// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // StatementNode.cc -- Transform from parse data-structures to AST data-structures, usually deleting the parse // data-structure after the transformation. // // Author : Rodolfo G. Esteves // Created On : Sat May 16 14:59:41 2015 // Last Modified By : Peter A. Buhr // Last Modified On : Wed Feb 2 20:29:30 2022 // Update Count : 425 // #include // for assert, strict_dynamic_cast, assertf #include // for list #include // for unique_ptr #include // for string #include "Common/SemanticError.h" // for SemanticError #include "Common/utility.h" // for maybeMoveBuild, maybeBuild #include "ParseNode.h" // for StatementNode, ExpressionNode, bui... #include "SynTree/Expression.h" // for Expression, ConstantExpr #include "SynTree/Label.h" // for Label, noLabels #include "SynTree/Declaration.h" #include "SynTree/Statement.h" // for Statement, BranchStmt, CaseStmt #include "parserutility.h" // for notZeroExpr class Declaration; using namespace std; StatementNode::StatementNode( DeclarationNode * decl ) { assert( decl ); DeclarationNode * agg = decl->extractAggregate(); if ( agg ) { StatementNode * nextStmt = new StatementNode( new DeclStmt( maybeBuild< Declaration >( decl ) ) ); set_next( nextStmt ); if ( decl->get_next() ) { get_next()->set_next( new StatementNode( dynamic_cast< DeclarationNode * >(decl->get_next()) ) ); decl->set_next( 0 ); } // if } else { if ( decl->get_next() ) { set_next( new StatementNode( dynamic_cast< DeclarationNode * >( decl->get_next() ) ) ); decl->set_next( 0 ); } // if agg = decl; } // if stmt.reset( new DeclStmt( maybeMoveBuild< Declaration >(agg) ) ); } // StatementNode::StatementNode StatementNode * StatementNode::append_last_case( StatementNode * stmt ) { StatementNode * prev = this; // find end of list and maintain previous pointer for ( StatementNode * curr = prev; curr != nullptr; curr = (StatementNode *)curr->get_next() ) { StatementNode * node = strict_dynamic_cast< StatementNode * >(curr); assert( dynamic_cast< CaseStmt * >(node->stmt.get()) ); prev = curr; } // for // convert from StatementNode list to Statement list StatementNode * node = dynamic_cast< StatementNode * >(prev); list< Statement * > stmts; buildMoveList( stmt, stmts ); // splice any new Statements to end of current Statements CaseStmt * caseStmt = dynamic_cast< CaseStmt * >(node->stmt.get()); caseStmt->get_statements().splice( caseStmt->get_statements().end(), stmts ); return this; } // StatementNode::append_last_case Statement * build_expr( ExpressionNode * ctl ) { Expression * e = maybeMoveBuild< Expression >( ctl ); if ( e ) return new ExprStmt( e ); else return new NullStmt(); } // build_expr Expression * build_if_control( CondCtl * ctl, list< Statement * > & init ) { if ( ctl->init != 0 ) { buildMoveList( ctl->init, init ); } // if Expression * cond = nullptr; if ( ctl->condition ) { // compare the provided condition against 0 cond = notZeroExpr( maybeMoveBuild< Expression >(ctl->condition) ); } else { for ( Statement * stmt : init ) { // build the && of all of the declared variables compared against 0 DeclStmt * declStmt = strict_dynamic_cast< DeclStmt * >( stmt ); DeclarationWithType * dwt = strict_dynamic_cast< DeclarationWithType * >( declStmt->decl ); Expression * nze = notZeroExpr( new VariableExpr( dwt ) ); cond = cond ? new LogicalExpr( cond, nze, true ) : nze; } } delete ctl; return cond; } // build_if_control Statement * build_if( CondCtl * ctl, StatementNode * then, StatementNode * else_ ) { list< Statement * > astinit; // maybe empty Expression * astcond = build_if_control( ctl, astinit ); // ctl deleted, cond/init set Statement * astthen, * astelse = nullptr; list< Statement * > aststmt; buildMoveList< Statement, StatementNode >( then, aststmt ); assert( aststmt.size() == 1 ); astthen = aststmt.front(); if ( else_ ) { list< Statement * > aststmt; buildMoveList< Statement, StatementNode >( else_, aststmt ); assert( aststmt.size() == 1 ); astelse = aststmt.front(); } // if return new IfStmt( astcond, astthen, astelse, astinit ); } // build_if Statement * build_switch( bool isSwitch, ExpressionNode * ctl, StatementNode * stmt ) { list< Statement * > aststmt; buildMoveList< Statement, StatementNode >( stmt, aststmt ); if ( ! isSwitch ) { // choose statement for ( Statement * stmt : aststmt ) { CaseStmt * caseStmt = strict_dynamic_cast< CaseStmt * >( stmt ); if ( ! caseStmt->stmts.empty() ) { // code after "case" => end of case list CompoundStmt * block = strict_dynamic_cast< CompoundStmt * >( caseStmt->stmts.front() ); block->kids.push_back( new BranchStmt( "", BranchStmt::Break ) ); } // if } // for } // if // aststmt.size() == 0 for switch (...) {}, i.e., no declaration or statements return new SwitchStmt( maybeMoveBuild< Expression >(ctl), aststmt ); } // build_switch Statement * build_case( ExpressionNode * ctl ) { return new CaseStmt( maybeMoveBuild< Expression >(ctl), {} ); // stmt starts empty and then added to } // build_case Statement * build_default() { return new CaseStmt( nullptr, {}, true ); // stmt starts empty and then added to } // build_default Statement * build_while( CondCtl * ctl, StatementNode * stmt, StatementNode * else_ ) { list< Statement * > astinit; // maybe empty Expression * astcond = build_if_control( ctl, astinit ); // ctl deleted, cond/init set list< Statement * > aststmt; // loop body, compound created if empty buildMoveList< Statement, StatementNode >( stmt, aststmt ); assert( aststmt.size() == 1 ); list< Statement * > astelse; // else clause, maybe empty buildMoveList< Statement, StatementNode >( else_, astelse ); return new WhileDoStmt( astcond, aststmt.front(), astelse.front(), astinit, false ); } // build_while Statement * build_do_while( ExpressionNode * ctl, StatementNode * stmt, StatementNode * else_ ) { list< Statement * > aststmt; // loop body, compound created if empty buildMoveList< Statement, StatementNode >( stmt, aststmt ); assert( aststmt.size() == 1 ); // compound created if empty list< Statement * > astelse; // else clause, maybe empty buildMoveList< Statement, StatementNode >( else_, astelse ); // do-while cannot have declarations in the contitional, so init is always empty return new WhileDoStmt( notZeroExpr( maybeMoveBuild< Expression >(ctl) ), aststmt.front(), astelse.front(), {}, true ); } // build_do_while Statement * build_for( ForCtrl * forctl, StatementNode * stmt, StatementNode * else_ ) { list< Statement * > astinit; // maybe empty buildMoveList( forctl->init, astinit ); Expression * astcond = nullptr; // maybe empty astcond = notZeroExpr( maybeMoveBuild< Expression >(forctl->condition) ); Expression * astincr = nullptr; // maybe empty astincr = maybeMoveBuild< Expression >(forctl->change); delete forctl; list< Statement * > aststmt; // loop body, compound created if empty buildMoveList< Statement, StatementNode >( stmt, aststmt ); assert( aststmt.size() == 1 ); list< Statement * > astelse; // else clause, maybe empty buildMoveList< Statement, StatementNode >( else_, astelse ); return new ForStmt( astinit, astcond, astincr, aststmt.front(), astelse.front() ); } // build_for Statement * build_branch( BranchStmt::Type kind ) { Statement * ret = new BranchStmt( "", kind ); return ret; } // build_branch Statement * build_branch( string * identifier, BranchStmt::Type kind ) { Statement * ret = new BranchStmt( * identifier, kind ); delete identifier; // allocated by lexer return ret; } // build_branch Statement * build_computedgoto( ExpressionNode * ctl ) { return new BranchStmt( maybeMoveBuild< Expression >(ctl), BranchStmt::Goto ); } // build_computedgoto Statement * build_return( ExpressionNode * ctl ) { list< Expression * > exps; buildMoveList( ctl, exps ); return new ReturnStmt( exps.size() > 0 ? exps.back() : nullptr ); } // build_return Statement * build_throw( ExpressionNode * ctl ) { list< Expression * > exps; buildMoveList( ctl, exps ); assertf( exps.size() < 2, "CFA internal error: leaking memory" ); return new ThrowStmt( ThrowStmt::Terminate, !exps.empty() ? exps.back() : nullptr ); } // build_throw Statement * build_resume( ExpressionNode * ctl ) { list< Expression * > exps; buildMoveList( ctl, exps ); assertf( exps.size() < 2, "CFA internal error: leaking memory" ); return new ThrowStmt( ThrowStmt::Resume, !exps.empty() ? exps.back() : nullptr ); } // build_resume Statement * build_resume_at( ExpressionNode * ctl, ExpressionNode * target ) { (void)ctl; (void)target; assertf( false, "resume at (non-local throw) is not yet supported," ); } // build_resume_at Statement * build_try( StatementNode * try_, StatementNode * catch_, StatementNode * finally_ ) { list< CatchStmt * > aststmt; buildMoveList< CatchStmt, StatementNode >( catch_, aststmt ); CompoundStmt * tryBlock = strict_dynamic_cast< CompoundStmt * >(maybeMoveBuild< Statement >(try_)); FinallyStmt * finallyBlock = dynamic_cast< FinallyStmt * >(maybeMoveBuild< Statement >(finally_) ); return new TryStmt( tryBlock, aststmt, finallyBlock ); } // build_try Statement * build_catch( CatchStmt::Kind kind, DeclarationNode * decl, ExpressionNode * cond, StatementNode * body ) { list< Statement * > aststmt; buildMoveList< Statement, StatementNode >( body, aststmt ); assert( aststmt.size() == 1 ); return new CatchStmt( kind, maybeMoveBuild< Declaration >(decl), maybeMoveBuild< Expression >(cond), aststmt.front() ); } // build_catch Statement * build_finally( StatementNode * stmt ) { list< Statement * > aststmt; buildMoveList< Statement, StatementNode >( stmt, aststmt ); assert( aststmt.size() == 1 ); return new FinallyStmt( dynamic_cast< CompoundStmt * >( aststmt.front() ) ); } // build_finally SuspendStmt * build_suspend( StatementNode * then, SuspendStmt::Type type ) { auto node = new SuspendStmt(); node->type = type; list< Statement * > stmts; buildMoveList< Statement, StatementNode >( then, stmts ); if(!stmts.empty()) { assert( stmts.size() == 1 ); node->then = dynamic_cast< CompoundStmt * >( stmts.front() ); } return node; } WaitForStmt * build_waitfor( ExpressionNode * targetExpr, StatementNode * stmt, ExpressionNode * when ) { auto node = new WaitForStmt(); WaitForStmt::Target target; target.function = maybeBuild( targetExpr ); ExpressionNode * next = dynamic_cast( targetExpr->get_next() ); targetExpr->set_next( nullptr ); buildMoveList< Expression >( next, target.arguments ); delete targetExpr; node->clauses.push_back( WaitForStmt::Clause{ target, maybeMoveBuild( stmt ), notZeroExpr( maybeMoveBuild( when ) ) }); return node; } // build_waitfor WaitForStmt * build_waitfor( ExpressionNode * targetExpr, StatementNode * stmt, ExpressionNode * when, WaitForStmt * node ) { WaitForStmt::Target target; target.function = maybeBuild( targetExpr ); ExpressionNode * next = dynamic_cast( targetExpr->get_next() ); targetExpr->set_next( nullptr ); buildMoveList< Expression >( next, target.arguments ); delete targetExpr; node->clauses.insert( node->clauses.begin(), WaitForStmt::Clause{ std::move( target ), maybeMoveBuild( stmt ), notZeroExpr( maybeMoveBuild( when ) ) }); return node; } // build_waitfor WaitForStmt * build_waitfor_timeout( ExpressionNode * timeout, StatementNode * stmt, ExpressionNode * when ) { auto node = new WaitForStmt(); if( timeout ) { node->timeout.time = maybeMoveBuild( timeout ); node->timeout.statement = maybeMoveBuild( stmt ); node->timeout.condition = notZeroExpr( maybeMoveBuild( when ) ); } else { node->orelse.statement = maybeMoveBuild( stmt ); node->orelse.condition = notZeroExpr( maybeMoveBuild( when ) ); } // if return node; } // build_waitfor_timeout WaitForStmt * build_waitfor_timeout( ExpressionNode * timeout, StatementNode * stmt, ExpressionNode * when, StatementNode * else_, ExpressionNode * else_when ) { auto node = new WaitForStmt(); node->timeout.time = maybeMoveBuild( timeout ); node->timeout.statement = maybeMoveBuild( stmt ); node->timeout.condition = notZeroExpr( maybeMoveBuild( when ) ); node->orelse.statement = maybeMoveBuild( else_ ); node->orelse.condition = notZeroExpr( maybeMoveBuild( else_when ) ); return node; } // build_waitfor_timeout Statement * build_with( ExpressionNode * exprs, StatementNode * stmt ) { list< Expression * > e; buildMoveList( exprs, e ); Statement * s = maybeMoveBuild( stmt ); return new DeclStmt( new WithStmt( e, s ) ); } // build_with Statement * build_compound( StatementNode * first ) { CompoundStmt * cs = new CompoundStmt(); buildMoveList( first, cs->get_kids() ); return cs; } // build_compound // A single statement in a control structure is always converted to a compound statement so subsequent generated code // can be placed within this compound statement. Otherwise, code generation has to constantly check for a single // statement and wrap it into a compound statement to insert additional code. Hence, all control structures have a // conical form for code generation. StatementNode * maybe_build_compound( StatementNode * first ) { // Optimization: if the control-structure statement is a compound statement, do not wrap it. // e.g., if (...) {...} do not wrap the existing compound statement. if ( ! dynamic_cast( first->stmt.get() ) ) { // unique_ptr CompoundStmt * cs = new CompoundStmt(); buildMoveList( first, cs->get_kids() ); return new StatementNode( cs ); } // if return first; } // maybe_build_compound // Question Statement * build_asm( bool voltile, Expression * instruction, ExpressionNode * output, ExpressionNode * input, ExpressionNode * clobber, LabelNode * gotolabels ) { list< Expression * > out, in; list< ConstantExpr * > clob; buildMoveList( output, out ); buildMoveList( input, in ); buildMoveList( clobber, clob ); return new AsmStmt( voltile, instruction, out, in, clob, gotolabels ? gotolabels->labels : noLabels ); } // build_asm Statement * build_directive( string * directive ) { return new DirectiveStmt( *directive ); } // build_directive Statement * build_mutex( ExpressionNode * exprs, StatementNode * stmt ) { list< Expression * > expList; buildMoveList( exprs, expList ); Statement * body = maybeMoveBuild( stmt ); return new MutexStmt( body, expList ); } // build_mutex // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //