // Ignore non-mutex arguments if( !advance_to_mutex( param, param_end ) ) { // We ran out of parameters but still have arguments // this function doesn't match SemanticError( function, toString("candidate function not viable: too many mutex arguments, expected ", n_mutex_param, "\n" )); } n_mutex_param++; // Check if the argument matches the parameter type in the current scope if( ! unify( arg.expr->get_result(), (*param)->get_type(), resultEnv, resultNeed, resultHave, openVars, this->indexer ) ) { // Type doesn't match stringstream ss; ss << "candidate function not viable: no known convertion from '"; (*param)->get_type()->print( ss ); ss << "' to '"; arg.expr->get_result()->print( ss ); ss << "' with env '"; resultEnv.print(ss); ss << "'\n"; SemanticError( function, ss.str() ); } param++; } // All arguments match ! // Check if parameters are missing if( advance_to_mutex( param, param_end ) ) { do { n_mutex_param++; param++; } while( advance_to_mutex( param, param_end ) ); // We ran out of arguments but still have parameters left // this function doesn't match SemanticError( function, toString("candidate function not viable: too few mutex arguments, expected ", n_mutex_param, "\n" )); } // All parameters match ! // Finish the expressions to tie in the proper environments finishExpr( newFunc.expr, resultEnv ); for( Alternative & alt : argsList ) { finishExpr( alt.expr, resultEnv ); } // This is a match store it and save it for later func_candidates.push_back( newFunc ); args_candidates.push_back( argsList ); } catch( SemanticErrorException & e ) { errors.append( e ); } } } catch( SemanticErrorException & e ) { errors.append( e ); } } // Make sure we got the right number of arguments if( func_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for function in call to waitfor" ); top.append( errors ); throw top; } if( args_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for arguments in call to waitfor" ); top.append( errors ); throw top; } if( func_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous function in call to waitfor" ); top.append( errors ); throw top; } if( args_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous arguments in call to waitfor" ); top.append( errors ); throw top; } // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used. // Swap the results from the alternative with the unresolved values. // Alternatives will handle deletion on destruction std::swap( clause.target.function, func_candidates.front().expr ); for( auto arg_pair : group_iterate( clause.target.arguments, args_candidates.front() ) ) { std::swap ( std::get<0>( arg_pair), std::get<1>( arg_pair).expr ); } // Resolve the conditions as if it were an IfStmt // Resolve the statments normally findSingleExpression( clause.condition, this->indexer ); clause.statement->accept( *visitor ); } if( stmt->timeout.statement ) { // Resolve the timeout as an size_t for now // Resolve the conditions as if it were an IfStmt // Resolve the statments normally findSingleExpression( stmt->timeout.time, new BasicType( noQualifiers, BasicType::LongLongUnsignedInt ), this->indexer ); findSingleExpression( stmt->timeout.condition, this->indexer ); stmt->timeout.statement->accept( *visitor ); } if( stmt->orelse.statement ) { // Resolve the conditions as if it were an IfStmt // Resolve the statments normally findSingleExpression( stmt->orelse.condition, this->indexer ); stmt->orelse.statement->accept( *visitor ); } } bool isCharType( Type * t ) { if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) { return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar || bt->get_kind() == BasicType::UnsignedChar; } return false; } void Resolver_old::previsit( SingleInit * singleInit ) { visit_children = false; // resolve initialization using the possibilities as determined by the currentObject cursor Expression * newExpr = new UntypedInitExpr( singleInit->value, currentObject.getOptions() ); findSingleExpression( newExpr, indexer ); InitExpr * initExpr = strict_dynamic_cast< InitExpr * >( newExpr ); // move cursor to the object that is actually initialized currentObject.setNext( initExpr->get_designation() ); // discard InitExpr wrapper and retain relevant pieces newExpr = initExpr->expr; initExpr->expr = nullptr; std::swap( initExpr->env, newExpr->env ); // InitExpr may have inferParams in the case where the expression specializes a function // pointer, and newExpr may already have inferParams of its own, so a simple swap is not // sufficient. newExpr->spliceInferParams( initExpr ); delete initExpr; // get the actual object's type (may not exactly match what comes back from the resolver // due to conversions) Type * initContext = currentObject.getCurrentType(); removeExtraneousCast( newExpr, indexer ); // check if actual object's type is char[] if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) { if ( isCharType( at->get_base() ) ) { // check if the resolved type is char * if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_result() ) ) { if ( isCharType( pt->get_base() ) ) { if ( CastExpr * ce = dynamic_cast< CastExpr * >( newExpr ) ) { // strip cast if we're initializing a char[] with a char *, // e.g. char x[] = "hello"; newExpr = ce->get_arg(); ce->set_arg( nullptr ); std::swap( ce->env, newExpr->env ); delete ce; } } } } } // set initializer expr to resolved express singleInit->value = newExpr; // move cursor to next object in preparation for next initializer currentObject.increment(); } void Resolver_old::previsit( ListInit * listInit ) { visit_children = false; // move cursor into brace-enclosed initializer-list currentObject.enterListInit(); // xxx - fix this so that the list isn't copied, iterator should be used to change current // element std::list newDesignations; for ( auto p : group_iterate(listInit->get_designations(), listInit->get_initializers()) ) { // iterate designations and initializers in pairs, moving the cursor to the current // designated object and resolving the initializer against that object. Designation * des = std::get<0>(p); Initializer * init = std::get<1>(p); newDesignations.push_back( currentObject.findNext( des ) ); init->accept( *visitor ); } // set the set of 'resolved' designations and leave the brace-enclosed initializer-list listInit->get_designations() = newDesignations; // xxx - memory management currentObject.exitListInit(); // xxx - this part has not be folded into CurrentObject yet // } else if ( TypeInstType * tt = dynamic_cast< TypeInstType * >( initContext ) ) { // Type * base = tt->get_baseType()->get_base(); // if ( base ) { // // know the implementation type, so try using that as the initContext // ObjectDecl tmpObj( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, base->clone(), nullptr ); // currentObject = &tmpObj; // visit( listInit ); // } else { // // missing implementation type -- might be an unknown type variable, so try proceeding with the current init context // Parent::visit( listInit ); // } // } else { } // ConstructorInit - fall back on C-style initializer void Resolver_old::fallbackInit( ConstructorInit * ctorInit ) { // could not find valid constructor, or found an intrinsic constructor // fall back on C-style initializer delete ctorInit->get_ctor(); ctorInit->set_ctor( nullptr ); delete ctorInit->get_dtor(); ctorInit->set_dtor( nullptr ); maybeAccept( ctorInit->get_init(), *visitor ); } // needs to be callable from outside the resolver, so this is a standalone function void resolveCtorInit( ConstructorInit * ctorInit, const SymTab::Indexer & indexer ) { assert( ctorInit ); PassVisitor resolver( indexer ); ctorInit->accept( resolver ); } void resolveStmtExpr( StmtExpr * stmtExpr, const SymTab::Indexer & indexer ) { assert( stmtExpr ); PassVisitor resolver( indexer ); stmtExpr->accept( resolver ); stmtExpr->computeResult(); // xxx - aggregate the environments from all statements? Possibly in AlternativeFinder instead? } void Resolver_old::previsit( ConstructorInit * ctorInit ) { visit_children = false; // xxx - fallback init has been removed => remove fallbackInit function and remove complexity from FixInit and remove C-init from ConstructorInit maybeAccept( ctorInit->ctor, *visitor ); maybeAccept( ctorInit->dtor, *visitor ); // found a constructor - can get rid of C-style initializer delete ctorInit->init; ctorInit->init = nullptr; // intrinsic single parameter constructors and destructors do nothing. Since this was // implicitly generated, there's no way for it to have side effects, so get rid of it // to clean up generated code. if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) { delete ctorInit->ctor; ctorInit->ctor = nullptr; } if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) { delete ctorInit->dtor; ctorInit->dtor = nullptr; } // xxx - todo -- what about arrays? // if ( dtor == nullptr && InitTweak::isIntrinsicCallStmt( ctorInit->get_ctor() ) ) { // // can reduce the constructor down to a SingleInit using the // // second argument from the ctor call, since // delete ctorInit->get_ctor(); // ctorInit->set_ctor( nullptr ); // Expression * arg = // ctorInit->set_init( new SingleInit( arg ) ); // } } /////////////////////////////////////////////////////////////////////////// // // *** NEW RESOLVER *** // /////////////////////////////////////////////////////////////////////////// namespace { /// Finds deleted expressions in an expression tree struct DeleteFinder_new final : public ast::WithShortCircuiting, public ast::WithVisitorRef { const ast::DeletedExpr * result = nullptr; void previsit( const ast::DeletedExpr * expr ) { if ( result ) { visit_children = false; } else { result = expr; } } void previsit( const ast::Expr * expr ) { if ( result ) { visit_children = false; } if (expr->inferred.hasParams()) { for (auto & imp : expr->inferred.inferParams() ) { imp.second.expr->accept(*visitor); } } } }; } // anonymous namespace /// Check if this expression is or includes a deleted expression const ast::DeletedExpr * findDeletedExpr( const ast::Expr * expr ) { return ast::Pass::read( expr ); } namespace { /// always-accept candidate filter bool anyCandidate( const Candidate & ) { return true; } /// Calls the CandidateFinder and finds the single best candidate CandidateRef findUnfinishedKindExpression( const ast::Expr * untyped, const ResolveContext & context, const std::string & kind, std::function pred = anyCandidate, ResolvMode mode = {} ) { if ( ! untyped ) return nullptr; // xxx - this isn't thread-safe, but should work until we parallelize the resolver static unsigned recursion_level = 0; ++recursion_level; ast::TypeEnvironment env; CandidateFinder finder( context, env ); finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode ); --recursion_level; // produce a filtered list of candidates CandidateList candidates; for ( auto & cand : finder.candidates ) { if ( pred( *cand ) ) { candidates.emplace_back( cand ); } } // produce invalid error if no candidates if ( candidates.empty() ) { SemanticError( untyped, toString( "No reasonable alternatives for ", kind, (kind != "" ? " " : ""), "expression: ") ); } // search for cheapest candidate CandidateList winners; bool seen_undeleted = false; for ( CandidateRef & cand : candidates ) { int c = winners.empty() ? -1 : cand->cost.compare( winners.front()->cost ); if ( c > 0 ) continue; // skip more expensive than winner if ( c < 0 ) { // reset on new cheapest seen_undeleted = ! findDeletedExpr( cand->expr ); winners.clear(); } else /* if ( c == 0 ) */ { if ( findDeletedExpr( cand->expr ) ) { // skip deleted expression if already seen one equivalent-cost not if ( seen_undeleted ) continue; } else if ( ! seen_undeleted ) { // replace list of equivalent-cost deleted expressions with one non-deleted winners.clear(); seen_undeleted = true; } } winners.emplace_back( std::move( cand ) ); } // promote candidate.cvtCost to .cost promoteCvtCost( winners ); // produce ambiguous errors, if applicable if ( winners.size() != 1 ) { std::ostringstream stream; stream << "Cannot choose between " << winners.size() << " alternatives for " << kind << (kind != "" ? " " : "") << "expression\n"; ast::print( stream, untyped ); stream << " Alternatives are:\n"; print( stream, winners, 1 ); SemanticError( untyped->location, stream.str() ); } // single selected choice CandidateRef & choice = winners.front(); // fail on only expression deleted if ( ! seen_undeleted ) { SemanticError( untyped->location, choice->expr.get(), "Unique best alternative " "includes deleted identifier in " ); } return std::move( choice ); } /// Strips extraneous casts out of an expression struct StripCasts_new final { const ast::Expr * postvisit( const ast::CastExpr * castExpr ) { if ( castExpr->isGenerated == ast::GeneratedCast && typesCompatible( castExpr->arg->result, castExpr->result ) ) { // generated cast is the same type as its argument, remove it after keeping env return ast::mutate_field( castExpr->arg.get(), &ast::Expr::env, castExpr->env ); } return castExpr; } static void strip( ast::ptr< ast::Expr > & expr ) { ast::Pass< StripCasts_new > stripper; expr = expr->accept( stripper ); } }; /// Swaps argument into expression pointer, saving original environment void swap_and_save_env( ast::ptr< ast::Expr > & expr, const ast::Expr * newExpr ) { ast::ptr< ast::TypeSubstitution > env = expr->env; expr.set_and_mutate( newExpr )->env = env; } /// Removes cast to type of argument (unlike StripCasts, also handles non-generated casts) void removeExtraneousCast( ast::ptr & expr, const ast::SymbolTable & symtab ) { if ( const ast::CastExpr * castExpr = expr.as< ast::CastExpr >() ) { if ( typesCompatible( castExpr->arg->result, castExpr->result, symtab ) ) { // cast is to the same type as its argument, remove it swap_and_save_env( expr, castExpr->arg ); } } } } // anonymous namespace /// Establish post-resolver invariants for expressions void finishExpr( ast::ptr< ast::Expr > & expr, const ast::TypeEnvironment & env, const ast::TypeSubstitution * oldenv = nullptr ) { // set up new type substitution for expression ast::ptr< ast::TypeSubstitution > newenv = oldenv ? oldenv : new ast::TypeSubstitution{}; env.writeToSubstitution( *newenv.get_and_mutate() ); expr.get_and_mutate()->env = std::move( newenv ); // remove unncecessary casts StripCasts_new::strip( expr ); } ast::ptr< ast::Expr > resolveInVoidContext( const ast::Expr * expr, const ResolveContext & context, ast::TypeEnvironment & env ) { assertf( expr, "expected a non-null expression" ); // set up and resolve expression cast to void ast::ptr< ast::CastExpr > untyped = new ast::CastExpr{ expr }; CandidateRef choice = findUnfinishedKindExpression( untyped, context, "", anyCandidate, ResolvMode::withAdjustment() ); // a cast expression has either 0 or 1 interpretations (by language rules); // if 0, an exception has already been thrown, and this code will not run const ast::CastExpr * castExpr = choice->expr.strict_as< ast::CastExpr >(); env = std::move( choice->env ); return castExpr->arg; } /// Resolve `untyped` to the expression whose candidate is the best match for a `void` /// context. ast::ptr< ast::Expr > findVoidExpression( const ast::Expr * untyped, const ResolveContext & context ) { ast::TypeEnvironment env; ast::ptr< ast::Expr > newExpr = resolveInVoidContext( untyped, context, env ); finishExpr( newExpr, env, untyped->env ); return newExpr; } namespace { /// resolve `untyped` to the expression whose candidate satisfies `pred` with the /// lowest cost, returning the resolved version ast::ptr< ast::Expr > findKindExpression( const ast::Expr * untyped, const ResolveContext & context, std::function pred = anyCandidate, const std::string & kind = "", ResolvMode mode = {} ) { if ( ! untyped ) return {}; CandidateRef choice = findUnfinishedKindExpression( untyped, context, kind, pred, mode ); ResolvExpr::finishExpr( choice->expr, choice->env, untyped->env ); return std::move( choice->expr ); } /// Resolve `untyped` to the single expression whose candidate is the best match ast::ptr< ast::Expr > findSingleExpression( const ast::Expr * untyped, const ResolveContext & context ) { Stats::ResolveTime::start( untyped ); auto res = findKindExpression( untyped, context ); Stats::ResolveTime::stop(); return res; } } // anonymous namespace ast::ptr< ast::Expr > findSingleExpression( const ast::Expr * untyped, const ast::Type * type, const ResolveContext & context ) { assert( untyped && type ); ast::ptr< ast::Expr > castExpr = new ast::CastExpr{ untyped, type }; ast::ptr< ast::Expr > newExpr = findSingleExpression( castExpr, context ); removeExtraneousCast( newExpr, context.symtab ); return newExpr; } namespace { bool structOrUnion( const Candidate & i ) { const ast::Type * t = i.expr->result->stripReferences(); return dynamic_cast< const ast::StructInstType * >( t ) || dynamic_cast< const ast::UnionInstType * >( t ); } /// Predicate for "Candidate has integral type" bool hasIntegralType( const Candidate & i ) { const ast::Type * type = i.expr->result; if ( auto bt = dynamic_cast< const ast::BasicType * >( type ) ) { return bt->isInteger(); } else if ( dynamic_cast< const ast::EnumInstType * >( type ) || dynamic_cast< const ast::ZeroType * >( type ) || dynamic_cast< const ast::OneType * >( type ) ) { return true; } else return false; } /// Resolve `untyped` as an integral expression, returning the resolved version ast::ptr< ast::Expr > findIntegralExpression( const ast::Expr * untyped, const ResolveContext & context ) { return findKindExpression( untyped, context, hasIntegralType, "condition" ); } /// check if a type is a character type bool isCharType( const ast::Type * t ) { if ( auto bt = dynamic_cast< const ast::BasicType * >( t ) ) { return bt->kind == ast::BasicType::Char || bt->kind == ast::BasicType::SignedChar || bt->kind == ast::BasicType::UnsignedChar; } return false; } /// Advance a type itertor to the next mutex parameter template inline bool nextMutex( Iter & it, const Iter & end ) { while ( it != end && ! (*it)->is_mutex() ) { ++it; } return it != end; } } class Resolver_new final : public ast::WithSymbolTable, public ast::WithGuards, public ast::WithVisitorRef, public ast::WithShortCircuiting, public ast::WithStmtsToAdd<> { ast::ptr< ast::Type > functionReturn = nullptr; ast::CurrentObject currentObject; // for work previously in GenInit static InitTweak::ManagedTypes_new managedTypes; ResolveContext context; bool inEnumDecl = false; public: static size_t traceId; Resolver_new( const ast::TranslationGlobal & global ) : context{ symtab, global } {} Resolver_new( const ResolveContext & context ) : ast::WithSymbolTable{ context.symtab }, context{ symtab, context.global } {} const ast::FunctionDecl * previsit( const ast::FunctionDecl * ); const ast::FunctionDecl * postvisit( const ast::FunctionDecl * ); const ast::ObjectDecl * previsit( const ast::ObjectDecl * ); void previsit( const ast::AggregateDecl * ); void previsit( const ast::StructDecl * ); void previsit( const ast::EnumDecl * ); const ast::StaticAssertDecl * previsit( const ast::StaticAssertDecl * ); const ast::ArrayType * previsit( const ast::ArrayType * ); const ast::PointerType * previsit( const ast::PointerType * ); const ast::ExprStmt * previsit( const ast::ExprStmt * ); const ast::AsmExpr * previsit( const ast::AsmExpr * ); const ast::AsmStmt * previsit( const ast::AsmStmt * ); const ast::IfStmt * previsit( const ast::IfStmt * ); const ast::WhileDoStmt * previsit( const ast::WhileDoStmt * ); const ast::ForStmt * previsit( const ast::ForStmt * ); const ast::SwitchStmt * previsit( const ast::SwitchStmt * ); const ast::CaseStmt * previsit( const ast::CaseStmt * ); const ast::BranchStmt * previsit( const ast::BranchStmt * ); const ast::ReturnStmt * previsit( const ast::ReturnStmt * ); const ast::ThrowStmt * previsit( const ast::ThrowStmt * ); const ast::CatchStmt * previsit( const ast::CatchStmt * ); const ast::CatchStmt * postvisit( const ast::CatchStmt * ); const ast::WaitForStmt * previsit( const ast::WaitForStmt * ); const ast::WithStmt * previsit( const ast::WithStmt * ); const ast::SingleInit * previsit( const ast::SingleInit * ); const ast::ListInit * previsit( const ast::ListInit * ); const ast::ConstructorInit * previsit( const ast::ConstructorInit * ); void resolveWithExprs(std::vector> & exprs, std::list> & stmtsToAdd); void beginScope() { managedTypes.beginScope(); } void endScope() { managedTypes.endScope(); } bool on_error(ast::ptr & decl); }; // size_t Resolver_new::traceId = Stats::Heap::new_stacktrace_id("Resolver"); InitTweak::ManagedTypes_new Resolver_new::managedTypes; void resolve( ast::TranslationUnit& translationUnit ) { ast::Pass< Resolver_new >::run( translationUnit, translationUnit.global ); } ast::ptr< ast::Init > resolveCtorInit( const ast::ConstructorInit * ctorInit, const ResolveContext & context ) { assert( ctorInit ); ast::Pass< Resolver_new > resolver( context ); return ctorInit->accept( resolver ); } const ast::Expr * resolveStmtExpr( const ast::StmtExpr * stmtExpr, const ResolveContext & context ) { assert( stmtExpr ); ast::Pass< Resolver_new > resolver( context ); auto ret = mutate(stmtExpr->accept(resolver)); strict_dynamic_cast< ast::StmtExpr * >( ret )->computeResult(); return ret; } namespace { const ast::Attribute * handleAttribute(const CodeLocation & loc, const ast::Attribute * attr, const ResolveContext & context) { std::string name = attr->normalizedName(); if (name == "constructor" || name == "destructor") { if (attr->params.size() == 1) { auto arg = attr->params.front(); auto resolved = ResolvExpr::findSingleExpression( arg, new ast::BasicType( ast::BasicType::LongLongSignedInt ), context ); auto result = eval(arg); auto mutAttr = mutate(attr); mutAttr->params.front() = resolved; if (! result.second) { SemanticWarning(loc, Warning::GccAttributes, toCString( name, " priorities must be integers from 0 to 65535 inclusive: ", arg ) ); } else { auto priority = result.first; if (priority < 101) { SemanticWarning(loc, Warning::GccAttributes, toCString( name, " priorities from 0 to 100 are reserved for the implementation" ) ); } else if (priority < 201 && ! buildingLibrary()) { SemanticWarning(loc, Warning::GccAttributes, toCString( name, " priorities from 101 to 200 are reserved for the implementation" ) ); } } return mutAttr; } else if (attr->params.size() > 1) { SemanticWarning(loc, Warning::GccAttributes, toCString( "too many arguments to ", name, " attribute" ) ); } else { SemanticWarning(loc, Warning::GccAttributes, toCString( "too few arguments to ", name, " attribute" ) ); } } return attr; } } const ast::FunctionDecl * Resolver_new::previsit( const ast::FunctionDecl * functionDecl ) { GuardValue( functionReturn ); assert (functionDecl->unique()); if (!functionDecl->has_body() && !functionDecl->withExprs.empty()) { SemanticError(functionDecl->location, functionDecl, "Function without body has with declarations"); } if (!functionDecl->isTypeFixed) { auto mutDecl = mutate(functionDecl); auto mutType = mutDecl->type.get_and_mutate(); for (auto & attr: mutDecl->attributes) { attr = handleAttribute(mutDecl->location, attr, context ); } // handle assertions symtab.enterScope(); mutType->forall.clear(); mutType->assertions.clear(); for (auto & typeParam : mutDecl->type_params) { symtab.addType(typeParam); mutType->forall.emplace_back(new ast::TypeInstType(typeParam->name, typeParam)); } for (auto & asst : mutDecl->assertions) { asst = fixObjectType(asst.strict_as(), context); symtab.addId(asst); mutType->assertions.emplace_back(new ast::VariableExpr(functionDecl->location, asst)); } // temporarily adds params to symbol table. // actual scoping rules for params and withexprs differ - see Pass::visit(FunctionDecl) std::vector> paramTypes; std::vector> returnTypes; for (auto & param : mutDecl->params) { param = fixObjectType(param.strict_as(), context); symtab.addId(param); paramTypes.emplace_back(param->get_type()); } for (auto & ret : mutDecl->returns) { ret = fixObjectType(ret.strict_as(), context); returnTypes.emplace_back(ret->get_type()); } // since function type in decl is just a view of param types, need to update that as well mutType->params = std::move(paramTypes); mutType->returns = std::move(returnTypes); auto renamedType = strict_dynamic_cast(renameTyVars(mutType, RenameMode::GEN_EXPR_ID)); std::list> newStmts; resolveWithExprs (mutDecl->withExprs, newStmts); if (mutDecl->stmts) { auto mutStmt = mutDecl->stmts.get_and_mutate(); mutStmt->kids.splice(mutStmt->kids.begin(), std::move(newStmts)); mutDecl->stmts = mutStmt; } symtab.leaveScope(); mutDecl->type = renamedType; mutDecl->mangleName = Mangle::mangle(mutDecl); mutDecl->isTypeFixed = true; functionDecl = mutDecl; } managedTypes.handleDWT(functionDecl); functionReturn = extractResultType( functionDecl->type ); return functionDecl; } const ast::FunctionDecl * Resolver_new::postvisit( const ast::FunctionDecl * functionDecl ) { // default value expressions have an environment which shouldn't be there and trips up // later passes. assert( functionDecl->unique() ); ast::FunctionType * mutType = mutate( functionDecl->type.get() ); for ( unsigned i = 0 ; i < mutType->params.size() ; ++i ) { if ( const ast::ObjectDecl * obj = mutType->params[i].as< ast::ObjectDecl >() ) { if ( const ast::SingleInit * init = obj->init.as< ast::SingleInit >() ) { if ( init->value->env == nullptr ) continue; // clone initializer minus the initializer environment auto mutParam = mutate( mutType->params[i].strict_as< ast::ObjectDecl >() ); auto mutInit = mutate( mutParam->init.strict_as< ast::SingleInit >() ); auto mutValue = mutate( mutInit->value.get() ); mutValue->env = nullptr; mutInit->value = mutValue; mutParam->init = mutInit; mutType->params[i] = mutParam; assert( ! mutType->params[i].strict_as< ast::ObjectDecl >()->init.strict_as< ast::SingleInit >()->value->env); } } } mutate_field(functionDecl, &ast::FunctionDecl::type, mutType); return functionDecl; } const ast::ObjectDecl * Resolver_new::previsit( const ast::ObjectDecl * objectDecl ) { // To handle initialization of routine pointers [e.g. int (*fp)(int) = foo()], // class-variable `initContext` is changed multiple times because the LHS is analyzed // twice. The second analysis changes `initContext` because a function type can contain // object declarations in the return and parameter types. Therefore each value of // `initContext` is retained so the type on the first analysis is preserved and used for // selecting the RHS. GuardValue( currentObject ); if ( inEnumDecl && dynamic_cast< const ast::EnumInstType * >( objectDecl->get_type() ) ) { // enumerator initializers should not use the enum type to initialize, since the // enum type is still incomplete at this point. Use `int` instead. objectDecl = fixObjectType(objectDecl, context); currentObject = ast::CurrentObject{ objectDecl->location, new ast::BasicType{ ast::BasicType::SignedInt } }; } else { if (!objectDecl->isTypeFixed) { auto newDecl = fixObjectType(objectDecl, context); auto mutDecl = mutate(newDecl); // generate CtorInit wrapper when necessary. // in certain cases, fixObjectType is called before reaching // this object in visitor pass, thus disabling CtorInit codegen. // this happens on aggregate members and function parameters. if ( InitTweak::tryConstruct( mutDecl ) && ( managedTypes.isManaged( mutDecl ) || ((! isInFunction() || mutDecl->storage.is_static ) && ! InitTweak::isConstExpr( mutDecl->init ) ) ) ) { // constructed objects cannot be designated if ( InitTweak::isDesignated( mutDecl->init ) ) SemanticError( mutDecl, "Cannot include designations in the initializer for a managed Object. If this is really what you want, then initialize with @=.\n" ); // constructed objects should not have initializers nested too deeply if ( ! InitTweak::checkInitDepth( mutDecl ) ) SemanticError( mutDecl, "Managed object's initializer is too deep " ); mutDecl->init = InitTweak::genCtorInit( mutDecl->location, mutDecl ); } objectDecl = mutDecl; } currentObject = ast::CurrentObject{ objectDecl->location, objectDecl->get_type() }; } return objectDecl; } void Resolver_new::previsit( const ast::AggregateDecl * _aggDecl ) { auto aggDecl = mutate(_aggDecl); assertf(aggDecl == _aggDecl, "type declarations must be unique"); for (auto & member: aggDecl->members) { // nested type decls are hoisted already. no need to do anything if (auto obj = member.as()) { member = fixObjectType(obj, context); } } } void Resolver_new::previsit( const ast::StructDecl * structDecl ) { previsit(static_cast(structDecl)); managedTypes.handleStruct(structDecl); } void Resolver_new::previsit( const ast::EnumDecl * ) { // in case we decide to allow nested enums GuardValue( inEnumDecl ); inEnumDecl = true; // don't need to fix types for enum fields } const ast::StaticAssertDecl * Resolver_new::previsit( const ast::StaticAssertDecl * assertDecl ) { return ast::mutate_field( assertDecl, &ast::StaticAssertDecl::cond, findIntegralExpression( assertDecl->cond, context ) ); } template< typename PtrType > const PtrType * handlePtrType( const PtrType * type, const ResolveContext & context ) { if ( type->dimension ) { ast::ptr< ast::Type > sizeType = context.global.sizeType; ast::mutate_field( type, &PtrType::dimension, findSingleExpression( type->dimension, sizeType, context ) ); } return type; } const ast::ArrayType * Resolver_new::previsit( const ast::ArrayType * at ) { return handlePtrType( at, context ); } const ast::PointerType * Resolver_new::previsit( const ast::PointerType * pt ) { return handlePtrType( pt, context ); } const ast::ExprStmt * Resolver_new::previsit( const ast::ExprStmt * exprStmt ) { visit_children = false; assertf( exprStmt->expr, "ExprStmt has null expression in resolver" ); return ast::mutate_field( exprStmt, &ast::ExprStmt::expr, findVoidExpression( exprStmt->expr, context ) ); } const ast::AsmExpr * Resolver_new::previsit( const ast::AsmExpr * asmExpr ) { visit_children = false; asmExpr = ast::mutate_field( asmExpr, &ast::AsmExpr::operand, findVoidExpression( asmExpr->operand, context ) ); return asmExpr; } const ast::AsmStmt * Resolver_new::previsit( const ast::AsmStmt * asmStmt ) { visitor->maybe_accept( asmStmt, &ast::AsmStmt::input ); visitor->maybe_accept( asmStmt, &ast::AsmStmt::output ); visit_children = false; return asmStmt; } const ast::IfStmt * Resolver_new::previsit( const ast::IfStmt * ifStmt ) { return ast::mutate_field( ifStmt, &ast::IfStmt::cond, findIntegralExpression( ifStmt->cond, context ) ); } const ast::WhileDoStmt * Resolver_new::previsit( const ast::WhileDoStmt * whileDoStmt ) { return ast::mutate_field( whileDoStmt, &ast::WhileDoStmt::cond, findIntegralExpression( whileDoStmt->cond, context ) ); } const ast::ForStmt * Resolver_new::previsit( const ast::ForStmt * forStmt ) { if ( forStmt->cond ) { forStmt = ast::mutate_field( forStmt, &ast::ForStmt::cond, findIntegralExpression( forStmt->cond, context ) ); } if ( forStmt->inc ) { forStmt = ast::mutate_field( forStmt, &ast::ForStmt::inc, findVoidExpression( forStmt->inc, context ) ); } return forStmt; } const ast::SwitchStmt * Resolver_new::previsit( const ast::SwitchStmt * switchStmt ) { GuardValue( currentObject ); switchStmt = ast::mutate_field( switchStmt, &ast::SwitchStmt::cond, findIntegralExpression( switchStmt->cond, context ) ); currentObject = ast::CurrentObject{ switchStmt->location, switchStmt->cond->result }; return switchStmt; } const ast::CaseStmt * Resolver_new::previsit( const ast::CaseStmt * caseStmt ) { if ( caseStmt->cond ) { std::deque< ast::InitAlternative > initAlts = currentObject.getOptions(); assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral " "expression." ); ast::ptr< ast::Expr > untyped = new ast::CastExpr{ caseStmt->location, caseStmt->cond, initAlts.front().type }; ast::ptr< ast::Expr > newExpr = findSingleExpression( untyped, context ); // case condition cannot have a cast in C, so it must be removed here, regardless of // whether it would perform a conversion. if ( const ast::CastExpr * castExpr = newExpr.as< ast::CastExpr >() ) { swap_and_save_env( newExpr, castExpr->arg ); } caseStmt = ast::mutate_field( caseStmt, &ast::CaseStmt::cond, newExpr ); } return caseStmt; } const ast::BranchStmt * Resolver_new::previsit( const ast::BranchStmt * branchStmt ) { visit_children = false; // must resolve the argument of a computed goto if ( branchStmt->kind == ast::BranchStmt::Goto && branchStmt->computedTarget ) { // computed goto argument is void* ast::ptr< ast::Type > target = new ast::PointerType{ new ast::VoidType{} }; branchStmt = ast::mutate_field( branchStmt, &ast::BranchStmt::computedTarget, findSingleExpression( branchStmt->computedTarget, target, context ) ); } return branchStmt; } const ast::ReturnStmt * Resolver_new::previsit( const ast::ReturnStmt * returnStmt ) { visit_children = false; if ( returnStmt->expr ) { returnStmt = ast::mutate_field( returnStmt, &ast::ReturnStmt::expr, findSingleExpression( returnStmt->expr, functionReturn, context ) ); } return returnStmt; } const ast::ThrowStmt * Resolver_new::previsit( const ast::ThrowStmt * throwStmt ) { visit_children = false; if ( throwStmt->expr ) { const ast::StructDecl * exceptionDecl = symtab.lookupStruct( "__cfaehm_base_exception_t" ); assert( exceptionDecl ); ast::ptr< ast::Type > exceptType = new ast::PointerType{ new ast::StructInstType{ exceptionDecl } }; throwStmt = ast::mutate_field( throwStmt, &ast::ThrowStmt::expr, findSingleExpression( throwStmt->expr, exceptType, context ) ); } return throwStmt; } const ast::CatchStmt * Resolver_new::previsit( const ast::CatchStmt * catchStmt ) { // Until we are very sure this invarent (ifs that move between passes have then) // holds, check it. This allows a check for when to decode the mangling. if ( auto ifStmt = catchStmt->body.as() ) { assert( ifStmt->then ); } // Encode the catchStmt so the condition can see the declaration. if ( catchStmt->cond ) { ast::CatchStmt * stmt = mutate( catchStmt ); stmt->body = new ast::IfStmt( stmt->location, stmt->cond, nullptr, stmt->body ); stmt->cond = nullptr; return stmt; } return catchStmt; } const ast::CatchStmt * Resolver_new::postvisit( const ast::CatchStmt * catchStmt ) { // Decode the catchStmt so everything is stored properly. const ast::IfStmt * ifStmt = catchStmt->body.as(); if ( nullptr != ifStmt && nullptr == ifStmt->then ) { assert( ifStmt->cond ); assert( ifStmt->else_ ); ast::CatchStmt * stmt = ast::mutate( catchStmt ); stmt->cond = ifStmt->cond; stmt->body = ifStmt->else_; // ifStmt should be implicately deleted here. return stmt; } return catchStmt; } const ast::WaitForStmt * Resolver_new::previsit( const ast::WaitForStmt * stmt ) { visit_children = false; // Resolve all clauses first for ( unsigned i = 0; i < stmt->clauses.size(); ++i ) { const ast::WaitForStmt::Clause & clause = stmt->clauses[i]; ast::TypeEnvironment env; CandidateFinder funcFinder( context, env ); // Find all candidates for a function in canonical form funcFinder.find( clause.target.func, ResolvMode::withAdjustment() ); if ( funcFinder.candidates.empty() ) { stringstream ss; ss << "Use of undeclared indentifier '"; ss << clause.target.func.strict_as< ast::NameExpr >()->name; ss << "' in call to waitfor"; SemanticError( stmt->location, ss.str() ); } if ( clause.target.args.empty() ) { SemanticError( stmt->location, "Waitfor clause must have at least one mutex parameter"); } // Find all alternatives for all arguments in canonical form std::vector< CandidateFinder > argFinders = funcFinder.findSubExprs( clause.target.args ); // List all combinations of arguments std::vector< CandidateList > possibilities; combos( argFinders.begin(), argFinders.end(), back_inserter( possibilities ) ); // For every possible function: // * try matching the arguments to the parameters, not the other way around because // more arguments than parameters CandidateList funcCandidates; std::vector< CandidateList > argsCandidates; SemanticErrorException errors; for ( CandidateRef & func : funcFinder.candidates ) { try { auto pointerType = dynamic_cast< const ast::PointerType * >( func->expr->result->stripReferences() ); if ( ! pointerType ) { SemanticError( stmt->location, func->expr->result.get(), "candidate not viable: not a pointer type\n" ); } auto funcType = pointerType->base.as< ast::FunctionType >(); if ( ! funcType ) { SemanticError( stmt->location, func->expr->result.get(), "candidate not viable: not a function type\n" ); } { auto param = funcType->params.begin(); auto paramEnd = funcType->params.end(); if( ! nextMutex( param, paramEnd ) ) { SemanticError( stmt->location, funcType, "candidate function not viable: no mutex parameters\n"); } } CandidateRef func2{ new Candidate{ *func } }; // strip reference from function func2->expr = referenceToRvalueConversion( func->expr, func2->cost ); // Each argument must be matched with a parameter of the current candidate for ( auto & argsList : possibilities ) { try { // Declare data structures needed for resolution ast::OpenVarSet open; ast::AssertionSet need, have; ast::TypeEnvironment resultEnv{ func->env }; // Add all type variables as open so that those not used in the // parameter list are still considered open resultEnv.add( funcType->forall ); // load type variables from arguments into one shared space for ( auto & arg : argsList ) { resultEnv.simpleCombine( arg->env ); } // Make sure we don't widen any existing bindings resultEnv.forbidWidening(); // Find any unbound type variables resultEnv.extractOpenVars( open ); auto param = funcType->params.begin(); auto paramEnd = funcType->params.end(); unsigned n_mutex_param = 0; // For every argument of its set, check if it matches one of the // parameters. The order is important for ( auto & arg : argsList ) { // Ignore non-mutex arguments if ( ! nextMutex( param, paramEnd ) ) { // We ran out of parameters but still have arguments. // This function doesn't match SemanticError( stmt->location, funcType, toString("candidate function not viable: too many mutex " "arguments, expected ", n_mutex_param, "\n" ) ); } ++n_mutex_param; // Check if the argument matches the parameter type in the current // scope // ast::ptr< ast::Type > paramType = (*param)->get_type(); if ( ! unify( arg->expr->result, *param, resultEnv, need, have, open, symtab ) ) { // Type doesn't match stringstream ss; ss << "candidate function not viable: no known conversion " "from '"; ast::print( ss, *param ); ss << "' to '"; ast::print( ss, arg->expr->result ); ss << "' with env '"; ast::print( ss, resultEnv ); ss << "'\n"; SemanticError( stmt->location, funcType, ss.str() ); } ++param; } // All arguments match! // Check if parameters are missing if ( nextMutex( param, paramEnd ) ) { do { ++n_mutex_param; ++param; } while ( nextMutex( param, paramEnd ) ); // We ran out of arguments but still have parameters left; this // function doesn't match SemanticError( stmt->location, funcType, toString( "candidate function not viable: too few mutex " "arguments, expected ", n_mutex_param, "\n" ) ); } // All parameters match! // Finish the expressions to tie in proper environments finishExpr( func2->expr, resultEnv ); for ( CandidateRef & arg : argsList ) { finishExpr( arg->expr, resultEnv ); } // This is a match, store it and save it for later funcCandidates.emplace_back( std::move( func2 ) ); argsCandidates.emplace_back( std::move( argsList ) ); } catch ( SemanticErrorException & e ) { errors.append( e ); } } } catch ( SemanticErrorException & e ) { errors.append( e ); } } // Make sure correct number of arguments if( funcCandidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for function in call to waitfor" ); top.append( errors ); throw top; } if( argsCandidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for arguments in call to waitfor" ); top.append( errors ); throw top; } if( funcCandidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous function in call to waitfor" ); top.append( errors ); throw top; } if( argsCandidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous arguments in call to waitfor" ); top.append( errors ); throw top; } // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used. // build new clause ast::WaitForStmt::Clause clause2; clause2.target.func = funcCandidates.front()->expr; clause2.target.args.reserve( clause.target.args.size() ); const ast::StructDecl * decl_monitor = symtab.lookupStruct( "monitor$" ); for ( auto arg : argsCandidates.front() ) { const auto & loc = stmt->location; ast::Expr * init = new ast::CastExpr( loc, new ast::UntypedExpr( loc, new ast::NameExpr( loc, "get_monitor" ), { arg->expr } ), new ast::PointerType( new ast::StructInstType( decl_monitor ) ) ); clause2.target.args.emplace_back( findSingleExpression( init, context ) ); } // Resolve the conditions as if it were an IfStmt, statements normally clause2.cond = findSingleExpression( clause.cond, context ); clause2.stmt = clause.stmt->accept( *visitor ); // set results into stmt auto n = mutate( stmt ); n->clauses[i] = std::move( clause2 ); stmt = n; } if ( stmt->timeout.stmt ) { // resolve the timeout as a size_t, the conditions like IfStmt, and stmts normally ast::WaitForStmt::Timeout timeout2; ast::ptr< ast::Type > target = new ast::BasicType{ ast::BasicType::LongLongUnsignedInt }; timeout2.time = findSingleExpression( stmt->timeout.time, target, context ); timeout2.cond = findSingleExpression( stmt->timeout.cond, context ); timeout2.stmt = stmt->timeout.stmt->accept( *visitor ); // set results into stmt auto n = mutate( stmt ); n->timeout = std::move( timeout2 ); stmt = n; } if ( stmt->orElse.stmt ) { // resolve the condition like IfStmt, stmts normally ast::WaitForStmt::OrElse orElse2; orElse2.cond = findSingleExpression( stmt->orElse.cond, context ); orElse2.stmt = stmt->orElse.stmt->accept( *visitor ); // set results into stmt auto n = mutate( stmt ); n->orElse = std::move( orElse2 ); stmt = n; } return stmt; } const ast::WithStmt * Resolver_new::previsit( const ast::WithStmt * withStmt ) { auto mutStmt = mutate(withStmt); resolveWithExprs(mutStmt->exprs, stmtsToAddBefore); return mutStmt; } void Resolver_new::resolveWithExprs(std::vector> & exprs, std::list> & stmtsToAdd) { for (auto & expr : exprs) { // only struct- and union-typed expressions are viable candidates expr = findKindExpression( expr, context, structOrUnion, "with expression" ); // if with expression might be impure, create a temporary so that it is evaluated once if ( Tuples::maybeImpure( expr ) ) { static UniqueName tmpNamer( "_with_tmp_" ); const CodeLocation loc = expr->location; auto tmp = new ast::ObjectDecl(loc, tmpNamer.newName(), expr->result, new ast::SingleInit(loc, expr ) ); expr = new ast::VariableExpr( loc, tmp ); stmtsToAdd.push_back( new ast::DeclStmt(loc, tmp ) ); if ( InitTweak::isConstructable( tmp->type ) ) { // generate ctor/dtor and resolve them tmp->init = InitTweak::genCtorInit( loc, tmp ); } // since tmp is freshly created, this should modify tmp in-place tmp->accept( *visitor ); } } } const ast::SingleInit * Resolver_new::previsit( const ast::SingleInit * singleInit ) { visit_children = false; // resolve initialization using the possibilities as determined by the `currentObject` // cursor. ast::ptr< ast::Expr > untyped = new ast::UntypedInitExpr{ singleInit->location, singleInit->value, currentObject.getOptions() }; ast::ptr newExpr = findSingleExpression( untyped, context ); const ast::InitExpr * initExpr = newExpr.strict_as< ast::InitExpr >(); // move cursor to the object that is actually initialized currentObject.setNext( initExpr->designation ); // discard InitExpr wrapper and retain relevant pieces. // `initExpr` may have inferred params in the case where the expression specialized a // function pointer, and newExpr may already have inferParams of its own, so a simple // swap is not sufficient ast::Expr::InferUnion inferred = initExpr->inferred; swap_and_save_env( newExpr, initExpr->expr ); newExpr.get_and_mutate()->inferred.splice( std::move(inferred) ); // get the actual object's type (may not exactly match what comes back from the resolver // due to conversions) const ast::Type * initContext = currentObject.getCurrentType(); removeExtraneousCast( newExpr, symtab ); // check if actual object's type is char[] if ( auto at = dynamic_cast< const ast::ArrayType * >( initContext ) ) { if ( isCharType( at->base ) ) { // check if the resolved type is char* if ( auto pt = newExpr->result.as< ast::PointerType >() ) { if ( isCharType( pt->base ) ) { // strip cast if we're initializing a char[] with a char* // e.g. char x[] = "hello" if ( auto ce = newExpr.as< ast::CastExpr >() ) { swap_and_save_env( newExpr, ce->arg ); } } } } } // move cursor to next object in preparation for next initializer currentObject.increment(); // set initializer expression to resolved expression return ast::mutate_field( singleInit, &ast::SingleInit::value, std::move(newExpr) ); } const ast::ListInit * Resolver_new::previsit( const ast::ListInit * listInit ) { // move cursor into brace-enclosed initializer-list currentObject.enterListInit( listInit->location ); assert( listInit->designations.size() == listInit->initializers.size() ); for ( unsigned i = 0; i < listInit->designations.size(); ++i ) { // iterate designations and initializers in pairs, moving the cursor to the current // designated object and resolving the initializer against that object listInit = ast::mutate_field_index( listInit, &ast::ListInit::designations, i, currentObject.findNext( listInit->designations[i] ) ); listInit = ast::mutate_field_index( listInit, &ast::ListInit::initializers, i, listInit->initializers[i]->accept( *visitor ) ); } // move cursor out of brace-enclosed initializer-list currentObject.exitListInit(); visit_children = false; return listInit; } const ast::ConstructorInit * Resolver_new::previsit( const ast::ConstructorInit * ctorInit ) { visitor->maybe_accept( ctorInit, &ast::ConstructorInit::ctor ); visitor->maybe_accept( ctorInit, &ast::ConstructorInit::dtor ); // found a constructor - can get rid of C-style initializer // xxx - Rob suggests this field is dead code ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::init, nullptr ); // intrinsic single-parameter constructors and destructors do nothing. Since this was // implicitly generated, there's no way for it to have side effects, so get rid of it to // clean up generated code if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) { ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::ctor, nullptr ); } if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) { ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::dtor, nullptr ); } return ctorInit; } // suppress error on autogen functions and mark invalid autogen as deleted. bool Resolver_new::on_error(ast::ptr & decl) { if (auto functionDecl = decl.as()) { // xxx - can intrinsic gen ever fail? if (functionDecl->linkage == ast::Linkage::AutoGen) { auto mutDecl = mutate(functionDecl); mutDecl->isDeleted = true; mutDecl->stmts = nullptr; decl = mutDecl; return false; } } return true; } } // namespace ResolvExpr // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //