// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // CandidateFinder.cpp -- // // Author : Aaron B. Moss // Created On : Wed Jun 5 14:30:00 2019 // Last Modified By : Peter A. Buhr // Last Modified On : Mon Sep 9 11:30:11 2024 // Update Count : 5 // #include "CandidateFinder.hpp" #include #include // for back_inserter #include #include #include #include #include "AdjustExprType.hpp" #include "Candidate.hpp" #include "CastCost.hpp" // for castCost #include "CompilationState.hpp" #include "ConversionCost.hpp" // for conversionCast #include "Cost.hpp" #include "ExplodedArg.hpp" #include "PolyCost.hpp" #include "RenameVars.hpp" // for renameTyVars #include "Resolver.hpp" #include "ResolveTypeof.hpp" #include "SatisfyAssertions.hpp" #include "SpecCost.hpp" #include "Typeops.hpp" // for combos #include "Unify.hpp" #include "WidenMode.hpp" #include "AST/Expr.hpp" #include "AST/Node.hpp" #include "AST/Pass.hpp" #include "AST/Print.hpp" #include "AST/SymbolTable.hpp" #include "AST/Type.hpp" #include "Common/Utility.hpp" // for move, copy #include "SymTab/Mangler.hpp" #include "Tuples/Tuples.hpp" // for handleTupleAssignment #include "InitTweak/InitTweak.hpp" // for getPointerBase #include "Common/Stats/Counter.hpp" #include "AST/Inspect.hpp" // for getFunctionName #define PRINT( text ) if ( resolvep ) { text } namespace ResolvExpr { /// Unique identifier for matching expression resolutions to their requesting expression ast::UniqueId globalResnSlot = 0; namespace { /// First index is which argument, second is which alternative, third is which exploded element using ExplodedArgs = std::deque< std::vector< ExplodedArg > >; /// Returns a list of alternatives with the minimum cost in the given list CandidateList findMinCost( const CandidateList & candidates ) { CandidateList out; Cost minCost = Cost::infinity; for ( const CandidateRef & r : candidates ) { if ( r->cost < minCost ) { minCost = r->cost; out.clear(); out.emplace_back( r ); } else if ( r->cost == minCost ) { out.emplace_back( r ); } } return out; } /// Computes conversion cost for a given expression to a given type const ast::Expr * computeExpressionConversionCost( const ast::Expr * arg, const ast::Type * paramType, const ast::SymbolTable & symtab, const ast::TypeEnvironment & env, Cost & outCost ) { Cost convCost = computeConversionCost( arg->result, paramType, arg->get_lvalue(), symtab, env ); outCost += convCost; // If there is a non-zero conversion cost, ignoring poly cost, then the expression requires // conversion. Ignore poly cost for now, since this requires resolution of the cast to // infer parameters and this does not currently work for the reason stated below Cost tmpCost = convCost; tmpCost.incPoly( -tmpCost.get_polyCost() ); if ( tmpCost != Cost::zero ) { ast::ptr< ast::Type > newType = paramType; env.apply( newType ); return new ast::CastExpr{ arg, newType }; // xxx - *should* be able to resolve this cast, but at the moment pointers are not // castable to zero_t, but are implicitly convertible. This is clearly inconsistent, // once this is fixed it should be possible to resolve the cast. // xxx - this isn't working, it appears because type1 (parameter) is seen as widenable, // but it shouldn't be because this makes the conversion from DT* to DT* since // commontype(zero_t, DT*) is DT*, rather than nothing // CandidateFinder finder{ symtab, env }; // finder.find( arg, ResolveMode::withAdjustment() ); // assertf( finder.candidates.size() > 0, // "Somehow castable expression failed to find alternatives." ); // assertf( finder.candidates.size() == 1, // "Somehow got multiple alternatives for known cast expression." ); // return finder.candidates.front()->expr; } return arg; } /// Computes conversion cost for a given candidate Cost computeApplicationConversionCost( CandidateRef cand, const ast::SymbolTable & symtab ) { auto appExpr = cand->expr.strict_as< ast::ApplicationExpr >(); auto pointer = appExpr->func->result.strict_as< ast::PointerType >(); auto function = pointer->base.strict_as< ast::FunctionType >(); Cost convCost = Cost::zero; const auto & params = function->params; auto param = params.begin(); auto & args = appExpr->args; for ( unsigned i = 0; i < args.size(); ++i ) { const ast::Type * argType = args[i]->result; PRINT( std::cerr << "arg expression:" << std::endl; ast::print( std::cerr, args[i], 2 ); std::cerr << "--- results are" << std::endl; ast::print( std::cerr, argType, 2 ); ) if ( param == params.end() ) { if ( function->isVarArgs ) { convCost.incUnsafe(); PRINT( std::cerr << "end of params with varargs function: inc unsafe: " << convCost << std::endl; ; ) // convert reference-typed expressions into value-typed expressions cand->expr = ast::mutate_field_index( appExpr, &ast::ApplicationExpr::args, i, referenceToRvalueConversion( args[i], convCost ) ); continue; } else return Cost::infinity; } if ( auto def = args[i].as< ast::DefaultArgExpr >() ) { // Default arguments should be free - don't include conversion cost. // Unwrap them here because they are not relevant to the rest of the system cand->expr = ast::mutate_field_index( appExpr, &ast::ApplicationExpr::args, i, def->expr ); ++param; continue; } // mark conversion cost and also specialization cost of param type // const ast::Type * paramType = (*param)->get_type(); cand->expr = ast::mutate_field_index( appExpr, &ast::ApplicationExpr::args, i, computeExpressionConversionCost( args[i], *param, symtab, cand->env, convCost ) ); convCost.decSpec( specCost( *param ) ); ++param; // can't be in for-loop update because of the continue } if ( param != params.end() ) return Cost::infinity; // specialization cost of return types can't be accounted for directly, it disables // otherwise-identical calls, like this example based on auto-newline in the I/O lib: // // forall(otype OS) { // void ?|?(OS&, int); // with newline // OS& ?|?(OS&, int); // no newline, always chosen due to more specialization // } // mark type variable and specialization cost of forall clause convCost.incVar( function->forall.size() ); convCost.decSpec( function->assertions.size() ); return convCost; } void makeUnifiableVars( const ast::FunctionType * type, ast::OpenVarSet & unifiableVars, ast::AssertionSet & need ) { for ( auto & tyvar : type->forall ) { unifiableVars[ *tyvar ] = ast::TypeData{ tyvar->base }; } for ( auto & assn : type->assertions ) { need[ assn ].isUsed = true; } } /// Gets a default value from an initializer, nullptr if not present const ast::ConstantExpr * getDefaultValue( const ast::Init * init ) { if ( auto si = dynamic_cast< const ast::SingleInit * >( init ) ) { if ( auto ce = si->value.as< ast::CastExpr >() ) { return ce->arg.as< ast::ConstantExpr >(); } else { return si->value.as< ast::ConstantExpr >(); } } return nullptr; } /// State to iteratively build a match of parameter expressions to arguments struct ArgPack { std::size_t parent; ///< Index of parent pack ast::ptr< ast::Expr > expr; ///< The argument stored here Cost cost; ///< The cost of this argument ast::TypeEnvironment env; ///< Environment for this pack ast::AssertionSet need; ///< Assertions outstanding for this pack ast::AssertionSet have; ///< Assertions found for this pack ast::OpenVarSet open; ///< Open variables for this pack unsigned nextArg; ///< Index of next argument in arguments list unsigned tupleStart; ///< Number of tuples that start at this index unsigned nextExpl; ///< Index of next exploded element unsigned explAlt; ///< Index of alternative for nextExpl > 0 ArgPack() : parent( 0 ), expr(), cost( Cost::zero ), env(), need(), have(), open(), nextArg( 0 ), tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {} ArgPack( const ast::TypeEnvironment & env, const ast::AssertionSet & need, const ast::AssertionSet & have, const ast::OpenVarSet & open ) : parent( 0 ), expr(), cost( Cost::zero ), env( env ), need( need ), have( have ), open( open ), nextArg( 0 ), tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {} ArgPack( std::size_t parent, const ast::Expr * expr, ast::TypeEnvironment && env, ast::AssertionSet && need, ast::AssertionSet && have, ast::OpenVarSet && open, unsigned nextArg, unsigned tupleStart = 0, Cost cost = Cost::zero, unsigned nextExpl = 0, unsigned explAlt = 0 ) : parent(parent), expr( expr ), cost( cost ), env( std::move( env ) ), need( std::move( need ) ), have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ), tupleStart( tupleStart ), nextExpl( nextExpl ), explAlt( explAlt ) {} ArgPack( const ArgPack & o, ast::TypeEnvironment && env, ast::AssertionSet && need, ast::AssertionSet && have, ast::OpenVarSet && open, unsigned nextArg, Cost added ) : parent( o.parent ), expr( o.expr ), cost( o.cost + added ), env( std::move( env ) ), need( std::move( need ) ), have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ), tupleStart( o.tupleStart ), nextExpl( 0 ), explAlt( 0 ) {} /// true if this pack is in the middle of an exploded argument bool hasExpl() const { return nextExpl > 0; } /// Gets the list of exploded candidates for this pack const ExplodedArg & getExpl( const ExplodedArgs & args ) const { return args[ nextArg-1 ][ explAlt ]; } /// Ends a tuple expression, consolidating the appropriate args void endTuple( const std::vector< ArgPack > & packs ) { // add all expressions in tuple to list, summing cost std::deque< const ast::Expr * > exprs; const ArgPack * pack = this; if ( expr ) { exprs.emplace_front( expr ); } while ( pack->tupleStart == 0 ) { pack = &packs[pack->parent]; exprs.emplace_front( pack->expr ); cost += pack->cost; } // reset pack to appropriate tuple std::vector< ast::ptr< ast::Expr > > exprv( exprs.begin(), exprs.end() ); expr = new ast::TupleExpr{ expr->location, std::move( exprv ) }; tupleStart = pack->tupleStart - 1; parent = pack->parent; } }; /// Instantiates an argument to match a parameter, returns false if no matching results left bool instantiateArgument( const CodeLocation & location, const ast::Type * paramType, const ast::Init * init, const ExplodedArgs & args, std::vector< ArgPack > & results, std::size_t & genStart, const ResolveContext & context, unsigned nTuples = 0 ) { if ( auto tupleType = dynamic_cast< const ast::TupleType * >( paramType ) ) { // paramType is a TupleType -- group args into a TupleExpr ++nTuples; for ( const ast::Type * type : *tupleType ) { // xxx - dropping initializer changes behaviour from previous, but seems correct // ^^^ need to handle the case where a tuple has a default argument if ( ! instantiateArgument( location, type, nullptr, args, results, genStart, context, nTuples ) ) return false; nTuples = 0; } // re-constitute tuples for final generation for ( auto i = genStart; i < results.size(); ++i ) { results[i].endTuple( results ); } return true; } else if ( const ast::TypeInstType * ttype = Tuples::isTtype( paramType ) ) { // paramType is a ttype, consumes all remaining arguments // completed tuples; will be spliced to end of results to finish std::vector< ArgPack > finalResults{}; // iterate until all results completed std::size_t genEnd; ++nTuples; do { genEnd = results.size(); // add another argument to results for ( std::size_t i = genStart; i < genEnd; ++i ) { unsigned nextArg = results[i].nextArg; // use next element of exploded tuple if present if ( results[i].hasExpl() ) { const ExplodedArg & expl = results[i].getExpl( args ); unsigned nextExpl = results[i].nextExpl + 1; if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; } results.emplace_back( i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ), copy( results[i].need ), copy( results[i].have ), copy( results[i].open ), nextArg, nTuples, Cost::zero, nextExpl, results[i].explAlt ); continue; } // finish result when out of arguments if ( nextArg >= args.size() ) { ArgPack newResult{ results[i].env, results[i].need, results[i].have, results[i].open }; newResult.nextArg = nextArg; const ast::Type * argType = nullptr; if ( nTuples > 0 || ! results[i].expr ) { // first iteration or no expression to clone, // push empty tuple expression newResult.parent = i; newResult.expr = new ast::TupleExpr( location, {} ); argType = newResult.expr->result; } else { // clone result to collect tuple newResult.parent = results[i].parent; newResult.cost = results[i].cost; newResult.tupleStart = results[i].tupleStart; newResult.expr = results[i].expr; argType = newResult.expr->result; if ( results[i].tupleStart > 0 && Tuples::isTtype( argType ) ) { // the case where a ttype value is passed directly is special, // e.g. for argument forwarding purposes // xxx - what if passing multiple arguments, last of which is // ttype? // xxx - what would happen if unify was changed so that unifying // tuple // types flattened both before unifying lists? then pass in // TupleType (ttype) below. --newResult.tupleStart; } else { // collapse leftover arguments into tuple newResult.endTuple( results ); argType = newResult.expr->result; } } // check unification for ttype before adding to final if ( unify( ttype, argType, newResult.env, newResult.need, newResult.have, newResult.open ) ) { finalResults.emplace_back( std::move( newResult ) ); } continue; } // add each possible next argument for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) { const ExplodedArg & expl = args[nextArg][j]; // fresh copies of parent parameters for this iteration ast::TypeEnvironment env = results[i].env; ast::OpenVarSet open = results[i].open; env.addActual( expl.env, open ); // skip empty tuple arguments by (nearly) cloning parent into next gen if ( expl.exprs.empty() ) { results.emplace_back( results[i], std::move( env ), copy( results[i].need ), copy( results[i].have ), std::move( open ), nextArg + 1, expl.cost ); continue; } // add new result results.emplace_back( i, expl.exprs.front(), std::move( env ), copy( results[i].need ), copy( results[i].have ), std::move( open ), nextArg + 1, nTuples, expl.cost, expl.exprs.size() == 1 ? 0 : 1, j ); } } // reset for next round genStart = genEnd; nTuples = 0; } while ( genEnd != results.size() ); // splice final results onto results for ( std::size_t i = 0; i < finalResults.size(); ++i ) { results.emplace_back( std::move( finalResults[i] ) ); } return ! finalResults.empty(); } // iterate each current subresult std::size_t genEnd = results.size(); for ( std::size_t i = genStart; i < genEnd; ++i ) { unsigned nextArg = results[i].nextArg; // use remainder of exploded tuple if present if ( results[i].hasExpl() ) { const ExplodedArg & expl = results[i].getExpl( args ); const ast::Expr * expr = expl.exprs[ results[i].nextExpl ]; ast::TypeEnvironment env = results[i].env; ast::AssertionSet need = results[i].need, have = results[i].have; ast::OpenVarSet open = results[i].open; const ast::Type * argType = expr->result; PRINT( std::cerr << "param type is "; ast::print( std::cerr, paramType ); std::cerr << std::endl << "arg type is "; ast::print( std::cerr, argType ); std::cerr << std::endl; ) if ( unify( paramType, argType, env, need, have, open ) ) { unsigned nextExpl = results[i].nextExpl + 1; if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; } results.emplace_back( i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ), nextArg, nTuples, Cost::zero, nextExpl, results[i].explAlt ); } continue; } // use default initializers if out of arguments if ( nextArg >= args.size() ) { if ( const ast::ConstantExpr * cnst = getDefaultValue( init ) ) { ast::TypeEnvironment env = results[i].env; ast::AssertionSet need = results[i].need, have = results[i].have; ast::OpenVarSet open = results[i].open; if ( unify( paramType, cnst->result, env, need, have, open ) ) { results.emplace_back( i, new ast::DefaultArgExpr{ cnst->location, cnst }, std::move( env ), std::move( need ), std::move( have ), std::move( open ), nextArg, nTuples ); } } continue; } // Check each possible next argument for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) { const ExplodedArg & expl = args[nextArg][j]; // fresh copies of parent parameters for this iteration ast::TypeEnvironment env = results[i].env; ast::AssertionSet need = results[i].need, have = results[i].have; ast::OpenVarSet open = results[i].open; env.addActual( expl.env, open ); // skip empty tuple arguments by (nearly) cloning parent into next gen if ( expl.exprs.empty() ) { results.emplace_back( results[i], std::move( env ), std::move( need ), std::move( have ), std::move( open ), nextArg + 1, expl.cost ); continue; } // consider only first exploded arg const ast::Expr * expr = expl.exprs.front(); const ast::Type * argType = expr->result; PRINT( std::cerr << "param type is "; ast::print( std::cerr, paramType ); std::cerr << std::endl << "arg type is "; ast::print( std::cerr, argType ); std::cerr << std::endl; ) // attempt to unify types ast::ptr common; if ( unify( paramType, argType, env, need, have, open, common ) ) { // add new result assert( common ); auto paramAsEnum = dynamic_cast(paramType); auto argAsEnum =dynamic_cast(argType); if (paramAsEnum && argAsEnum) { if (paramAsEnum->base->name != argAsEnum->base->name) { Cost c = castCost(argType, paramType, expr, context.symtab, env); if (c < Cost::infinity) { CandidateFinder subFinder( context, env ); expr = subFinder.makeEnumOffsetCast(argAsEnum, paramAsEnum, expr, c); if ( expr ) results.emplace_back( i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ), nextArg + 1, nTuples, expl.cost + c, expl.exprs.size() == 1 ? 0 : 1, j ); continue; } else { std::cerr << "Cannot instantiate " << paramAsEnum->base->name << " with " << argAsEnum->base->name << std::endl; } } } results.emplace_back( i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ), nextArg + 1, nTuples, expl.cost, expl.exprs.size() == 1 ? 0 : 1, j ); } } } // reset for next parameter genStart = genEnd; return genEnd != results.size(); // were any new results added? } /// Generate a cast expression from `arg` to `toType` const ast::Expr * restructureCast( ast::ptr< ast::Expr > & arg, const ast::Type * toType, ast::GeneratedFlag isGenerated = ast::GeneratedCast ) { if ( arg->result->size() > 1 && ! toType->isVoid() && ! dynamic_cast< const ast::ReferenceType * >( toType ) ) { // Argument is a tuple and the target type is neither void nor a reference. Cast each // member of the tuple to its corresponding target type, producing the tuple of those // cast expressions. If there are more components of the tuple than components in the // target type, then excess components do not come out in the result expression (but // UniqueExpr ensures that the side effects will still be produced) if ( Tuples::maybeImpureIgnoreUnique( arg ) ) { // expressions which may contain side effects require a single unique instance of // the expression arg = new ast::UniqueExpr{ arg->location, arg }; } std::vector< ast::ptr< ast::Expr > > components; for ( unsigned i = 0; i < toType->size(); ++i ) { // cast each component ast::ptr< ast::Expr > idx = new ast::TupleIndexExpr{ arg->location, arg, i }; components.emplace_back( restructureCast( idx, toType->getComponent( i ), isGenerated ) ); } return new ast::TupleExpr{ arg->location, std::move( components ) }; } else { // handle normally return new ast::CastExpr{ arg->location, arg, toType, isGenerated }; } } /// Gets the name from an untyped member expression (must be NameExpr) const std::string & getMemberName( const ast::UntypedMemberExpr * memberExpr ) { if ( memberExpr->member.as< ast::ConstantExpr >() ) { SemanticError( memberExpr, "Indexed access to struct fields unsupported: " ); } return memberExpr->member.strict_as< ast::NameExpr >()->name; } /// Actually visits expressions to find their candidate interpretations class Finder final : public ast::WithShortCircuiting { const ResolveContext & context; const ast::SymbolTable & symtab; public: // static size_t traceId; CandidateFinder & selfFinder; CandidateList & candidates; const ast::TypeEnvironment & tenv; ast::ptr< ast::Type > & targetType; enum Errors { NotFound, NoMatch, ArgsToFew, ArgsToMany, RetsToFew, RetsToMany, NoReason }; struct { Errors code = NotFound; } reason; Finder( CandidateFinder & f ) : context( f.context ), symtab( context.symtab ), selfFinder( f ), candidates( f.candidates ), tenv( f.env ), targetType( f.targetType ) {} void previsit( const ast::Node * ) { visit_children = false; } /// Convenience to add candidate to list template void addCandidate( Args &&... args ) { candidates.emplace_back( new Candidate{ std::forward( args )... } ); reason.code = NoReason; } void postvisit( const ast::ApplicationExpr * applicationExpr ) { addCandidate( applicationExpr, tenv ); } /// Set up candidate assertions for inference void inferParameters( CandidateRef & newCand, CandidateList & out ); /// Completes a function candidate with arguments located void validateFunctionCandidate( const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results, CandidateList & out ); /// Builds a list of candidates for a function, storing them in out void makeFunctionCandidates( const CodeLocation & location, const CandidateRef & func, const ast::FunctionType * funcType, const ExplodedArgs & args, CandidateList & out ); /// Adds implicit struct-conversions to the alternative list void addAnonConversions( const CandidateRef & cand ); /// Adds aggregate member interpretations void addAggMembers( const ast::BaseInstType * aggrInst, const ast::Expr * expr, const Candidate & cand, const Cost & addedCost, const std::string & name ); void addEnumValueAsCandidate(const ast::EnumInstType * instType, const ast::Expr * expr, const Cost & addedCost ); /// Adds tuple member interpretations void addTupleMembers( const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand, const Cost & addedCost, const ast::Expr * member ); /// true if expression is an lvalue static bool isLvalue( const ast::Expr * x ) { return x->result && ( x->get_lvalue() || x->result.as< ast::ReferenceType >() ); } void postvisit( const ast::UntypedExpr * untypedExpr ); void postvisit( const ast::VariableExpr * variableExpr ); void postvisit( const ast::ConstantExpr * constantExpr ); void postvisit( const ast::SizeofExpr * sizeofExpr ); void postvisit( const ast::AlignofExpr * alignofExpr ); void postvisit( const ast::AddressExpr * addressExpr ); void postvisit( const ast::LabelAddressExpr * labelExpr ); void postvisit( const ast::CastExpr * castExpr ); void postvisit( const ast::VirtualCastExpr * castExpr ); void postvisit( const ast::KeywordCastExpr * castExpr ); void postvisit( const ast::UntypedMemberExpr * memberExpr ); void postvisit( const ast::MemberExpr * memberExpr ); void postvisit( const ast::NameExpr * nameExpr ); void postvisit( const ast::UntypedOffsetofExpr * offsetofExpr ); void postvisit( const ast::OffsetofExpr * offsetofExpr ); void postvisit( const ast::OffsetPackExpr * offsetPackExpr ); void postvisit( const ast::LogicalExpr * logicalExpr ); void postvisit( const ast::ConditionalExpr * conditionalExpr ); void postvisit( const ast::CommaExpr * commaExpr ); void postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr ); void postvisit( const ast::ConstructorExpr * ctorExpr ); void postvisit( const ast::RangeExpr * rangeExpr ); void postvisit( const ast::UntypedTupleExpr * tupleExpr ); void postvisit( const ast::TupleExpr * tupleExpr ); void postvisit( const ast::TupleIndexExpr * tupleExpr ); void postvisit( const ast::TupleAssignExpr * tupleExpr ); void postvisit( const ast::UniqueExpr * unqExpr ); void postvisit( const ast::StmtExpr * stmtExpr ); void postvisit( const ast::UntypedInitExpr * initExpr ); void postvisit( const ast::QualifiedNameExpr * qualifiedExpr ); void postvisit( const ast::CountExpr * countExpr ); void postvisit( const ast::InitExpr * ) { assertf( false, "CandidateFinder should never see a resolved InitExpr." ); } void postvisit( const ast::DeletedExpr * ) { assertf( false, "CandidateFinder should never see a DeletedExpr." ); } void postvisit( const ast::GenericExpr * ) { assertf( false, "_Generic is not yet supported." ); } }; /// Set up candidate assertions for inference void Finder::inferParameters( CandidateRef & newCand, CandidateList & out ) { // Set need bindings for any unbound assertions ast::UniqueId crntResnSlot = 0; // matching ID for this expression's assertions for ( auto & assn : newCand->need ) { // skip already-matched assertions if ( assn.second.resnSlot != 0 ) continue; // assign slot for expression if needed if ( crntResnSlot == 0 ) { crntResnSlot = ++globalResnSlot; } // fix slot to assertion assn.second.resnSlot = crntResnSlot; } // pair slot to expression if ( crntResnSlot != 0 ) { newCand->expr.get_and_mutate()->inferred.resnSlots().emplace_back( crntResnSlot ); } // add to output list; assertion satisfaction will occur later out.emplace_back( newCand ); } /// Completes a function candidate with arguments located void Finder::validateFunctionCandidate( const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results, CandidateList & out ) { ast::ApplicationExpr * appExpr = new ast::ApplicationExpr{ func->expr->location, func->expr }; // sum cost and accumulate arguments std::deque< const ast::Expr * > args; Cost cost = func->cost; const ArgPack * pack = &result; while ( pack->expr ) { args.emplace_front( pack->expr ); cost += pack->cost; pack = &results[pack->parent]; } std::vector< ast::ptr< ast::Expr > > vargs( args.begin(), args.end() ); appExpr->args = std::move( vargs ); // build and validate new candidate auto newCand = std::make_shared( appExpr, result.env, result.open, result.need, cost ); PRINT( std::cerr << "instantiate function success: " << appExpr << std::endl; std::cerr << "need assertions:" << std::endl; ast::print( std::cerr, result.need, 2 ); ) inferParameters( newCand, out ); } /// Builds a list of candidates for a function, storing them in out void Finder::makeFunctionCandidates( const CodeLocation & location, const CandidateRef & func, const ast::FunctionType * funcType, const ExplodedArgs & args, CandidateList & out ) { ast::OpenVarSet funcOpen; ast::AssertionSet funcNeed, funcHave; ast::TypeEnvironment funcEnv{ func->env }; makeUnifiableVars( funcType, funcOpen, funcNeed ); // add all type variables as open variables now so that those not used in the // parameter list are still considered open funcEnv.add( funcType->forall ); if ( targetType && ! targetType->isVoid() && ! funcType->returns.empty() ) { // attempt to narrow based on expected target type const ast::Type * returnType = funcType->returns.front(); if ( selfFinder.strictMode ) { if ( !unifyExact( returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen, noWiden() ) // xxx - is no widening correct? ) { // unification failed, do not pursue this candidate return; } } else { if ( !unify( returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen ) ) { // unification failed, do not pursue this candidate return; } } } // iteratively build matches, one parameter at a time std::vector< ArgPack > results; results.emplace_back( funcEnv, funcNeed, funcHave, funcOpen ); std::size_t genStart = 0; // xxx - how to handle default arg after change to ftype representation? if (const ast::VariableExpr * varExpr = func->expr.as()) { if (const ast::FunctionDecl * funcDecl = varExpr->var.as()) { // function may have default args only if directly calling by name // must use types on candidate however, due to RenameVars substitution auto nParams = funcType->params.size(); for (size_t i=0; iparams[i].strict_as(); if ( !instantiateArgument( location, funcType->params[i], obj->init, args, results, genStart, context)) return; } goto endMatch; } } for ( const auto & param : funcType->params ) { // Try adding the arguments corresponding to the current parameter to the existing // matches // no default args for indirect calls if ( !instantiateArgument( location, param, nullptr, args, results, genStart, context ) ) return; } endMatch: if ( funcType->isVarArgs ) { // append any unused arguments to vararg pack std::size_t genEnd; do { genEnd = results.size(); // iterate results for ( std::size_t i = genStart; i < genEnd; ++i ) { unsigned nextArg = results[i].nextArg; // use remainder of exploded tuple if present if ( results[i].hasExpl() ) { const ExplodedArg & expl = results[i].getExpl( args ); unsigned nextExpl = results[i].nextExpl + 1; if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; } results.emplace_back( i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ), copy( results[i].need ), copy( results[i].have ), copy( results[i].open ), nextArg, 0, Cost::zero, nextExpl, results[i].explAlt ); continue; } // finish result when out of arguments if ( nextArg >= args.size() ) { validateFunctionCandidate( func, results[i], results, out ); continue; } // add each possible next argument for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) { const ExplodedArg & expl = args[nextArg][j]; // fresh copies of parent parameters for this iteration ast::TypeEnvironment env = results[i].env; ast::OpenVarSet open = results[i].open; env.addActual( expl.env, open ); // skip empty tuple arguments by (nearly) cloning parent into next gen if ( expl.exprs.empty() ) { results.emplace_back( results[i], std::move( env ), copy( results[i].need ), copy( results[i].have ), std::move( open ), nextArg + 1, expl.cost ); continue; } // add new result results.emplace_back( i, expl.exprs.front(), std::move( env ), copy( results[i].need ), copy( results[i].have ), std::move( open ), nextArg + 1, 0, expl.cost, expl.exprs.size() == 1 ? 0 : 1, j ); } } genStart = genEnd; } while( genEnd != results.size() ); } else { // filter out the results that don't use all the arguments for ( std::size_t i = genStart; i < results.size(); ++i ) { ArgPack & result = results[i]; if ( ! result.hasExpl() && result.nextArg >= args.size() ) { validateFunctionCandidate( func, result, results, out ); } } } } void Finder::addEnumValueAsCandidate( const ast::EnumInstType * enumInst, const ast::Expr * expr, const Cost & addedCost ) { if ( enumInst->base->base ) { CandidateFinder finder( context, tenv ); auto location = expr->location; auto callExpr = new ast::UntypedExpr( location, new ast::NameExpr( location, "value" ), {expr} ); finder.find( callExpr ); CandidateList winners = findMinCost( finder.candidates ); if (winners.size() != 1) { SemanticError( callExpr, "Ambiguous expression in value..." ); } CandidateRef & choice = winners.front(); choice->cost += addedCost; addAnonConversions(choice); candidates.emplace_back( std::move(choice) ); } } /// Adds implicit struct-conversions to the alternative list void Finder::addAnonConversions( const CandidateRef & cand ) { // adds anonymous member interpretations whenever an aggregate value type is seen. // it's okay for the aggregate expression to have reference type -- cast it to the // base type to treat the aggregate as the referenced value ast::ptr< ast::Expr > aggrExpr( cand->expr ); ast::ptr< ast::Type > & aggrType = aggrExpr.get_and_mutate()->result; cand->env.apply( aggrType ); if ( aggrType.as< ast::ReferenceType >() ) { aggrExpr = new ast::CastExpr{ aggrExpr, aggrType->stripReferences() }; } if ( auto structInst = aggrExpr->result.as< ast::StructInstType >() ) { addAggMembers( structInst, aggrExpr, *cand, Cost::unsafe, "" ); } else if ( auto unionInst = aggrExpr->result.as< ast::UnionInstType >() ) { addAggMembers( unionInst, aggrExpr, *cand, Cost::unsafe, "" ); } else if ( auto enumInst = aggrExpr->result.as< ast::EnumInstType >() ) { addEnumValueAsCandidate( enumInst, aggrExpr, Cost::implicit ); } } /// Adds aggregate member interpretations void Finder::addAggMembers( const ast::BaseInstType * aggrInst, const ast::Expr * expr, const Candidate & cand, const Cost & addedCost, const std::string & name ) { for ( const ast::Decl * decl : aggrInst->lookup( name ) ) { auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( decl ); CandidateRef newCand = std::make_shared( cand, new ast::MemberExpr{ expr->location, dwt, expr }, addedCost ); // add anonymous member interpretations whenever an aggregate value type is seen // as a member expression addAnonConversions( newCand ); candidates.emplace_back( std::move( newCand ) ); } } /// Adds tuple member interpretations void Finder::addTupleMembers( const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand, const Cost & addedCost, const ast::Expr * member ) { if ( auto constantExpr = dynamic_cast< const ast::ConstantExpr * >( member ) ) { // get the value of the constant expression as an int, must be between 0 and the // length of the tuple to have meaning long long val = constantExpr->intValue(); if ( val >= 0 && (unsigned long long)val < tupleType->size() ) { addCandidate( cand, new ast::TupleIndexExpr{ expr->location, expr, (unsigned)val }, addedCost ); } } } void Finder::postvisit( const ast::UntypedExpr * untypedExpr ) { std::vector< CandidateFinder > argCandidates = selfFinder.findSubExprs( untypedExpr->args ); // take care of possible tuple assignments // if not tuple assignment, handled as normal function call Tuples::handleTupleAssignment( selfFinder, untypedExpr, argCandidates ); CandidateFinder funcFinder( context, tenv ); std::string funcName; if (auto nameExpr = untypedExpr->func.as()) { funcName = nameExpr->name; auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name); if (kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS) { assertf(!argCandidates.empty(), "special function call without argument"); for (auto & firstArgCand: argCandidates[0]) { ast::ptr argType = firstArgCand->expr->result; firstArgCand->env.apply(argType); // strip references // xxx - is this correct? while (argType.as()) argType = argType.as()->base; // convert 1-tuple to plain type if (auto tuple = argType.as()) { if (tuple->size() == 1) { argType = tuple->types[0]; } } // if argType is an unbound type parameter, all special functions need to be searched. if (isUnboundType(argType)) { funcFinder.otypeKeys.clear(); break; } if (argType.as()) funcFinder.otypeKeys.insert(Mangle::Encoding::pointer); else funcFinder.otypeKeys.insert(Mangle::mangle(argType, Mangle::NoGenericParams | Mangle::Type)); } } } // if candidates are already produced, do not fail // xxx - is it possible that handleTupleAssignment and main finder both produce candidates? // this means there exists ctor/assign functions with a tuple as first parameter. ResolveMode mode = { true, // adjust !untypedExpr->func.as(), // prune if not calling by name selfFinder.candidates.empty() // failfast if other options are not found }; funcFinder.find( untypedExpr->func, mode ); // short-circuit if no candidates // if ( funcFinder.candidates.empty() ) return; reason.code = NoMatch; // find function operators ast::ptr< ast::Expr > opExpr = new ast::NameExpr{ untypedExpr->location, "?()" }; // ??? why not ?{} CandidateFinder opFinder( context, tenv ); // okay if there aren't any function operations opFinder.find( opExpr, ResolveMode::withoutFailFast() ); PRINT( std::cerr << "known function ops:" << std::endl; print( std::cerr, opFinder.candidates, 1 ); ) // pre-explode arguments ExplodedArgs argExpansions; for ( const CandidateFinder & args : argCandidates ) { argExpansions.emplace_back(); auto & argE = argExpansions.back(); for ( const CandidateRef & arg : args ) { argE.emplace_back( *arg, symtab ); } } // Find function matches CandidateList found; SemanticErrorException errors; for ( CandidateRef & func : funcFinder ) { try { PRINT( std::cerr << "working on alternative:" << std::endl; print( std::cerr, *func, 2 ); ) // check if the type is a pointer to function const ast::Type * funcResult = func->expr->result->stripReferences(); if ( auto pointer = dynamic_cast< const ast::PointerType * >( funcResult ) ) { if ( auto function = pointer->base.as< ast::FunctionType >() ) { // if (!selfFinder.allowVoid && function->returns.empty()) continue; CandidateRef newFunc{ new Candidate{ *func } }; newFunc->expr = referenceToRvalueConversion( newFunc->expr, newFunc->cost ); makeFunctionCandidates( untypedExpr->location, newFunc, function, argExpansions, found ); } } else if ( auto inst = dynamic_cast< const ast::TypeInstType * >( funcResult ) ) { if ( const ast::EqvClass * clz = func->env.lookup( *inst ) ) { if ( auto function = clz->bound.as< ast::FunctionType >() ) { CandidateRef newFunc( new Candidate( *func ) ); newFunc->expr = referenceToRvalueConversion( newFunc->expr, newFunc->cost ); makeFunctionCandidates( untypedExpr->location, newFunc, function, argExpansions, found ); } } } } catch ( SemanticErrorException & e ) { errors.append( e ); } } // Find matches on function operators `?()` if ( ! opFinder.candidates.empty() ) { // add exploded function alternatives to front of argument list std::vector< ExplodedArg > funcE; funcE.reserve( funcFinder.candidates.size() ); for ( const CandidateRef & func : funcFinder ) { funcE.emplace_back( *func, symtab ); } argExpansions.emplace_front( std::move( funcE ) ); for ( const CandidateRef & op : opFinder ) { try { // check if type is pointer-to-function const ast::Type * opResult = op->expr->result->stripReferences(); if ( auto pointer = dynamic_cast< const ast::PointerType * >( opResult ) ) { if ( auto function = pointer->base.as< ast::FunctionType >() ) { CandidateRef newOp{ new Candidate{ *op} }; newOp->expr = referenceToRvalueConversion( newOp->expr, newOp->cost ); makeFunctionCandidates( untypedExpr->location, newOp, function, argExpansions, found ); } } } catch ( SemanticErrorException & e ) { errors.append( e ); } } } // Implement SFINAE; resolution errors are only errors if there aren't any non-error // candidates if ( found.empty() && ! errors.isEmpty() ) { throw errors; } // only keep the best matching intrinsic result to match C semantics (no unexpected narrowing/widening) // TODO: keep one for each set of argument candidates? Cost intrinsicCost = Cost::infinity; CandidateList intrinsicResult; // Compute conversion costs for ( CandidateRef & withFunc : found ) { Cost cvtCost = computeApplicationConversionCost( withFunc, symtab ); if (funcName == "?|?") { PRINT( auto appExpr = withFunc->expr.strict_as< ast::ApplicationExpr >(); auto pointer = appExpr->func->result.strict_as< ast::PointerType >(); auto function = pointer->base.strict_as< ast::FunctionType >(); std::cerr << "Case +++++++++++++ " << appExpr->func << std::endl; std::cerr << "parameters are:" << std::endl; ast::printAll( std::cerr, function->params, 2 ); std::cerr << "arguments are:" << std::endl; ast::printAll( std::cerr, appExpr->args, 2 ); std::cerr << "bindings are:" << std::endl; ast::print( std::cerr, withFunc->env, 2 ); std::cerr << "cost is: " << withFunc->cost << std::endl; std::cerr << "cost of conversion is:" << cvtCost << std::endl; ) } if ( cvtCost != Cost::infinity ) { withFunc->cvtCost = cvtCost; withFunc->cost += cvtCost; auto func = withFunc->expr.strict_as()->func.as(); if (func && func->var->linkage == ast::Linkage::Intrinsic) { if (withFunc->cost < intrinsicCost) { intrinsicResult.clear(); intrinsicCost = withFunc->cost; } if (withFunc->cost == intrinsicCost) { intrinsicResult.emplace_back(std::move(withFunc)); } } else { candidates.emplace_back( std::move( withFunc ) ); } } } spliceBegin( candidates, intrinsicResult ); found = std::move( candidates ); // use a new list so that candidates are not examined by addAnonConversions twice // CandidateList winners = findMinCost( found ); // promoteCvtCost( winners ); // function may return a struct/union value, in which case we need to add candidates // for implicit conversions to each of the anonymous members, which must happen after // `findMinCost`, since anon conversions are never the cheapest for ( const CandidateRef & c : found ) { addAnonConversions( c ); } // would this be too slow when we don't check cost anymore? spliceBegin( candidates, found ); if ( candidates.empty() && targetType && ! targetType->isVoid() && !selfFinder.strictMode ) { // If resolution is unsuccessful with a target type, try again without, since it // will sometimes succeed when it wouldn't with a target type binding. // For example: // forall( otype T ) T & ?[]( T *, ptrdiff_t ); // const char * x = "hello world"; // unsigned char ch = x[0]; // Fails with simple return type binding (xxx -- check this!) as follows: // * T is bound to unsigned char // * (x: const char *) is unified with unsigned char *, which fails // xxx -- fix this better targetType = nullptr; postvisit( untypedExpr ); } } void Finder::postvisit( const ast::AddressExpr * addressExpr ) { CandidateFinder finder( context, tenv ); finder.find( addressExpr->arg ); if ( finder.candidates.empty() ) return; reason.code = NoMatch; for ( CandidateRef & r : finder.candidates ) { if ( !isLvalue( r->expr ) ) continue; addCandidate( *r, new ast::AddressExpr{ addressExpr->location, r->expr } ); } } void Finder::postvisit( const ast::LabelAddressExpr * labelExpr ) { addCandidate( labelExpr, tenv ); } void Finder::postvisit( const ast::CastExpr * castExpr ) { ast::ptr< ast::Type > toType = castExpr->result; assert( toType ); toType = resolveTypeof( toType, context ); toType = adjustExprType( toType, tenv, symtab ); CandidateFinder finder( context, tenv, toType ); if (toType->isVoid()) { finder.allowVoid = true; } if ( castExpr->kind == ast::CastExpr::Return ) { finder.strictMode = true; finder.find( castExpr->arg, ResolveMode::withAdjustment() ); // return casts are eliminated (merely selecting an overload, no actual operation) candidates = std::move(finder.candidates); return; } else if (toType->isVoid()) { finder.find( castExpr->arg ); // no adjust } else { finder.find( castExpr->arg, ResolveMode::withAdjustment() ); } if ( !finder.candidates.empty() ) reason.code = NoMatch; CandidateList matches; Cost minExprCost = Cost::infinity; // Cost minCastCost = Cost::infinity; for ( CandidateRef & cand : finder.candidates ) { ast::ptr< ast::Type > fromType = cand->expr->result; assert( fromType ); fromType = resolveTypeof( fromType, context ); fromType = adjustExprType( fromType, tenv, symtab ); ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have; ast::OpenVarSet open( cand->open ); cand->env.extractOpenVars( open ); // It is possible that a cast can throw away some values in a multiply-valued // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of the // subexpression results that are cast directly. The candidate is invalid if it // has fewer results than there are types to cast to. int discardedValues = fromType->size() - toType->size(); if ( discardedValues < 0 ) continue; // unification run for side-effects unify( toType, fromType, cand->env, need, have, open ); Cost thisCost = (castExpr->isGenerated == ast::GeneratedFlag::GeneratedCast) ? conversionCost( fromType, toType, cand->expr->get_lvalue(), symtab, cand->env ) : castCost( fromType, toType, cand->expr->get_lvalue(), symtab, cand->env ); // Redefine enum cast auto argAsEnum = fromType.as(); auto toAsEnum = toType.as(); if ( argAsEnum && toAsEnum && argAsEnum->name != toAsEnum->name ) { CandidateFinder subFinder(context, tenv); ast::ptr offsetExpr = subFinder.makeEnumOffsetCast(argAsEnum, toAsEnum, cand->expr, thisCost); if ( offsetExpr ) cand->expr = offsetExpr; } PRINT( std::cerr << "working on cast with result: " << toType << std::endl; std::cerr << "and expr type: " << fromType << std::endl; std::cerr << "env: " << cand->env << std::endl; ) if ( thisCost != Cost::infinity ) { PRINT( std::cerr << "has finite cost." << std::endl; ) // count one safe conversion for each value that is thrown away thisCost.incSafe( discardedValues ); // See Aaron Moss, page 47; this reasoning does not hold since implicit conversions // can create the same resolution issue. The C intrinsic interpretations are pruned // immediately for the lowest cost option regardless of result type. Related code in // postvisit (UntypedExpr). // Cast expression costs are updated now to use the general rules. /* // select first on argument cost, then conversion cost if ( cand->cost < minExprCost || ( cand->cost == minExprCost && thisCost < minCastCost ) ) { minExprCost = cand->cost; minCastCost = thisCost; matches.clear(); } // ambigious case, still output candidates to print in error message if ( cand->cost == minExprCost && thisCost == minCastCost ) { */ cand->cost += thisCost; if (cand->cost < minExprCost) { minExprCost = cand->cost; matches.clear(); } if (cand->cost == minExprCost) { CandidateRef newCand = std::make_shared( restructureCast( cand->expr, toType, castExpr->isGenerated ), copy( cand->env ), std::move( open ), std::move( need ), cand->cost); // currently assertions are always resolved immediately so this should have no effect. // if this somehow changes in the future (e.g. delayed by indeterminate return type) // we may need to revisit the logic. inferParameters( newCand, matches ); } // else skip, better alternatives found } } candidates = std::move(matches); //CandidateList minArgCost = findMinCost( matches ); //promoteCvtCost( minArgCost ); //candidates = findMinCost( minArgCost ); } void Finder::postvisit( const ast::VirtualCastExpr * castExpr ) { assertf( castExpr->result, "Implicit virtual cast targets not yet supported." ); CandidateFinder finder( context, tenv ); // don't prune here, all alternatives guaranteed to have same type finder.find( castExpr->arg, ResolveMode::withoutPrune() ); for ( CandidateRef & r : finder.candidates ) { addCandidate( *r, new ast::VirtualCastExpr{ castExpr->location, r->expr, castExpr->result } ); } } void Finder::postvisit( const ast::KeywordCastExpr * castExpr ) { const auto & loc = castExpr->location; assertf( castExpr->result, "Cast target should have been set in Validate." ); auto ref = castExpr->result.strict_as(); auto inst = ref->base.strict_as(); auto target = inst->base.get(); CandidateFinder finder( context, tenv ); auto pick_alternatives = [target, this](CandidateList & found, bool expect_ref) { for (auto & cand : found) { const ast::Type * expr = cand->expr->result.get(); if (expect_ref) { auto res = dynamic_cast(expr); if (!res) { continue; } expr = res->base.get(); } if (auto insttype = dynamic_cast(expr)) { auto td = cand->env.lookup(*insttype); if (!td) { continue; } expr = td->bound.get(); } if (auto base = dynamic_cast(expr)) { if (base->base == target) { candidates.push_back( std::move(cand) ); reason.code = NoReason; } } } }; try { // Attempt 1 : turn (thread&)X into (thread$&)X.__thrd // Clone is purely for memory management std::unique_ptr tech1 { new ast::UntypedMemberExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.field), castExpr->arg) }; // don't prune here, since it's guaranteed all alternatives will have the same type finder.find( tech1.get(), ResolveMode::withoutPrune() ); pick_alternatives(finder.candidates, false); return; } catch(SemanticErrorException & ) {} // Fallback : turn (thread&)X into (thread$&)get_thread(X) std::unique_ptr fallback { ast::UntypedExpr::createDeref(loc, new ast::UntypedExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.getter), { castExpr->arg })) }; // don't prune here, since it's guaranteed all alternatives will have the same type finder.find( fallback.get(), ResolveMode::withoutPrune() ); pick_alternatives(finder.candidates, true); // Whatever happens here, we have no more fallbacks } void Finder::postvisit( const ast::UntypedMemberExpr * memberExpr ) { CandidateFinder aggFinder( context, tenv ); aggFinder.find( memberExpr->aggregate, ResolveMode::withAdjustment() ); for ( CandidateRef & agg : aggFinder.candidates ) { // it's okay for the aggregate expression to have reference type -- cast it to the // base type to treat the aggregate as the referenced value Cost addedCost = Cost::zero; agg->expr = referenceToRvalueConversion( agg->expr, addedCost ); // find member of the given type if ( auto structInst = agg->expr->result.as< ast::StructInstType >() ) { addAggMembers( structInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) ); } else if ( auto unionInst = agg->expr->result.as< ast::UnionInstType >() ) { addAggMembers( unionInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) ); } else if ( auto tupleType = agg->expr->result.as< ast::TupleType >() ) { addTupleMembers( tupleType, agg->expr, *agg, addedCost, memberExpr->member ); } } } void Finder::postvisit( const ast::MemberExpr * memberExpr ) { addCandidate( memberExpr, tenv ); } void Finder::postvisit( const ast::NameExpr * nameExpr ) { std::vector< ast::SymbolTable::IdData > declList; if (!selfFinder.otypeKeys.empty()) { auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name); assertf(kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS, "special lookup with non-special target: %s", nameExpr->name.c_str()); for (auto & otypeKey: selfFinder.otypeKeys) { auto result = symtab.specialLookupId(kind, otypeKey); declList.insert(declList.end(), std::make_move_iterator(result.begin()), std::make_move_iterator(result.end())); } } else { declList = symtab.lookupIdIgnoreHidden( nameExpr->name ); } PRINT( std::cerr << "nameExpr is " << nameExpr->name << std::endl; ) if ( declList.empty() ) return; reason.code = NoMatch; for ( auto & data : declList ) { Cost cost = Cost::zero; ast::Expr * newExpr = data.combine( nameExpr->location, cost ); CandidateRef newCand = std::make_shared( newExpr, copy( tenv ), ast::OpenVarSet{}, ast::AssertionSet{}, Cost::zero, cost ); if (newCand->expr->env) { newCand->env.add(*newCand->expr->env); auto mutExpr = newCand->expr.get_and_mutate(); mutExpr->env = nullptr; newCand->expr = mutExpr; } PRINT( std::cerr << "decl is "; ast::print( std::cerr, data.id ); std::cerr << std::endl; std::cerr << "newExpr is "; ast::print( std::cerr, newExpr ); std::cerr << std::endl; ) newCand->expr = ast::mutate_field( newCand->expr.get(), &ast::Expr::result, renameTyVars( newCand->expr->result ) ); // add anonymous member interpretations whenever an aggregate value type is seen // as a name expression addAnonConversions( newCand ); candidates.emplace_back( std::move( newCand ) ); } } void Finder::postvisit(const ast::VariableExpr *variableExpr) { // not sufficient to just pass `variableExpr` here, type might have changed auto cand = new Candidate(variableExpr, tenv); candidates.emplace_back(cand); } void Finder::postvisit( const ast::ConstantExpr * constantExpr ) { addCandidate( constantExpr, tenv ); } void Finder::postvisit( const ast::SizeofExpr * sizeofExpr ) { if ( sizeofExpr->type ) { addCandidate( new ast::SizeofExpr{ sizeofExpr->location, resolveTypeof( sizeofExpr->type, context ) }, tenv ); } else { // find all candidates for the argument to sizeof CandidateFinder finder( context, tenv ); finder.find( sizeofExpr->expr ); // find the lowest-cost candidate, otherwise ambiguous CandidateList winners = findMinCost( finder.candidates ); if ( winners.size() != 1 ) { SemanticError( sizeofExpr->expr.get(), "Ambiguous expression in sizeof operand: " ); } // return the lowest-cost candidate CandidateRef & choice = winners.front(); choice->expr = referenceToRvalueConversion( choice->expr, choice->cost ); choice->cost = Cost::zero; addCandidate( *choice, new ast::SizeofExpr{ sizeofExpr->location, choice->expr } ); } } void Finder::postvisit( const ast::CountExpr * countExpr ) { const ast::UntypedExpr * untyped = nullptr; if ( countExpr->type ) { auto enumInst = countExpr->type.as(); if ( enumInst ) { addCandidate( ast::ConstantExpr::from_ulong(countExpr->location, enumInst->base->members.size()), tenv ); return; } auto untypedFirst = ast::UntypedExpr::createCall( countExpr->location, "lowerBound", {} ); auto castFirst = new ast::CastExpr( countExpr->location, untypedFirst , countExpr->type ); untyped = ast::UntypedExpr::createCall( countExpr->location, "Countof", { castFirst } ); } if (!untyped) untyped = ast::UntypedExpr::createCall( countExpr->location, "Countof", { countExpr->expr } ); CandidateFinder finder( context, tenv ); finder.find( untyped ); CandidateList winners = findMinCost( finder.candidates ); if ( winners.size() == 0 ) { SemanticError( countExpr->expr, "Countof is not implemented for operand: " ); } if ( winners.size() != 1 ) { SemanticError( countExpr->expr, "Ambiguous expression in countof operand: " ); } CandidateRef & choice = winners.front(); choice->expr = referenceToRvalueConversion( choice->expr, choice->cost ); addCandidate( *choice, choice->expr ); } void Finder::postvisit( const ast::AlignofExpr * alignofExpr ) { if ( alignofExpr->type ) { addCandidate( new ast::AlignofExpr{ alignofExpr->location, resolveTypeof( alignofExpr->type, context ) }, tenv ); } else { // find all candidates for the argument to alignof CandidateFinder finder( context, tenv ); finder.find( alignofExpr->expr ); // find the lowest-cost candidate, otherwise ambiguous CandidateList winners = findMinCost( finder.candidates ); if ( winners.size() != 1 ) { SemanticError( alignofExpr->expr.get(), "Ambiguous expression in alignof operand: " ); } // return the lowest-cost candidate CandidateRef & choice = winners.front(); choice->expr = referenceToRvalueConversion( choice->expr, choice->cost ); choice->cost = Cost::zero; addCandidate( *choice, new ast::AlignofExpr{ alignofExpr->location, choice->expr } ); } } void Finder::postvisit( const ast::UntypedOffsetofExpr * offsetofExpr ) { const ast::BaseInstType * aggInst; if (( aggInst = offsetofExpr->type.as< ast::StructInstType >() )) ; else if (( aggInst = offsetofExpr->type.as< ast::UnionInstType >() )) ; else return; for ( const ast::Decl * member : aggInst->lookup( offsetofExpr->member ) ) { auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( member ); addCandidate( new ast::OffsetofExpr{ offsetofExpr->location, aggInst, dwt }, tenv ); } } void Finder::postvisit( const ast::OffsetofExpr * offsetofExpr ) { addCandidate( offsetofExpr, tenv ); } void Finder::postvisit( const ast::OffsetPackExpr * offsetPackExpr ) { addCandidate( offsetPackExpr, tenv ); } void Finder::postvisit( const ast::LogicalExpr * logicalExpr ) { CandidateFinder finder1( context, tenv ); ast::ptr arg1 = createCondExpr( logicalExpr->arg1 ); finder1.find( arg1, ResolveMode::withAdjustment() ); if ( finder1.candidates.empty() ) return; CandidateFinder finder2( context, tenv ); ast::ptr arg2 = createCondExpr( logicalExpr->arg2 ); finder2.find( arg2, ResolveMode::withAdjustment() ); if ( finder2.candidates.empty() ) return; reason.code = NoMatch; for ( const CandidateRef & r1 : finder1.candidates ) { for ( const CandidateRef & r2 : finder2.candidates ) { ast::TypeEnvironment env{ r1->env }; env.simpleCombine( r2->env ); ast::OpenVarSet open{ r1->open }; mergeOpenVars( open, r2->open ); ast::AssertionSet need; mergeAssertionSet( need, r1->need ); mergeAssertionSet( need, r2->need ); addCandidate( new ast::LogicalExpr{ logicalExpr->location, r1->expr, r2->expr, logicalExpr->isAnd }, std::move( env ), std::move( open ), std::move( need ), r1->cost + r2->cost ); } } } void Finder::postvisit( const ast::ConditionalExpr * conditionalExpr ) { // candidates for condition ast::ptr arg1 = createCondExpr( conditionalExpr->arg1 ); CandidateFinder finder1( context, tenv ); finder1.find( arg1, ResolveMode::withAdjustment() ); if ( finder1.candidates.empty() ) return; // candidates for true result // FIX ME: resolves and runs arg1 twice when arg2 is missing. ast::Expr const * arg2 = conditionalExpr->arg2; arg2 = arg2 ? arg2 : conditionalExpr->arg1.get(); CandidateFinder finder2( context, tenv ); finder2.allowVoid = true; finder2.find( arg2, ResolveMode::withAdjustment() ); if ( finder2.candidates.empty() ) return; // candidates for false result CandidateFinder finder3( context, tenv ); finder3.allowVoid = true; finder3.find( conditionalExpr->arg3, ResolveMode::withAdjustment() ); if ( finder3.candidates.empty() ) return; reason.code = NoMatch; for ( const CandidateRef & r1 : finder1.candidates ) { for ( const CandidateRef & r2 : finder2.candidates ) { for ( const CandidateRef & r3 : finder3.candidates ) { ast::TypeEnvironment env{ r1->env }; env.simpleCombine( r2->env ); env.simpleCombine( r3->env ); ast::OpenVarSet open{ r1->open }; mergeOpenVars( open, r2->open ); mergeOpenVars( open, r3->open ); ast::AssertionSet need; mergeAssertionSet( need, r1->need ); mergeAssertionSet( need, r2->need ); mergeAssertionSet( need, r3->need ); ast::AssertionSet have; // unify true and false results, then infer parameters to produce new // candidates ast::ptr< ast::Type > common; if ( unify( r2->expr->result, r3->expr->result, env, need, have, open, common ) ) { // generate typed expression ast::ConditionalExpr * newExpr = new ast::ConditionalExpr{ conditionalExpr->location, r1->expr, r2->expr, r3->expr }; newExpr->result = common ? common : r2->expr->result; // convert both options to result type Cost cost = r1->cost + r2->cost + r3->cost; newExpr->arg2 = computeExpressionConversionCost( newExpr->arg2, newExpr->result, symtab, env, cost ); newExpr->arg3 = computeExpressionConversionCost( newExpr->arg3, newExpr->result, symtab, env, cost ); // output candidate CandidateRef newCand = std::make_shared( newExpr, std::move( env ), std::move( open ), std::move( need ), cost ); inferParameters( newCand, candidates ); } } } } } void Finder::postvisit( const ast::CommaExpr * commaExpr ) { ast::TypeEnvironment env{ tenv }; ast::ptr< ast::Expr > arg1 = resolveInVoidContext( commaExpr->arg1, context, env ); CandidateFinder finder2( context, env ); finder2.find( commaExpr->arg2, ResolveMode::withAdjustment() ); for ( const CandidateRef & r2 : finder2.candidates ) { addCandidate( *r2, new ast::CommaExpr{ commaExpr->location, arg1, r2->expr } ); } } void Finder::postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr ) { addCandidate( ctorExpr, tenv ); } void Finder::postvisit( const ast::ConstructorExpr * ctorExpr ) { CandidateFinder finder( context, tenv ); finder.allowVoid = true; finder.find( ctorExpr->callExpr, ResolveMode::withoutPrune() ); for ( CandidateRef & r : finder.candidates ) { addCandidate( *r, new ast::ConstructorExpr{ ctorExpr->location, r->expr } ); } } void Finder::postvisit( const ast::RangeExpr * rangeExpr ) { // resolve low and high, accept candidates where low and high types unify CandidateFinder finder1( context, tenv ); finder1.find( rangeExpr->low, ResolveMode::withAdjustment() ); if ( finder1.candidates.empty() ) return; CandidateFinder finder2( context, tenv ); finder2.find( rangeExpr->high, ResolveMode::withAdjustment() ); if ( finder2.candidates.empty() ) return; reason.code = NoMatch; for ( const CandidateRef & r1 : finder1.candidates ) { for ( const CandidateRef & r2 : finder2.candidates ) { ast::TypeEnvironment env{ r1->env }; env.simpleCombine( r2->env ); ast::OpenVarSet open{ r1->open }; mergeOpenVars( open, r2->open ); ast::AssertionSet need; mergeAssertionSet( need, r1->need ); mergeAssertionSet( need, r2->need ); ast::AssertionSet have; ast::ptr< ast::Type > common; if ( unify( r1->expr->result, r2->expr->result, env, need, have, open, common ) ) { // generate new expression ast::RangeExpr * newExpr = new ast::RangeExpr{ rangeExpr->location, r1->expr, r2->expr }; newExpr->result = common ? common : r1->expr->result; // add candidate CandidateRef newCand = std::make_shared( newExpr, std::move( env ), std::move( open ), std::move( need ), r1->cost + r2->cost ); inferParameters( newCand, candidates ); } } } } void Finder::postvisit( const ast::UntypedTupleExpr * tupleExpr ) { std::vector< CandidateFinder > subCandidates = selfFinder.findSubExprs( tupleExpr->exprs ); std::vector< CandidateList > possibilities; combos( subCandidates.begin(), subCandidates.end(), back_inserter( possibilities ) ); for ( const CandidateList & subs : possibilities ) { std::vector< ast::ptr< ast::Expr > > exprs; exprs.reserve( subs.size() ); for ( const CandidateRef & sub : subs ) { exprs.emplace_back( sub->expr ); } ast::TypeEnvironment env; ast::OpenVarSet open; ast::AssertionSet need; for ( const CandidateRef & sub : subs ) { env.simpleCombine( sub->env ); mergeOpenVars( open, sub->open ); mergeAssertionSet( need, sub->need ); } addCandidate( new ast::TupleExpr{ tupleExpr->location, std::move( exprs ) }, std::move( env ), std::move( open ), std::move( need ), sumCost( subs ) ); } } void Finder::postvisit( const ast::TupleExpr * tupleExpr ) { addCandidate( tupleExpr, tenv ); } void Finder::postvisit( const ast::TupleIndexExpr * tupleExpr ) { addCandidate( tupleExpr, tenv ); } void Finder::postvisit( const ast::TupleAssignExpr * tupleExpr ) { addCandidate( tupleExpr, tenv ); } void Finder::postvisit( const ast::UniqueExpr * unqExpr ) { CandidateFinder finder( context, tenv ); finder.find( unqExpr->expr, ResolveMode::withAdjustment() ); for ( CandidateRef & r : finder.candidates ) { // ensure that the the id is passed on so that the expressions are "linked" addCandidate( *r, new ast::UniqueExpr{ unqExpr->location, r->expr, unqExpr->id } ); } } void Finder::postvisit( const ast::StmtExpr * stmtExpr ) { addCandidate( resolveStmtExpr( stmtExpr, context ), tenv ); } void Finder::postvisit( const ast::UntypedInitExpr * initExpr ) { // handle each option like a cast CandidateList matches; PRINT( std::cerr << "untyped init expr: " << initExpr << std::endl; ) // O(n^2) checks of d-types with e-types for ( const ast::InitAlternative & initAlt : initExpr->initAlts ) { // calculate target type const ast::Type * toType = resolveTypeof( initAlt.type, context ); toType = adjustExprType( toType, tenv, symtab ); // The call to find must occur inside this loop, otherwise polymorphic return // types are not bound to the initialization type, since return type variables are // only open for the duration of resolving the UntypedExpr. CandidateFinder finder( context, tenv, toType ); finder.find( initExpr->expr, ResolveMode::withAdjustment() ); Cost minExprCost = Cost::infinity; Cost minCastCost = Cost::infinity; for ( CandidateRef & cand : finder.candidates ) { if (reason.code == NotFound) reason.code = NoMatch; ast::TypeEnvironment env{ cand->env }; ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have; ast::OpenVarSet open{ cand->open }; PRINT( std::cerr << " @ " << toType << " " << initAlt.designation << std::endl; ) // It is possible that a cast can throw away some values in a multiply-valued // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of // the subexpression results that are cast directly. The candidate is invalid // if it has fewer results than there are types to cast to. int discardedValues = cand->expr->result->size() - toType->size(); if ( discardedValues < 0 ) continue; // unification run for side-effects ast::ptr common; bool canUnify = unify( toType, cand->expr->result, env, need, have, open, common ); (void) canUnify; Cost thisCost = computeConversionCost( cand->expr->result, toType, cand->expr->get_lvalue(), symtab, env ); PRINT( Cost legacyCost = castCost( cand->expr->result, toType, cand->expr->get_lvalue(), symtab, env ); std::cerr << "Considering initialization:"; std::cerr << std::endl << " FROM: " << cand->expr->result << std::endl; std::cerr << std::endl << " TO: " << toType << std::endl; std::cerr << std::endl << " Unification " << (canUnify ? "succeeded" : "failed"); std::cerr << std::endl << " Legacy cost " << legacyCost; std::cerr << std::endl << " New cost " << thisCost; std::cerr << std::endl; ) if ( thisCost != Cost::infinity ) { // count one safe conversion for each value that is thrown away thisCost.incSafe( discardedValues ); if ( cand->cost < minExprCost || ( cand->cost == minExprCost && thisCost < minCastCost ) ) { minExprCost = cand->cost; minCastCost = thisCost; matches.clear(); } CandidateRef newCand = std::make_shared( new ast::InitExpr{ initExpr->location, restructureCast( cand->expr, toType ), initAlt.designation }, std::move(env), std::move( open ), std::move( need ), cand->cost + thisCost ); // currently assertions are always resolved immediately so this should have no effect. // if this somehow changes in the future (e.g. delayed by indeterminate return type) // we may need to revisit the logic. inferParameters( newCand, matches ); } } } // select first on argument cost, then conversion cost // CandidateList minArgCost = findMinCost( matches ); // promoteCvtCost( minArgCost ); // candidates = findMinCost( minArgCost ); candidates = std::move(matches); } void Finder::postvisit( const ast::QualifiedNameExpr * expr ) { std::vector< ast::SymbolTable::IdData > declList = symtab.lookupId( expr->name ); if ( declList.empty() ) return; for ( ast::SymbolTable::IdData & data: declList ) { const ast::Type * t = data.id->get_type()->stripReferences(); if ( const ast::EnumInstType * enumInstType = dynamic_cast( t ) ) { if ( (enumInstType->base->name == expr->type_name) || (expr->type_decl && enumInstType->base->name == expr->type_decl->name) ) { Cost cost = Cost::zero; ast::Expr * newExpr = data.combine( expr->location, cost ); CandidateRef newCand = std::make_shared( newExpr, copy( tenv ), ast::OpenVarSet{}, ast::AssertionSet{}, Cost::zero, cost ); if (newCand->expr->env) { newCand->env.add(*newCand->expr->env); auto mutExpr = newCand->expr.get_and_mutate(); mutExpr->env = nullptr; newCand->expr = mutExpr; } newCand->expr = ast::mutate_field( newCand->expr.get(), &ast::Expr::result, renameTyVars( newCand->expr->result ) ); addAnonConversions( newCand ); candidates.emplace_back( std::move( newCand ) ); } } } } // size_t Finder::traceId = Stats::Heap::new_stacktrace_id("Finder"); /// Prunes a list of candidates down to those that have the minimum conversion cost for a given /// return type. Skips ambiguous candidates. } // anonymous namespace bool CandidateFinder::pruneCandidates( CandidateList & candidates, CandidateList & out, std::vector & errors ) { struct PruneStruct { CandidateRef candidate; bool ambiguous; PruneStruct() = default; PruneStruct( const CandidateRef & c ) : candidate( c ), ambiguous( false ) {} }; // find lowest-cost candidate for each type std::unordered_map< std::string, PruneStruct > selected; // attempt to skip satisfyAssertions on more expensive alternatives if better options have been found std::sort(candidates.begin(), candidates.end(), [](const CandidateRef & x, const CandidateRef & y){return x->cost < y->cost;}); for ( CandidateRef & candidate : candidates ) { std::string mangleName; { ast::ptr< ast::Type > newType = candidate->expr->result; assertf(candidate->expr->result, "Result of expression %p for candidate is null", candidate->expr.get()); candidate->env.apply( newType ); mangleName = Mangle::mangle( newType ); } auto found = selected.find( mangleName ); if (found != selected.end() && found->second.candidate->cost < candidate->cost) { PRINT( std::cerr << "cost " << candidate->cost << " loses to " << found->second.candidate->cost << std::endl; ) continue; } // xxx - when do satisfyAssertions produce more than 1 result? // this should only happen when initial result type contains // unbound type parameters, then it should never be pruned by // the previous step, since renameTyVars guarantees the mangled name // is unique. CandidateList satisfied; bool needRecomputeKey = false; if (candidate->need.empty()) { satisfied.emplace_back(candidate); } else { satisfyAssertions(candidate, context.symtab, satisfied, errors); needRecomputeKey = true; } for (auto & newCand : satisfied) { // recomputes type key, if satisfyAssertions changed it if (needRecomputeKey) { ast::ptr< ast::Type > newType = newCand->expr->result; assertf(newCand->expr->result, "Result of expression %p for candidate is null", newCand->expr.get()); newCand->env.apply( newType ); mangleName = Mangle::mangle( newType ); } auto found = selected.find( mangleName ); if ( found != selected.end() ) { // tiebreaking by picking the lower cost on CURRENT expression // NOTE: this behavior is different from C semantics. // Specific remediations are performed for C operators at postvisit(UntypedExpr). // Further investigations may take place. if ( newCand->cost < found->second.candidate->cost || (newCand->cost == found->second.candidate->cost && newCand->cvtCost < found->second.candidate->cvtCost) ) { PRINT( std::cerr << "cost " << newCand->cost << " beats " << found->second.candidate->cost << std::endl; ) found->second = PruneStruct{ newCand }; } else if ( newCand->cost == found->second.candidate->cost && newCand->cvtCost == found->second.candidate->cvtCost ) { // if one of the candidates contains a deleted identifier, can pick the other, // since deleted expressions should not be ambiguous if there is another option // that is at least as good if ( findDeletedExpr( newCand->expr ) ) { // do nothing PRINT( std::cerr << "candidate is deleted" << std::endl; ) } else if ( findDeletedExpr( found->second.candidate->expr ) ) { PRINT( std::cerr << "current is deleted" << std::endl; ) found->second = PruneStruct{ newCand }; } else { PRINT( std::cerr << "marking ambiguous" << std::endl; ) found->second.ambiguous = true; } } else { // xxx - can satisfyAssertions increase the cost? PRINT( std::cerr << "cost " << newCand->cost << " loses to " << found->second.candidate->cost << std::endl; ) } } else { selected.emplace_hint( found, mangleName, newCand ); } } } // report unambiguous min-cost candidates // CandidateList out; for ( auto & target : selected ) { if ( target.second.ambiguous ) continue; CandidateRef cand = target.second.candidate; ast::ptr< ast::Type > newResult = cand->expr->result; cand->env.applyFree( newResult ); cand->expr = ast::mutate_field( cand->expr.get(), &ast::Expr::result, std::move( newResult ) ); out.emplace_back( cand ); } // if everything is lost in satisfyAssertions, report the error return !selected.empty(); } void CandidateFinder::find( const ast::Expr * expr, ResolveMode mode ) { // Find alternatives for expression ast::Pass finder{ *this }; expr->accept( finder ); if ( mode.failFast && candidates.empty() ) { switch(finder.core.reason.code) { case Finder::NotFound: { SemanticError( expr, "No alternatives for expression " ); break; } case Finder::NoMatch: { SemanticError( expr, "Invalid application of existing declaration(s) in expression " ); break; } case Finder::ArgsToFew: case Finder::ArgsToMany: case Finder::RetsToFew: case Finder::RetsToMany: case Finder::NoReason: default: { SemanticError( expr->location, "No reasonable alternatives for expression : reasons unkown" ); } } } /* if ( mode.satisfyAssns || mode.prune ) { // trim candidates to just those where the assertions are satisfiable // - necessary pre-requisite to pruning CandidateList satisfied; std::vector< std::string > errors; for ( CandidateRef & candidate : candidates ) { satisfyAssertions( candidate, localSyms, satisfied, errors ); } // fail early if none such if ( mode.failFast && satisfied.empty() ) { std::ostringstream stream; stream << "No alternatives with satisfiable assertions for " << expr << "\n"; for ( const auto& err : errors ) { stream << err; } SemanticError( expr->location, stream.str() ); } // reset candidates candidates = move( satisfied ); } */ // optimization: don't prune for NameExpr since it never has cost if ( mode.prune && !dynamic_cast(expr) ) { // trim candidates to single best one PRINT( std::cerr << "alternatives before prune:" << std::endl; print( std::cerr, candidates ); ) CandidateList pruned; std::vector errors; bool found = pruneCandidates( candidates, pruned, errors ); if ( mode.failFast && pruned.empty() ) { std::ostringstream stream; if (found) { CandidateList winners = findMinCost( candidates ); stream << "Cannot choose between " << winners.size() << " alternatives for " "expression\n"; ast::print( stream, expr ); stream << " Alternatives are:\n"; print( stream, winners, 1 ); SemanticError( expr->location, stream.str() ); } else { stream << "No alternatives with satisfiable assertions for " << expr << "\n"; for ( const auto& err : errors ) { stream << err; } SemanticError( expr->location, stream.str() ); } } auto oldsize = candidates.size(); candidates = std::move( pruned ); PRINT( std::cerr << "there are " << oldsize << " alternatives before elimination" << std::endl; ) PRINT( std::cerr << "there are " << candidates.size() << " alternatives after elimination" << std::endl; ) } // adjust types after pruning so that types substituted by pruneAlternatives are correctly // adjusted if ( mode.adjust ) { for ( CandidateRef & r : candidates ) { r->expr = ast::mutate_field( r->expr.get(), &ast::Expr::result, adjustExprType( r->expr->result, r->env, context.symtab ) ); } } // Central location to handle gcc extension keyword, etc. for all expressions for ( CandidateRef & r : candidates ) { if ( r->expr->extension != expr->extension ) { r->expr.get_and_mutate()->extension = expr->extension; } } } std::vector< CandidateFinder > CandidateFinder::findSubExprs( const std::vector< ast::ptr< ast::Expr > > & xs ) { std::vector< CandidateFinder > out; for ( const auto & x : xs ) { out.emplace_back( context, env ); out.back().find( x, ResolveMode::withAdjustment() ); PRINT( std::cerr << "findSubExprs" << std::endl; print( std::cerr, out.back().candidates ); ) } return out; } const ast::Expr * referenceToRvalueConversion( const ast::Expr * expr, Cost & cost ) { if ( expr->result.as< ast::ReferenceType >() ) { // cast away reference from expr cost.incReference(); return new ast::CastExpr{ expr, expr->result->stripReferences() }; } return expr; } const ast::Expr * CandidateFinder::makeEnumOffsetCast( const ast::EnumInstType * src, const ast::EnumInstType * dst, const ast::Expr * expr, Cost minCost ) { auto srcDecl = src->base; auto dstDecl = dst->base; if (srcDecl->name == dstDecl->name) return expr; for (auto& dstChild: dstDecl->inlinedDecl) { Cost c = castCost(src, dstChild, false, context.symtab, env); ast::CastExpr * castToDst; if (ccalChildOffset(dstChild.get()); if (offset > 0) { auto untyped = ast::UntypedExpr::createCall( expr->location, "?+?", { new ast::CastExpr( expr->location, expr, new ast::BasicType(ast::BasicKind::SignedInt), ast::GeneratedFlag::ExplicitCast ), ast::ConstantExpr::from_int(expr->location, offset)} ); CandidateFinder finder(context, env); finder.find( untyped ); CandidateList winners = findMinCost( finder.candidates ); CandidateRef & choice = winners.front(); choice->expr = new ast::CastExpr(expr->location, choice->expr, dstChild, ast::GeneratedFlag::ExplicitCast); auto destExpr = makeEnumOffsetCast( src, dstChild, choice->expr, minCost ); if ( !destExpr ) continue; castToDst = new ast::CastExpr( destExpr, dst ); } else { castToDst = new ast::CastExpr( expr, dst ); } return castToDst; } } return nullptr; } Cost computeConversionCost( const ast::Type * argType, const ast::Type * paramType, bool argIsLvalue, const ast::SymbolTable & symtab, const ast::TypeEnvironment & env ) { PRINT( std::cerr << std::endl << "converting "; ast::print( std::cerr, argType, 2 ); std::cerr << std::endl << " to "; ast::print( std::cerr, paramType, 2 ); std::cerr << std::endl << "environment is: "; ast::print( std::cerr, env, 2 ); std::cerr << std::endl; ) Cost convCost = conversionCost( argType, paramType, argIsLvalue, symtab, env ); PRINT( std::cerr << std::endl << "cost is " << convCost << std::endl; ) if ( convCost == Cost::infinity ) return convCost; convCost.incPoly( polyCost( paramType, symtab, env ) + polyCost( argType, symtab, env ) ); PRINT( std::cerr << "cost with polycost is " << convCost << std::endl; ) return convCost; } const ast::Expr * createCondExpr( const ast::Expr * expr ) { assert( expr ); return new ast::CastExpr( expr->location, ast::UntypedExpr::createCall( expr->location, "?!=?", { expr, new ast::ConstantExpr( expr->location, new ast::ZeroType(), "0", std::make_optional( 0ull ) ), } ), new ast::BasicType( ast::BasicKind::SignedInt ) ); } } // namespace ResolvExpr // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //