// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // ResolveAssertions.cc -- // // Author : Aaron B. Moss // Created On : Fri Oct 05 13:46:00 2018 // Last Modified By : Aaron B. Moss // Last Modified On : Fri Oct 05 13:46:00 2018 // Update Count : 1 // #include "ResolveAssertions.h" #include // for sort #include // for assertf #include // for list #include // for unique_ptr #include // for ostringstream #include // for string #include // for unordered_map, unordered_multimap #include // for move #include // for vector #include "Alternative.h" // for Alternative, AssertionItem, AssertionList #include "Common/FilterCombos.h" // for filterCombos #include "Common/Indenter.h" // for Indenter #include "Common/utility.h" // for sort_mins #include "ResolvExpr/RenameVars.h" // for renameTyVars #include "SymTab/Indexer.h" // for Indexer #include "SymTab/Mangler.h" // for Mangler #include "SynTree/Expression.h" // for InferredParams #include "TypeEnvironment.h" // for TypeEnvironment, etc. #include "typeops.h" // for adjustExprType, specCost #include "Unify.h" // for unify namespace ResolvExpr { /// Unified assertion candidate struct AssnCandidate { SymTab::Indexer::IdData cdata; ///< Satisfying declaration Type* adjType; ///< Satisfying type TypeEnvironment env; ///< Post-unification environment AssertionSet have; ///< Post-unification have-set AssertionSet need; ///< Post-unification need-set OpenVarSet openVars; ///< Post-unification open-var set UniqueId resnSlot; ///< Slot for any recursive assertion IDs AssnCandidate( const SymTab::Indexer::IdData& cdata, Type* adjType, TypeEnvironment&& env, AssertionSet&& have, AssertionSet&& need, OpenVarSet&& openVars, UniqueId resnSlot ) : cdata(cdata), adjType(adjType), env(std::move(env)), have(std::move(have)), need(std::move(need)), openVars(std::move(openVars)), resnSlot(resnSlot) {} }; /// List of candidate assertion resolutions using CandidateList = std::vector; /// Reference to single deferred item struct DeferRef { const DeclarationWithType* decl; const AssertionSetValue& info; const AssnCandidate& match; }; /// Wrapper for the deferred items from a single assertion resolution. /// Acts like indexed list of DeferRef struct DeferItem { const DeclarationWithType* decl; const AssertionSetValue& info; CandidateList matches; DeferItem( DeclarationWithType* decl, const AssertionSetValue& info, CandidateList&& matches ) : decl(decl), info(info), matches(std::move(matches)) {} bool empty() const { return matches.empty(); } CandidateList::size_type size() const { return matches.size(); } DeferRef operator[] ( unsigned i ) const { return { decl, info, matches[i] }; } }; /// List of deferred resolution items using DeferList = std::vector; /// Combo iterator that combines candidates into an output list, merging their environments. /// Rejects an appended candidate if the environments cannot be merged. class CandidateEnvMerger { /// Current list of merged candidates std::vector crnt; /// Stack of environments to support backtracking std::vector envs; /// Stack of open variables to support backtracking std::vector varSets; /// Indexer to use for merges const SymTab::Indexer& indexer; public: /// The merged environment/open variables and the list of candidates struct OutType { TypeEnvironment env; OpenVarSet openVars; std::vector assns; OutType( const TypeEnvironment& env, const OpenVarSet& openVars, const std::vector& assns ) : env(env), openVars(openVars), assns(assns) {} }; CandidateEnvMerger( const TypeEnvironment& env, const OpenVarSet& openVars, const SymTab::Indexer& indexer ) : crnt(), envs{ env }, varSets{ openVars }, indexer(indexer) {} bool append( DeferRef i ) { TypeEnvironment env = envs.back(); OpenVarSet openVars = varSets.back(); mergeOpenVars( openVars, i.match.openVars ); if ( ! env.combine( i.match.env, openVars, indexer ) ) return false; crnt.emplace_back( i ); envs.emplace_back( env ); varSets.emplace_back( openVars ); return true; } void backtrack() { crnt.pop_back(); envs.pop_back(); varSets.pop_back(); } OutType finalize() { return { envs.back(), varSets.back(), crnt }; } }; /// Comparator for CandidateEnvMerger outputs that sums their costs and caches the stored /// sums struct CandidateCost { using Element = CandidateEnvMerger::OutType; private: using Memo = std::unordered_map; mutable Memo cache; ///< cache of element costs const SymTab::Indexer& indexer; ///< Indexer for costing public: CandidateCost( const SymTab::Indexer& indexer ) : indexer(indexer) {} /// reports the cost of an element Cost get( const Element& x ) const { Memo::const_iterator it = cache.find( &x ); if ( it == cache.end() ) { Cost k = Cost::zero; for ( const auto& assn : x.assns ) { k += computeConversionCost( assn.match.adjType, assn.decl->get_type(), indexer, x.env ); // mark vars+specialization cost on function-type assertions PointerType* ptr = dynamic_cast< PointerType* >( assn.decl->get_type() ); if ( ! ptr ) continue; FunctionType* func = dynamic_cast< FunctionType* >( ptr->base ); if ( ! func ) continue; for ( DeclarationWithType* formal : func->parameters ) { k.decSpec( specCost( formal->get_type() ) ); } k.incVar( func->forall.size() ); for ( TypeDecl* td : func->forall ) { k.decSpec( td->assertions.size() ); } } it = cache.emplace_hint( it, &x, k ); } return it->second; } /// compares elements by cost bool operator() ( const Element& a, const Element& b ) const { return get( a ) < get( b ); } }; /// Set of assertion resolutions, grouped by resolution ID using InferCache = std::unordered_map< UniqueId, InferredParams >; /// Flag for state iteration enum IterateFlag { IterateState }; /// State needed to resolve a set of assertions struct ResnState { Alternative alt; ///< Alternative assertion is rooted on AssertionList need; ///< Assertions to find AssertionSet newNeed; ///< New assertions for current resolutions DeferList deferred; ///< Deferred matches InferCache inferred; ///< Cache of already-inferred parameters SymTab::Indexer& indexer; ///< Name lookup (depends on previous assertions) /// Initial resolution state for an alternative ResnState( Alternative& a, SymTab::Indexer& indexer ) : alt(a), need(), newNeed(), deferred(), inferred(), indexer(indexer) { need.swap( a.need ); } /// Updated resolution state with new need-list ResnState( ResnState&& o, IterateFlag ) : alt(std::move(o.alt)), need(o.newNeed.begin(), o.newNeed.end()), newNeed(), deferred(), inferred(std::move(o.inferred)), indexer(o.indexer) {} }; /// Binds a single assertion, updating resolution state void bindAssertion( const DeclarationWithType* decl, AssertionSetValue info, Alternative& alt, AssnCandidate& match, InferCache& inferred ) { DeclarationWithType* candidate = match.cdata.id; assertf( candidate->get_uniqueId(), "Assertion candidate does not have a unique ID: %s", toString( candidate ).c_str() ); Expression* varExpr = match.cdata.combine( alt.cvtCost ); delete varExpr->result; varExpr->result = match.adjType->clone(); if ( match.resnSlot ) { varExpr->resnSlots.push_back( match.resnSlot ); } // place newly-inferred assertion in proper place in cache inferred[ info.resnSlot ][ decl->get_uniqueId() ] = ParamEntry{ candidate->get_uniqueId(), match.adjType->clone(), decl->get_type()->clone(), varExpr }; } /// Adds a captured assertion to the symbol table void addToIndexer( AssertionSet &assertSet, SymTab::Indexer &indexer ) { for ( auto& i : assertSet ) { if ( i.second.isUsed ) { indexer.addId( i.first ); } } } // in AlternativeFinder.cc; unique ID for assertion resolutions extern UniqueId globalResnSlot; /// Resolve a single assertion, in context bool resolveAssertion( AssertionItem& assn, ResnState& resn ) { // skip unused assertions if ( ! assn.info.isUsed ) return true; // lookup candidates for this assertion std::list< SymTab::Indexer::IdData > candidates; resn.indexer.lookupId( assn.decl->name, candidates ); // find the candidates that unify with the desired type CandidateList matches; for ( const auto& cdata : candidates ) { DeclarationWithType* candidate = cdata.id; // build independent unification context for candidate AssertionSet have, newNeed; TypeEnvironment newEnv{ resn.alt.env }; OpenVarSet newOpenVars{ resn.alt.openVars }; Type* adjType = candidate->get_type()->clone(); adjustExprType( adjType, newEnv, resn.indexer ); renameTyVars( adjType ); // keep unifying candidates if ( unify( assn.decl->get_type(), adjType, newEnv, newNeed, have, newOpenVars, resn.indexer ) ) { // set up binding slot for recursive assertions UniqueId crntResnSlot = 0; if ( ! newNeed.empty() ) { crntResnSlot = ++globalResnSlot; for ( auto& a : newNeed ) { a.second.resnSlot = crntResnSlot; } } matches.emplace_back( cdata, adjType, std::move(newEnv), std::move(have), std::move(newNeed), std::move(newOpenVars), crntResnSlot ); } else { delete adjType; } } // break if no suitable assertion if ( matches.empty() ) return false; // defer if too many suitable assertions if ( matches.size() > 1 ) { resn.deferred.emplace_back( assn.decl, assn.info, std::move(matches) ); return true; } // otherwise bind current match in ongoing scope AssnCandidate& match = matches.front(); addToIndexer( match.have, resn.indexer ); resn.newNeed.insert( match.need.begin(), match.need.end() ); resn.alt.env = std::move(match.env); resn.alt.openVars = std::move(match.openVars); bindAssertion( assn.decl, assn.info, resn.alt, match, resn.inferred ); return true; } /// Associates inferred parameters with an expression struct InferMatcher { InferCache& inferred; InferMatcher( InferCache& inferred ) : inferred( inferred ) {} Expression* postmutate( Expression* expr ) { // defer missing inferred parameters until they are hopefully found later std::vector missingSlots; // place inferred parameters into resolution slots for ( UniqueId slot : expr->resnSlots ) { // fail if no matching parameters found auto it = inferred.find( slot ); if ( it == inferred.end() ) { missingSlots.push_back( slot ); continue; } InferredParams& inferParams = it->second; // place inferred parameters into proper place in expression for ( auto& entry : inferParams ) { // recurse on inferParams of resolved expressions entry.second.expr = postmutate( entry.second.expr ); // xxx - look at entry.second.inferParams? expr->inferParams[ entry.first ] = entry.second; } } // clear resolution slots and return expr->resnSlots.swap( missingSlots ); return expr; } }; void finalizeAssertions( Alternative& alt, InferCache& inferred, AltList& out ) { PassVisitor matcher{ inferred }; alt.expr = alt.expr->acceptMutator( matcher ); out.emplace_back( alt ); } /// Limit to depth of recursion of assertion satisfaction static const int recursionLimit = /* 10 */ 4; void resolveAssertions( Alternative& alt, const SymTab::Indexer& indexer, AltList& out, std::list& errors ) { // finish early if no assertions to resolve if ( alt.need.empty() ) { out.emplace_back( alt ); return; } // build list of possible resolutions using ResnList = std::vector; SymTab::Indexer root_indexer{ indexer }; ResnList resns{ ResnState{ alt, root_indexer } }; ResnList new_resns{}; // resolve assertions in breadth-first-order up to a limited number of levels deep for ( unsigned level = 0; level < recursionLimit; ++level ) { // scan over all mutually-compatible resolutions for ( auto& resn : resns ) { // make initial pass at matching assertions for ( auto& assn : resn.need ) { // fail early if any assertion is not resolvable if ( ! resolveAssertion( assn, resn ) ) { Indenter tabs{ Indenter::tabsize, 3 }; std::ostringstream ss; ss << tabs << "Unsatisfiable alternative:\n"; resn.alt.print( ss, ++tabs ); ss << --tabs << "Could not satisfy assertion:\n"; assn.decl->print( ss, ++tabs ); errors.emplace_back( ss.str() ); goto nextResn; } } if ( resn.deferred.empty() ) { // either add successful match or push back next state if ( resn.newNeed.empty() ) { finalizeAssertions( resn.alt, resn.inferred, out ); } else { new_resns.emplace_back( std::move(resn), IterateState ); } } else { // resolve deferred assertions by mutual compatibility std::vector compatible = filterCombos( resn.deferred, CandidateEnvMerger{ resn.alt.env, resn.alt.openVars, resn.indexer } ); // fail early if no mutually-compatible assertion satisfaction if ( compatible.empty() ) { Indenter tabs{ Indenter::tabsize, 3 }; std::ostringstream ss; ss << tabs << "Unsatisfiable alternative:\n"; resn.alt.print( ss, ++tabs ); ss << --tabs << "No mutually-compatible satisfaction for assertions:\n"; ++tabs; for ( const auto& d : resn.deferred ) { d.decl->print( ss, tabs ); } errors.emplace_back( ss.str() ); goto nextResn; } // sort by cost CandidateCost coster{ resn.indexer }; std::sort( compatible.begin(), compatible.end(), coster ); // keep map of detected options std::unordered_map found; for ( auto& compat : compatible ) { // filter by environment-adjusted result type, keep only cheapest option Type* resType = alt.expr->result->clone(); compat.env.apply( resType ); // skip if cheaper alternative already processed with same result type Cost resCost = coster.get( compat ); auto it = found.emplace( SymTab::Mangler::mangleType( resType ), resCost ); delete resType; if ( it.second == false && it.first->second < resCost ) continue; // proceed with resolution step ResnState new_resn = resn; // add compatible assertions to new resolution state for ( DeferRef r : compat.assns ) { AssnCandidate match = r.match; addToIndexer( match.have, new_resn.indexer ); new_resn.newNeed.insert( match.need.begin(), match.need.end() ); bindAssertion( r.decl, r.info, new_resn.alt, match, new_resn.inferred ); } // set mutual environment into resolution state new_resn.alt.env = std::move(compat.env); new_resn.alt.openVars = std::move(compat.openVars); // either add sucessful match or push back next state if ( new_resn.newNeed.empty() ) { finalizeAssertions( new_resn.alt, new_resn.inferred, out ); } else { new_resns.emplace_back( std::move(new_resn), IterateState ); } } } nextResn:; } // finish or reset for next round if ( new_resns.empty() ) return; resns.swap( new_resns ); new_resns.clear(); } // exceeded recursion limit if reaches here if ( out.empty() ) { SemanticError( alt.expr->location, "Too many recursive assertions" ); } } } // namespace ResolvExpr // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //