// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // CandidateFinder.cpp -- // // Author : Aaron B. Moss // Created On : Wed Jun 5 14:30:00 2019 // Last Modified By : Aaron B. Moss // Last Modified On : Wed Jun 5 14:30:00 2019 // Update Count : 1 // #include "CandidateFinder.hpp" #include #include // for back_inserter #include #include #include #include #include "Candidate.hpp" #include "CompilationState.h" #include "Cost.h" #include "ExplodedArg.hpp" #include "Resolver.h" #include "SatisfyAssertions.hpp" #include "typeops.h" // for adjustExprType #include "Unify.h" #include "AST/Expr.hpp" #include "AST/Node.hpp" #include "AST/Pass.hpp" #include "AST/Print.hpp" #include "AST/SymbolTable.hpp" #include "AST/Type.hpp" #include "SymTab/Mangler.h" #include "Tuples/Tuples.h" // for handleTupleAssignment #define PRINT( text ) if ( resolvep ) { text } namespace ResolvExpr { namespace { /// First index is which argument, second is which alternative, third is which exploded element using ExplodedArgs_new = std::deque< std::vector< ExplodedArg > >; /// Returns a list of alternatives with the minimum cost in the given list CandidateList findMinCost( const CandidateList & candidates ) { CandidateList out; Cost minCost = Cost::infinity; for ( const CandidateRef & r : candidates ) { if ( r->cost < minCost ) { minCost = r->cost; out.clear(); out.emplace_back( r ); } else if ( r->cost == minCost ) { out.emplace_back( r ); } } return out; } /// Computes conversion cost for a given candidate Cost computeApplicationConversionCost( const CandidateRef & cand, const ast::SymbolTable & symtab ) { #warning unimplemented (void)cand; (void)symtab; assert(false); return Cost::infinity; } /// Actually visits expressions to find their candidate interpretations struct Finder final : public ast::WithShortCircuiting { CandidateFinder & selfFinder; const ast::SymbolTable & symtab; CandidateList & candidates; const ast::TypeEnvironment & tenv; ast::ptr< ast::Type > & targetType; Finder( CandidateFinder & f ) : selfFinder( f ), symtab( f.symtab ), candidates( f.candidates ), tenv( f.env ), targetType( f.targetType ) {} void previsit( const ast::Node * ) { visit_children = false; } /// Convenience to add candidate to list template void addCandidate( Args &&... args ) { candidates.emplace_back( new Candidate{ std::forward( args )... } ); } void postvisit( const ast::ApplicationExpr * applicationExpr ) { addCandidate( applicationExpr, tenv ); } /// Builds a list of candidates for a function, storing them in out void makeFunctionCandidates( const CandidateRef & func, const ast::FunctionType * funcType, const ExplodedArgs_new & args, CandidateList & out ) { #warning unimplemented (void)func; (void)funcType; (void)args; (void)out; assert(false); } /// Adds implicit struct-conversions to the alternative list void addAnonConversions( const CandidateRef & cand ) { #warning unimplemented (void)cand; assert(false); } void postvisit( const ast::UntypedExpr * untypedExpr ) { CandidateFinder funcFinder{ symtab, tenv }; funcFinder.find( untypedExpr->func, ResolvMode::withAdjustment() ); // short-circuit if no candidates if ( funcFinder.candidates.empty() ) return; std::vector< CandidateFinder > argCandidates = selfFinder.findSubExprs( untypedExpr->args ); // take care of possible tuple assignments // if not tuple assignment, handled as normal function call Tuples::handleTupleAssignment( selfFinder, untypedExpr, argCandidates ); // find function operators ast::ptr< ast::Expr > opExpr = new ast::NameExpr{ untypedExpr->location, "?()" }; CandidateFinder opFinder{ symtab, tenv }; // okay if there aren't any function operations opFinder.find( opExpr, ResolvMode::withoutFailFast() ); PRINT( std::cerr << "known function ops:" << std::endl; print( std::cerr, opFinder.candidates, 1 ); ) // pre-explode arguments ExplodedArgs_new argExpansions; for ( const CandidateFinder & args : argCandidates ) { argExpansions.emplace_back(); auto & argE = argExpansions.back(); for ( const CandidateRef & arg : args ) { argE.emplace_back( *arg, symtab ); } } // Find function matches CandidateList found; SemanticErrorException errors; for ( CandidateRef & func : funcFinder ) { try { PRINT( std::cerr << "working on alternative:" << std::endl; print( std::cerr, *func, 2 ); ) // check if the type is a pointer to function const ast::Type * funcResult = func->expr->result->stripReferences(); if ( auto pointer = dynamic_cast< const ast::PointerType * >( funcResult ) ) { if ( auto function = pointer->base.as< ast::FunctionType >() ) { CandidateRef newFunc{ new Candidate{ *func } }; newFunc->expr = referenceToRvalueConversion( newFunc->expr, newFunc->cost ); makeFunctionCandidates( newFunc, function, argExpansions, found ); } } else if ( auto inst = dynamic_cast< const ast::TypeInstType * >( funcResult ) ) { if ( const ast::EqvClass * clz = func->env.lookup( inst->name ) ) { if ( auto function = clz->bound.as< ast::FunctionType >() ) { CandidateRef newFunc{ new Candidate{ *func } }; newFunc->expr = referenceToRvalueConversion( newFunc->expr, newFunc->cost ); makeFunctionCandidates( newFunc, function, argExpansions, found ); } } } } catch ( SemanticErrorException & e ) { errors.append( e ); } } // Find matches on function operators `?()` if ( ! opFinder.candidates.empty() ) { // add exploded function alternatives to front of argument list std::vector< ExplodedArg > funcE; funcE.reserve( funcFinder.candidates.size() ); for ( const CandidateRef & func : funcFinder ) { funcE.emplace_back( *func, symtab ); } argExpansions.emplace_front( std::move( funcE ) ); for ( const CandidateRef & op : opFinder ) { try { // check if type is pointer-to-function const ast::Type * opResult = op->expr->result->stripReferences(); if ( auto pointer = dynamic_cast< const ast::PointerType * >( opResult ) ) { if ( auto function = pointer->base.as< ast::FunctionType >() ) { CandidateRef newOp{ new Candidate{ *op} }; newOp->expr = referenceToRvalueConversion( newOp->expr, newOp->cost ); makeFunctionCandidates( newOp, function, argExpansions, found ); } } } catch ( SemanticErrorException & e ) { errors.append( e ); } } } // Implement SFINAE; resolution errors are only errors if there aren't any non-error // candidates if ( found.empty() && ! errors.isEmpty() ) { throw errors; } // Compute conversion costs for ( CandidateRef & withFunc : found ) { Cost cvtCost = computeApplicationConversionCost( withFunc, symtab ); PRINT( auto appExpr = withFunc->expr.strict_as< ast::ApplicationExpr >(); auto pointer = appExpr->func->result.strict_as< ast::PointerType >(); auto function = pointer->base.strict_as< ast::FunctionType >(); std::cerr << "Case +++++++++++++ " << appExpr->func << std::endl; std::cerr << "parameters are:" << std::endl; ast::printAll( std::cerr, function->params, 2 ); std::cerr << "arguments are:" << std::endl; ast::printAll( std::cerr, appExpr->args, 2 ); std::cerr << "bindings are:" << std::endl; ast::print( std::cerr, withFunc->env, 2 ); std::cerr << "cost is: " << withFunc->cost << std::endl; std::cerr << "cost of conversion is:" << cvtCost << std::endl; ) if ( cvtCost != Cost::infinity ) { withFunc->cvtCost = cvtCost; candidates.emplace_back( std::move( withFunc ) ); } } found = std::move( candidates ); // use a new list so that candidates are not examined by addAnonConversions twice CandidateList winners = findMinCost( found ); promoteCvtCost( winners ); // function may return a struct/union value, in which case we need to add candidates // for implicit conversions to each of the anonymous members, which must happen after // `findMinCost`, since anon conversions are never the cheapest for ( const CandidateRef & c : winners ) { addAnonConversions( c ); } spliceBegin( candidates, winners ); if ( candidates.empty() && targetType && ! targetType->isVoid() ) { // If resolution is unsuccessful with a target type, try again without, since it // will sometimes succeed when it wouldn't with a target type binding. // For example: // forall( otype T ) T & ?[]( T *, ptrdiff_t ); // const char * x = "hello world"; // unsigned char ch = x[0]; // Fails with simple return type binding (xxx -- check this!) as follows: // * T is bound to unsigned char // * (x: const char *) is unified with unsigned char *, which fails // xxx -- fix this better targetType = nullptr; postvisit( untypedExpr ); } } /// true if expression is an lvalue static bool isLvalue( const ast::Expr * x ) { return x->result && ( x->result->is_lvalue() || x->result.as< ast::ReferenceType >() ); } void postvisit( const ast::AddressExpr * addressExpr ) { CandidateFinder finder{ symtab, tenv }; finder.find( addressExpr->arg ); for ( CandidateRef & r : finder.candidates ) { if ( ! isLvalue( r->expr ) ) continue; addCandidate( *r, new ast::AddressExpr{ addressExpr->location, r->expr } ); } } void postvisit( const ast::LabelAddressExpr * labelExpr ) { addCandidate( labelExpr, tenv ); } void postvisit( const ast::CastExpr * castExpr ) { #warning unimplemented (void)castExpr; assert(false); } void postvisit( const ast::VirtualCastExpr * castExpr ) { assertf( castExpr->result, "Implicit virtual cast targets not yet supported." ); CandidateFinder finder{ symtab, tenv }; // don't prune here, all alternatives guaranteed to have same type finder.find( castExpr->arg, ResolvMode::withoutPrune() ); for ( CandidateRef & r : finder.candidates ) { addCandidate( *r, new ast::VirtualCastExpr{ castExpr->location, r->expr, castExpr->result } ); } } void postvisit( const ast::UntypedMemberExpr * memberExpr ) { #warning unimplemented (void)memberExpr; assert(false); } void postvisit( const ast::MemberExpr * memberExpr ) { addCandidate( memberExpr, tenv ); } void postvisit( const ast::NameExpr * variableExpr ) { #warning unimplemented (void)variableExpr; assert(false); } void postvisit( const ast::VariableExpr * variableExpr ) { // not sufficient to just pass `variableExpr` here, type might have changed since // creation addCandidate( new ast::VariableExpr{ variableExpr->location, variableExpr->var }, tenv ); } void postvisit( const ast::ConstantExpr * constantExpr ) { addCandidate( constantExpr, tenv ); } void postvisit( const ast::SizeofExpr * sizeofExpr ) { #warning unimplemented (void)sizeofExpr; assert(false); } void postvisit( const ast::AlignofExpr * alignofExpr ) { #warning unimplemented (void)alignofExpr; assert(false); } void postvisit( const ast::UntypedOffsetofExpr * offsetofExpr ) { #warning unimplemented (void)offsetofExpr; assert(false); } void postvisit( const ast::OffsetofExpr * offsetofExpr ) { addCandidate( offsetofExpr, tenv ); } void postvisit( const ast::OffsetPackExpr * offsetPackExpr ) { addCandidate( offsetPackExpr, tenv ); } void postvisit( const ast::LogicalExpr * logicalExpr ) { CandidateFinder finder1{ symtab, tenv }; finder1.find( logicalExpr->arg1, ResolvMode::withAdjustment() ); if ( finder1.candidates.empty() ) return; CandidateFinder finder2{ symtab, tenv }; finder2.find( logicalExpr->arg2, ResolvMode::withAdjustment() ); if ( finder2.candidates.empty() ) return; for ( const CandidateRef & r1 : finder1.candidates ) { for ( const CandidateRef & r2 : finder2.candidates ) { ast::TypeEnvironment env{ r1->env }; env.simpleCombine( r2->env ); ast::OpenVarSet open{ r1->open }; mergeOpenVars( open, r2->open ); ast::AssertionSet need; mergeAssertionSet( need, r1->need ); mergeAssertionSet( need, r2->need ); addCandidate( new ast::LogicalExpr{ logicalExpr->location, r1->expr, r2->expr, logicalExpr->isAnd }, std::move( env ), std::move( open ), std::move( need ), r1->cost + r2->cost ); } } } void postvisit( const ast::ConditionalExpr * conditionalExpr ) { // candidates for condition CandidateFinder finder1{ symtab, tenv }; finder1.find( conditionalExpr->arg1, ResolvMode::withAdjustment() ); if ( finder1.candidates.empty() ) return; // candidates for true result CandidateFinder finder2{ symtab, tenv }; finder2.find( conditionalExpr->arg2, ResolvMode::withAdjustment() ); if ( finder2.candidates.empty() ) return; // candidates for false result CandidateFinder finder3{ symtab, tenv }; finder3.find( conditionalExpr->arg3, ResolvMode::withAdjustment() ); if ( finder3.candidates.empty() ) return; for ( const CandidateRef & r1 : finder1.candidates ) { for ( const CandidateRef & r2 : finder2.candidates ) { for ( const CandidateRef & r3 : finder3.candidates ) { ast::TypeEnvironment env{ r1->env }; env.simpleCombine( r2->env ); env.simpleCombine( r3->env ); ast::OpenVarSet open{ r1->open }; mergeOpenVars( open, r2->open ); mergeOpenVars( open, r3->open ); ast::AssertionSet need; mergeAssertionSet( need, r1->need ); mergeAssertionSet( need, r2->need ); mergeAssertionSet( need, r3->need ); ast::AssertionSet have; // unify true and false results, then infer parameters to produce new // candidates ast::ptr< ast::Type > common; if ( unify( r2->expr->result, r3->expr->result, env, need, have, open, symtab, common ) ) { #warning unimplemented assert(false); } } } } } void postvisit( const ast::CommaExpr * commaExpr ) { ast::TypeEnvironment env{ tenv }; ast::ptr< ast::Expr > arg1 = resolveInVoidContext( commaExpr->arg1, symtab, env ); CandidateFinder finder2{ symtab, env }; finder2.find( commaExpr->arg2, ResolvMode::withAdjustment() ); for ( const CandidateRef & r2 : finder2.candidates ) { addCandidate( *r2, new ast::CommaExpr{ commaExpr->location, arg1, r2->expr } ); } } void postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr ) { addCandidate( ctorExpr, tenv ); } void postvisit( const ast::ConstructorExpr * ctorExpr ) { CandidateFinder finder{ symtab, tenv }; finder.find( ctorExpr->callExpr, ResolvMode::withoutPrune() ); for ( CandidateRef & r : finder.candidates ) { addCandidate( *r, new ast::ConstructorExpr{ ctorExpr->location, r->expr } ); } } void postvisit( const ast::RangeExpr * rangeExpr ) { // resolve low and high, accept candidates where low and high types unify CandidateFinder finder1{ symtab, tenv }; finder1.find( rangeExpr->low, ResolvMode::withAdjustment() ); if ( finder1.candidates.empty() ) return; CandidateFinder finder2{ symtab, tenv }; finder2.find( rangeExpr->high, ResolvMode::withAdjustment() ); if ( finder2.candidates.empty() ) return; for ( const CandidateRef & r1 : finder1.candidates ) { for ( const CandidateRef & r2 : finder2.candidates ) { ast::TypeEnvironment env{ r1->env }; env.simpleCombine( r2->env ); ast::OpenVarSet open{ r1->open }; mergeOpenVars( open, r2->open ); ast::AssertionSet need; mergeAssertionSet( need, r1->need ); mergeAssertionSet( need, r2->need ); ast::AssertionSet have; ast::ptr< ast::Type > common; if ( unify( r1->expr->result, r2->expr->result, env, need, have, open, symtab, common ) ) { ast::RangeExpr * newExpr = new ast::RangeExpr{ rangeExpr->location, r1->expr, r2->expr }; newExpr->result = common ? common : r1->expr->result; #warning unimplemented assert(false); } } } } void postvisit( const ast::UntypedTupleExpr * tupleExpr ) { std::vector< CandidateFinder > subCandidates = selfFinder.findSubExprs( tupleExpr->exprs ); std::vector< CandidateList > possibilities; combos( subCandidates.begin(), subCandidates.end(), back_inserter( possibilities ) ); for ( const CandidateList & subs : possibilities ) { std::vector< ast::ptr< ast::Expr > > exprs; exprs.reserve( subs.size() ); for ( const CandidateRef & sub : subs ) { exprs.emplace_back( sub->expr ); } ast::TypeEnvironment env; ast::OpenVarSet open; ast::AssertionSet need; for ( const CandidateRef & sub : subs ) { env.simpleCombine( sub->env ); mergeOpenVars( open, sub->open ); mergeAssertionSet( need, sub->need ); } addCandidate( new ast::TupleExpr{ tupleExpr->location, std::move( exprs ) }, std::move( env ), std::move( open ), std::move( need ), sumCost( subs ) ); } } void postvisit( const ast::TupleExpr * tupleExpr ) { addCandidate( tupleExpr, tenv ); } void postvisit( const ast::TupleIndexExpr * tupleExpr ) { addCandidate( tupleExpr, tenv ); } void postvisit( const ast::TupleAssignExpr * tupleExpr ) { addCandidate( tupleExpr, tenv ); } void postvisit( const ast::UniqueExpr * unqExpr ) { CandidateFinder finder{ symtab, tenv }; finder.find( unqExpr->expr, ResolvMode::withAdjustment() ); for ( CandidateRef & r : finder.candidates ) { // ensure that the the id is passed on so that the expressions are "linked" addCandidate( *r, new ast::UniqueExpr{ unqExpr->location, r->expr, unqExpr->id } ); } } void postvisit( const ast::StmtExpr * stmtExpr ) { #warning unimplemented (void)stmtExpr; assert(false); } void postvisit( const ast::UntypedInitExpr * initExpr ) { #warning unimplemented (void)initExpr; assert(false); } void postvisit( const ast::InitExpr * ) { assertf( false, "CandidateFinder should never see a resolved InitExpr." ); } void postvisit( const ast::DeletedExpr * ) { assertf( false, "CandidateFinder should never see a DeletedExpr." ); } void postvisit( const ast::GenericExpr * ) { assertf( false, "_Generic is not yet supported." ); } }; /// Prunes a list of candidates down to those that have the minimum conversion cost for a given /// return type. Skips ambiguous candidates. CandidateList pruneCandidates( CandidateList & candidates ) { struct PruneStruct { CandidateRef candidate; bool ambiguous; PruneStruct() = default; PruneStruct( const CandidateRef & c ) : candidate( c ), ambiguous( false ) {} }; // find lowest-cost candidate for each type std::unordered_map< std::string, PruneStruct > selected; for ( CandidateRef & candidate : candidates ) { std::string mangleName; { ast::ptr< ast::Type > newType = candidate->expr->result; candidate->env.apply( newType ); mangleName = Mangle::mangle( newType ); } auto found = selected.find( mangleName ); if ( found != selected.end() ) { if ( candidate->cost < found->second.candidate->cost ) { PRINT( std::cerr << "cost " << candidate->cost << " beats " << found->second.candidate->cost << std::endl; ) found->second = PruneStruct{ candidate }; } else if ( candidate->cost == found->second.candidate->cost ) { // if one of the candidates contains a deleted identifier, can pick the other, // since deleted expressions should not be ambiguous if there is another option // that is at least as good if ( findDeletedExpr( candidate->expr ) ) { // do nothing PRINT( std::cerr << "candidate is deleted" << std::endl; ) } else if ( findDeletedExpr( found->second.candidate->expr ) ) { PRINT( std::cerr << "current is deleted" << std::endl; ) found->second = PruneStruct{ candidate }; } else { PRINT( std::cerr << "marking ambiguous" << std::endl; ) found->second.ambiguous = true; } } else { PRINT( std::cerr << "cost " << candidate->cost << " loses to " << found->second.candidate->cost << std::endl; ) } } else { selected.emplace_hint( found, mangleName, candidate ); } } // report unambiguous min-cost candidates CandidateList out; for ( auto & target : selected ) { if ( target.second.ambiguous ) continue; CandidateRef cand = target.second.candidate; ast::ptr< ast::Type > newResult = cand->expr->result; cand->env.applyFree( newResult ); cand->expr = ast::mutate_field( cand->expr.get(), &ast::Expr::result, std::move( newResult ) ); out.emplace_back( cand ); } return out; } } // anonymous namespace void CandidateFinder::find( const ast::Expr * expr, ResolvMode mode ) { // Find alternatives for expression ast::Pass finder{ *this }; expr->accept( finder ); if ( mode.failFast && candidates.empty() ) { SemanticError( expr, "No reasonable alternatives for expression " ); } if ( mode.satisfyAssns || mode.prune ) { // trim candidates to just those where the assertions are satisfiable // - necessary pre-requisite to pruning CandidateList satisfied; std::vector< std::string > errors; for ( auto & candidate : candidates ) { satisfyAssertions( *candidate, symtab, satisfied, errors ); } // fail early if none such if ( mode.failFast && satisfied.empty() ) { std::ostringstream stream; stream << "No alternatives with satisfiable assertions for " << expr << "\n"; for ( const auto& err : errors ) { stream << err; } SemanticError( expr->location, stream.str() ); } // reset candidates candidates = std::move( satisfied ); } if ( mode.prune ) { // trim candidates to single best one PRINT( std::cerr << "alternatives before prune:" << std::endl; print( std::cerr, candidates ); ) CandidateList pruned = pruneCandidates( candidates ); if ( mode.failFast && pruned.empty() ) { std::ostringstream stream; CandidateList winners = findMinCost( candidates ); stream << "Cannot choose between " << winners.size() << " alternatives for " "expression\n"; ast::print( stream, expr ); stream << " Alternatives are:\n"; print( stream, winners, 1 ); SemanticError( expr->location, stream.str() ); } auto oldsize = candidates.size(); candidates = std::move( pruned ); PRINT( std::cerr << "there are " << oldsize << " alternatives before elimination" << std::endl; ) PRINT( std::cerr << "there are " << candidates.size() << " alternatives after elimination" << std::endl; ) } // adjust types after pruning so that types substituted by pruneAlternatives are correctly // adjusted if ( mode.adjust ) { for ( CandidateRef & r : candidates ) { r->expr = ast::mutate_field( r->expr.get(), &ast::Expr::result, adjustExprType( r->expr->result, r->env, symtab ) ); } } // Central location to handle gcc extension keyword, etc. for all expressions for ( CandidateRef & r : candidates ) { if ( r->expr->extension != expr->extension ) { r->expr.get_and_mutate()->extension = expr->extension; } } } std::vector< CandidateFinder > CandidateFinder::findSubExprs( const std::vector< ast::ptr< ast::Expr > > & xs ) { std::vector< CandidateFinder > out; for ( const auto & x : xs ) { out.emplace_back( symtab, env ); out.back().find( x, ResolvMode::withAdjustment() ); PRINT( std::cerr << "findSubExprs" << std::endl; print( std::cerr, out.back().candidates ); ) } return out; } } // namespace ResolvExpr // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //