// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // ExpressionNode.cc -- // // Author : Peter A. Buhr // Created On : Sat May 16 13:17:07 2015 // Last Modified By : Peter A. Buhr // Last Modified On : Wed Feb 13 18:07:38 2019 // Update Count : 902 // #include // for assert #include // for sscanf, size_t #include // for LLONG_MAX, LONG_MAX, INT_MAX, UINT... #include // for list #include // for basic_istream::operator>>, basic_i... #include // for string, operator+, operator== #include "Common/SemanticError.h" // for SemanticError #include "Common/utility.h" // for maybeMoveBuild, maybeBuild, CodeLo... #include "ParseNode.h" // for ExpressionNode, maybeMoveBuildType #include "SynTree/Constant.h" // for Constant #include "SynTree/Declaration.h" // for EnumDecl, StructDecl, UnionDecl #include "SynTree/Expression.h" // for Expression, ConstantExpr, NameExpr #include "SynTree/Statement.h" // for CompoundStmt, Statement #include "SynTree/Type.h" // for BasicType, Type, Type::Qualifiers #include "parserutility.h" // for notZeroExpr class Initializer; using namespace std; //############################################################################## // Difficult to separate extra parts of constants during lexing because actions are not allow in the middle of patterns: // // prefix action constant action suffix // // Alternatively, breaking a pattern using BEGIN does not work if the following pattern can be empty: // // constant BEGIN CONT ... // (...)? BEGIN 0 ... // possible empty suffix // // because the CONT rule is NOT triggered if the pattern is empty. Hence, constants are reparsed here to determine their // type. extern const Type::Qualifiers noQualifiers; // no qualifiers on constants // static inline bool checkH( char c ) { return c == 'h' || c == 'H'; } // static inline bool checkZ( char c ) { return c == 'z' || c == 'Z'; } // static inline bool checkU( char c ) { return c == 'u' || c == 'U'; } static inline bool checkF( char c ) { return c == 'f' || c == 'F'; } static inline bool checkD( char c ) { return c == 'd' || c == 'D'; } static inline bool checkF80( char c ) { return c == 'w' || c == 'W'; } static inline bool checkL( char c ) { return c == 'l' || c == 'L'; } static inline bool checkF128( char c ) { return c == 'q' || c == 'Q'; } static inline bool checkI( char c ) { return c == 'i' || c == 'I'; } static inline bool checkB( char c ) { return c == 'b' || c == 'B'; } static inline bool checkX( char c ) { return c == 'x' || c == 'X'; } Expression * build_constantInteger( string & str ) { static const BasicType::Kind kind[2][6] = { // short (h) must be before char (hh) because shorter type has the longer suffix { BasicType::ShortSignedInt, BasicType::SignedChar, BasicType::SignedInt, BasicType::LongSignedInt, BasicType::LongLongSignedInt, BasicType::SignedInt128, }, { BasicType::ShortUnsignedInt, BasicType::UnsignedChar, BasicType::UnsignedInt, BasicType::LongUnsignedInt, BasicType::LongLongUnsignedInt, BasicType::UnsignedInt128, }, }; static const char * lnthsInt[2][5] = { { "int16_t", "int8_t", "int32_t", "int64_t", "size_t", }, { "uint16_t", "uint8_t", "uint32_t", "uint64_t", "size_t", }, }; // lnthsInt bool dec = true, Unsigned = false; // decimal, unsigned constant int type = -1; // 0 => short, 1 => char, 2 => int, 3 => long int, 4 => long long int, 5 => int128 int ltype = -1; // literal length unsigned long long int v; // converted integral value size_t last = str.length() - 1; // last subscript of constant Expression * ret; // special constants if ( str == "0" ) { ret = new ConstantExpr( Constant( (Type *)new ZeroType( noQualifiers ), str, (unsigned long long int)0 ) ); goto CLEANUP; } // if if ( str == "1" ) { ret = new ConstantExpr( Constant( (Type *)new OneType( noQualifiers ), str, (unsigned long long int)1 ) ); goto CLEANUP; } // if // Cannot be "0" if ( str[0] == '0' ) { // radix character ? dec = false; if ( checkX( str[1] ) ) { // hex constant ? sscanf( (char *)str.c_str(), "%llx", &v ); //printf( "%llx %llu\n", v, v ); } else if ( checkB( str[1] ) ) { // binary constant ? v = 0; // compute value for ( unsigned int i = 2;; ) { if ( str[i] == '1' ) v |= 1; i += 1; if ( i == last - 1 || (str[i] != '0' && str[i] != '1') ) break; v <<= 1; } // for //printf( "%#llx %llu\n", v, v ); } else { // octal constant sscanf( (char *)str.c_str(), "%llo", &v ); //printf( "%#llo %llu\n", v, v ); } // if } else { // decimal constant ? sscanf( (char *)str.c_str(), "%llu", &v ); //printf( "%llu %llu\n", v, v ); } // if // At least one digit in integer constant, so safe to backup while looking for suffix. string::size_type posn; if ( str.find_last_of( "uU" ) != string::npos ) Unsigned = true; posn = str.rfind( "hh" ); if ( posn != string::npos ) { type = 1; str.erase( posn, 2 ); goto FINI; } posn = str.rfind( "HH" ); if ( posn != string::npos ) { type = 1; str.erase( posn, 2 ); goto FINI; } posn = str.find_last_of( "hH" ); if ( posn != string::npos ) { type = 0; str.erase( posn, 1 ); goto FINI; } posn = str.find_last_of( "zZ" ); if ( posn != string::npos ) { Unsigned = true; type = 2; ltype = 4; str.erase( posn, 1 ); goto FINI; } if ( str.rfind( "ll" ) != string::npos || str.rfind( "LL" ) != string::npos ) { type = 4; goto FINI; } posn = str.find_last_of( "lL" ); if ( posn != string::npos ) { type = 3; // default posn += 1; // advance to size if ( str[posn] == '3' ) { // 32 type = ltype = 2; str.erase( posn, 2 ); } else if ( str[posn] == '6' ) { // 64 type = ltype = 3; str.erase( posn, 2 ); } else if ( str[posn] == '8' ) { // 8 type = ltype = 1; str.erase( posn, 1 ); } else if ( str[posn] == '1' ) { if ( str[posn + 1] == '6' ) { // 16 type = ltype = 0; str.erase( posn, 2 ); } else { // 128 type = ltype = 5; str.erase( posn, 3 ); } // if } // if } // if FINI: if ( type == -1 ) { // no suffix type, use value if ( v <= INT_MAX ) { // signed int type = 2; } else if ( v <= UINT_MAX && ! dec ) { // unsigned int type = 2; Unsigned = true; // unsigned } else if ( v <= LONG_MAX ) { // signed long int type = 3; } else if ( v <= ULONG_MAX && ( ! dec || LONG_MAX == LLONG_MAX ) ) { // signed long int type = 3; Unsigned = true; // unsigned long int } else if ( v <= LLONG_MAX ) { // signed long long int type = 4; } else { // unsigned long long int type = 4; Unsigned = true; // unsigned long long int } // if } // if assert( 0 <= type && type < 6 ); // Constant type is correct for overload resolving. ret = new ConstantExpr( Constant( new BasicType( noQualifiers, kind[Unsigned][type] ), str, v ) ); if ( Unsigned && type < 2 ) { // hh or h, less than int ? // int i = -1uh => 65535 not -1, so cast is necessary for unsigned, which unfortunately eliminates warnings for large values. ret = new CastExpr( ret, new BasicType( Type::Qualifiers(), kind[Unsigned][type] ), false ); } else if ( ltype != -1 ) { // explicit length ? if ( ltype == 5 ) { // int128 ? type = 5; ret = new CastExpr( ret, new BasicType( Type::Qualifiers(), kind[Unsigned][type] ), false ); } else { ret = new CastExpr( ret, new TypeInstType( Type::Qualifiers(), lnthsInt[Unsigned][ltype], false ), false ); } // if } // if CLEANUP: delete &str; // created by lex return ret; } // build_constantInteger static inline void checkFnxFloat( string & str, size_t last, bool & explnth, int & type ) { string::size_type posn; // floating-point constant has minimum of 2 characters, 1. or .1, so safe to look ahead if ( str[1] == 'x' ) { // hex ? posn = str.find_last_of( "pP" ); // back for exponent (must have) posn = str.find_first_of( "fF", posn + 1 ); // forward for size (fF allowed in hex constant) } else { posn = str.find_last_of( "fF" ); // back for size (fF not allowed) } // if if ( posn == string::npos ) return; explnth = true; posn += 1; // advance to size if ( str[posn] == '3' ) { // 32 if ( str[last] != 'x' ) type = 6; else type = 7; } else if ( str[posn] == '6' ) { // 64 if ( str[last] != 'x' ) type = 8; else type = 9; } else if ( str[posn] == '8' ) { // 80 type = 3; } else if ( str[posn] == '1' ) { // 16/128 if ( str[posn + 1] == '6' ) { // 16 type = 5; } else { // 128 if ( str[last] != 'x' ) type = 10; else type = 11; } // if } else { assertf( false, "internal error, bad floating point length %s", str.c_str() ); } // if } // checkFnxFloat Expression * build_constantFloat( string & str ) { static const BasicType::Kind kind[2][12] = { { BasicType::Float, BasicType::Double, BasicType::LongDouble, BasicType::uuFloat80, BasicType::uuFloat128, BasicType::uFloat16, BasicType::uFloat32, BasicType::uFloat32x, BasicType::uFloat64, BasicType::uFloat64x, BasicType::uFloat128, BasicType::uFloat128x }, { BasicType::FloatComplex, BasicType::DoubleComplex, BasicType::LongDoubleComplex, (BasicType::Kind)-1, (BasicType::Kind)-1, BasicType::uFloat16Complex, BasicType::uFloat32Complex, BasicType::uFloat32xComplex, BasicType::uFloat64Complex, BasicType::uFloat64xComplex, BasicType::uFloat128Complex, BasicType::uFloat128xComplex }, }; // floating-point constant has minimum of 2 characters 1. or .1 size_t last = str.length() - 1; double v; int type; // 0 => float, 1 => double, 3 => long double, ... bool complx = false; // real, complex bool explnth = false; // explicit literal length sscanf( str.c_str(), "%lg", &v ); if ( checkI( str[last] ) ) { // imaginary ? complx = true; last -= 1; // backup one character } // if if ( checkF( str[last] ) ) { // float ? type = 0; } else if ( checkD( str[last] ) ) { // double ? type = 1; } else if ( checkL( str[last] ) ) { // long double ? type = 2; } else if ( checkF80( str[last] ) ) { // __float80 ? type = 3; } else if ( checkF128( str[last] ) ) { // __float128 ? type = 4; } else { type = 1; // double (default if no suffix) checkFnxFloat( str, last, explnth, type ); } // if if ( ! complx && checkI( str[last - 1] ) ) { // imaginary ? complx = true; } // if assert( 0 <= type && type < 12 ); Expression * ret = new ConstantExpr( Constant( new BasicType( noQualifiers, kind[complx][type] ), str, v ) ); if ( explnth ) { // explicit length ? ret = new CastExpr( ret, new BasicType( Type::Qualifiers(), kind[complx][type] ), false ); } // if delete &str; // created by lex return ret; } // build_constantFloat static void sepString( string & str, string & units, char delimit ) { string::size_type posn = str.find_last_of( delimit ) + 1; if ( posn != str.length() ) { units = "?" + str.substr( posn ); // extract units str.erase( posn ); // remove units } // if } // sepString Expression * build_constantChar( string & str ) { string units; // units sepString( str, units, '\'' ); // separate constant from units Expression * ret = new ConstantExpr( Constant( new BasicType( noQualifiers, BasicType::Char ), str, (unsigned long long int)(unsigned char)str[1] ) ); if ( units.length() != 0 ) { ret = new UntypedExpr( new NameExpr( units ), { ret } ); } // if delete &str; // created by lex return ret; } // build_constantChar Expression * build_constantStr( string & str ) { assert( str.length() > 0 ); string units; // units sepString( str, units, '"' ); // separate constant from units Type * strtype; switch ( str[0] ) { // str has >= 2 characters, i.e, null string "" => safe to look at subscripts 0/1 case 'u': if ( str[1] == '8' ) goto Default; // utf-8 characters => array of char // lookup type of associated typedef strtype = new TypeInstType( Type::Qualifiers( Type::Const ), "char16_t", false ); break; case 'U': strtype = new TypeInstType( Type::Qualifiers( Type::Const ), "char32_t", false ); break; case 'L': strtype = new TypeInstType( Type::Qualifiers( Type::Const ), "wchar_t", false ); break; Default: // char default string type default: strtype = new BasicType( Type::Qualifiers( Type::Const ), BasicType::Char ); } // switch ArrayType * at = new ArrayType( noQualifiers, strtype, new ConstantExpr( Constant::from_ulong( str.size() + 1 - 2 ) ), // +1 for '\0' and -2 for '"' false, false ); Expression * ret = new ConstantExpr( Constant( at, str, (unsigned long long int)0 ) ); // constant 0 is ignored for pure string value if ( units.length() != 0 ) { ret = new UntypedExpr( new NameExpr( units ), { ret } ); } // if delete &str; // created by lex return ret; } // build_constantStr Expression * build_field_name_FLOATING_FRACTIONconstant( const string & str ) { if ( str.find_first_not_of( "0123456789", 1 ) != string::npos ) SemanticError( yylloc, "invalid tuple index " + str ); Expression * ret = build_constantInteger( *new string( str.substr(1) ) ); delete &str; return ret; } // build_field_name_FLOATING_FRACTIONconstant Expression * build_field_name_FLOATING_DECIMALconstant( const string & str ) { if ( str[str.size()-1] != '.' ) SemanticError( yylloc, "invalid tuple index " + str ); Expression * ret = build_constantInteger( *new string( str.substr( 0, str.size()-1 ) ) ); delete &str; return ret; } // build_field_name_FLOATING_DECIMALconstant Expression * build_field_name_FLOATINGconstant( const string & str ) { // str is of the form A.B -> separate at the . and return member expression int a, b; char dot; stringstream ss( str ); ss >> a >> dot >> b; UntypedMemberExpr * ret = new UntypedMemberExpr( new ConstantExpr( Constant::from_int( b ) ), new ConstantExpr( Constant::from_int( a ) ) ); delete &str; return ret; } // build_field_name_FLOATINGconstant Expression * make_field_name_fraction_constants( Expression * fieldName, Expression * fracts ) { if ( fracts ) { if ( UntypedMemberExpr * memberExpr = dynamic_cast< UntypedMemberExpr * >( fracts ) ) { memberExpr->set_member( make_field_name_fraction_constants( fieldName, memberExpr->get_aggregate() ) ); return memberExpr; } else { return new UntypedMemberExpr( fracts, fieldName ); } // if } // if return fieldName; } // make_field_name_fraction_constants Expression * build_field_name_fraction_constants( Expression * fieldName, ExpressionNode * fracts ) { return make_field_name_fraction_constants( fieldName, maybeMoveBuild< Expression >( fracts ) ); } // build_field_name_fraction_constants NameExpr * build_varref( const string * name ) { NameExpr * expr = new NameExpr( *name ); delete name; return expr; } // build_varref // TODO: get rid of this and OperKinds and reuse code from OperatorTable static const char * OperName[] = { // must harmonize with OperKinds // diadic "SizeOf", "AlignOf", "OffsetOf", "?+?", "?-?", "?\\?", "?*?", "?/?", "?%?", "||", "&&", "?|?", "?&?", "?^?", "Cast", "?<>?", "??", "?<=?", "?>=?", "?==?", "?!=?", "?=?", "?@=?", "?\\=?", "?*=?", "?/=?", "?%=?", "?+=?", "?-=?", "?<<=?", "?>>=?", "?&=?", "?^=?", "?|=?", "?[?]", "...", // monadic "+?", "-?", "AddressOf", "*?", "!?", "~?", "++?", "?++", "--?", "?--", }; // OperName Expression * build_cast( DeclarationNode * decl_node, ExpressionNode * expr_node ) { Type * targetType = maybeMoveBuildType( decl_node ); if ( dynamic_cast< VoidType * >( targetType ) ) { delete targetType; return new CastExpr( maybeMoveBuild< Expression >(expr_node), false ); } else { return new CastExpr( maybeMoveBuild< Expression >(expr_node), targetType, false ); } // if } // build_cast Expression * build_keyword_cast( KeywordCastExpr::Target target, ExpressionNode * expr_node ) { return new KeywordCastExpr( maybeMoveBuild< Expression >(expr_node), target ); } Expression * build_virtual_cast( DeclarationNode * decl_node, ExpressionNode * expr_node ) { return new VirtualCastExpr( maybeMoveBuild< Expression >( expr_node ), maybeMoveBuildType( decl_node ) ); } // build_virtual_cast Expression * build_fieldSel( ExpressionNode * expr_node, Expression * member ) { return new UntypedMemberExpr( member, maybeMoveBuild< Expression >(expr_node) ); } // build_fieldSel Expression * build_pfieldSel( ExpressionNode * expr_node, Expression * member ) { UntypedExpr * deref = new UntypedExpr( new NameExpr( "*?" ) ); deref->location = expr_node->location; deref->get_args().push_back( maybeMoveBuild< Expression >(expr_node) ); UntypedMemberExpr * ret = new UntypedMemberExpr( member, deref ); return ret; } // build_pfieldSel Expression * build_offsetOf( DeclarationNode * decl_node, NameExpr * member ) { Expression * ret = new UntypedOffsetofExpr( maybeMoveBuildType( decl_node ), member->get_name() ); delete member; return ret; } // build_offsetOf Expression * build_and_or( ExpressionNode * expr_node1, ExpressionNode * expr_node2, bool kind ) { return new LogicalExpr( notZeroExpr( maybeMoveBuild< Expression >(expr_node1) ), notZeroExpr( maybeMoveBuild< Expression >(expr_node2) ), kind ); } // build_and_or Expression * build_unary_val( OperKinds op, ExpressionNode * expr_node ) { list< Expression * > args; args.push_back( maybeMoveBuild< Expression >(expr_node) ); return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args ); } // build_unary_val Expression * build_unary_ptr( OperKinds op, ExpressionNode * expr_node ) { list< Expression * > args; args.push_back( maybeMoveBuild< Expression >(expr_node) ); // xxx -- this is exactly the same as the val case now, refactor this code. return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args ); } // build_unary_ptr Expression * build_binary_val( OperKinds op, ExpressionNode * expr_node1, ExpressionNode * expr_node2 ) { list< Expression * > args; args.push_back( maybeMoveBuild< Expression >(expr_node1) ); args.push_back( maybeMoveBuild< Expression >(expr_node2) ); return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args ); } // build_binary_val Expression * build_binary_ptr( OperKinds op, ExpressionNode * expr_node1, ExpressionNode * expr_node2 ) { list< Expression * > args; args.push_back( maybeMoveBuild< Expression >(expr_node1) ); args.push_back( maybeMoveBuild< Expression >(expr_node2) ); return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args ); } // build_binary_ptr Expression * build_cond( ExpressionNode * expr_node1, ExpressionNode * expr_node2, ExpressionNode * expr_node3 ) { return new ConditionalExpr( notZeroExpr( maybeMoveBuild< Expression >(expr_node1) ), maybeMoveBuild< Expression >(expr_node2), maybeMoveBuild< Expression >(expr_node3) ); } // build_cond Expression * build_tuple( ExpressionNode * expr_node ) { list< Expression * > exprs; buildMoveList( expr_node, exprs ); return new UntypedTupleExpr( exprs );; } // build_tuple Expression * build_func( ExpressionNode * function, ExpressionNode * expr_node ) { list< Expression * > args; buildMoveList( expr_node, args ); return new UntypedExpr( maybeMoveBuild< Expression >(function), args ); } // build_func Expression * build_compoundLiteral( DeclarationNode * decl_node, InitializerNode * kids ) { Declaration * newDecl = maybeBuild< Declaration >(decl_node); // compound literal type if ( DeclarationWithType * newDeclWithType = dynamic_cast< DeclarationWithType * >( newDecl ) ) { // non-sue compound-literal type return new CompoundLiteralExpr( newDeclWithType->get_type(), maybeMoveBuild< Initializer >(kids) ); // these types do not have associated type information } else if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( newDecl ) ) { if ( newDeclStructDecl->has_body() ) { return new CompoundLiteralExpr( new StructInstType( Type::Qualifiers(), newDeclStructDecl ), maybeMoveBuild< Initializer >(kids) ); } else { return new CompoundLiteralExpr( new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() ), maybeMoveBuild< Initializer >(kids) ); } // if } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( newDecl ) ) { if ( newDeclUnionDecl->has_body() ) { return new CompoundLiteralExpr( new UnionInstType( Type::Qualifiers(), newDeclUnionDecl ), maybeMoveBuild< Initializer >(kids) ); } else { return new CompoundLiteralExpr( new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() ), maybeMoveBuild< Initializer >(kids) ); } // if } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( newDecl ) ) { if ( newDeclEnumDecl->has_body() ) { return new CompoundLiteralExpr( new EnumInstType( Type::Qualifiers(), newDeclEnumDecl ), maybeMoveBuild< Initializer >(kids) ); } else { return new CompoundLiteralExpr( new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() ), maybeMoveBuild< Initializer >(kids) ); } // if } else { assert( false ); } // if } // build_compoundLiteral // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //