// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // DeclarationNode.cc -- // // Author : Rodolfo G. Esteves // Created On : Sat May 16 12:34:05 2015 // Last Modified By : Peter A. Buhr // Last Modified On : Thu Dec 14 19:05:17 2023 // Update Count : 1407 // #include "DeclarationNode.h" #include // for assert, assertf, strict_dynamic_cast #include // for back_insert_iterator #include // for list #include // for unique_ptr #include // for operator<<, ostream, basic_ostream #include // for string, operator+, allocator, char... #include "AST/Attribute.hpp" // for Attribute #include "AST/Copy.hpp" // for shallowCopy #include "AST/Decl.hpp" // for Decl #include "AST/Expr.hpp" // for Expr #include "AST/Print.hpp" // for print #include "AST/Stmt.hpp" // for AsmStmt, DirectiveStmt #include "AST/StorageClasses.hpp" // for Storage::Class #include "AST/Type.hpp" // for Type #include "Common/CodeLocation.h" // for CodeLocation #include "Common/Iterate.hpp" // for reverseIterate #include "Common/SemanticError.h" // for SemanticError #include "Common/UniqueName.h" // for UniqueName #include "Common/utility.h" // for maybeClone #include "Parser/ExpressionNode.h" // for ExpressionNode #include "Parser/InitializerNode.h"// for InitializerNode #include "Parser/StatementNode.h" // for StatementNode #include "TypeData.h" // for TypeData, TypeData::Aggregate_t #include "TypedefTable.h" // for TypedefTable class Initializer; extern TypedefTable typedefTable; using namespace std; // These must harmonize with the corresponding DeclarationNode enumerations. const char * DeclarationNode::basicTypeNames[] = { "void", "_Bool", "char", "int", "int128", "float", "double", "long double", "float80", "float128", "_float16", "_float32", "_float32x", "_float64", "_float64x", "_float128", "_float128x", "NoBasicTypeNames" }; const char * DeclarationNode::complexTypeNames[] = { "_Complex", "NoComplexTypeNames", "_Imaginary" }; // Imaginary unsupported => parse, but make invisible and print error message const char * DeclarationNode::signednessNames[] = { "signed", "unsigned", "NoSignednessNames" }; const char * DeclarationNode::lengthNames[] = { "short", "long", "long long", "NoLengthNames" }; const char * DeclarationNode::builtinTypeNames[] = { "__builtin_va_list", "__auto_type", "zero_t", "one_t", "NoBuiltinTypeNames" }; UniqueName DeclarationNode::anonymous( "__anonymous" ); extern ast::Linkage::Spec linkage; // defined in parser.yy DeclarationNode::DeclarationNode() : linkage( ::linkage ) { // variable.name = nullptr; variable.tyClass = ast::TypeDecl::NUMBER_OF_KINDS; variable.assertions = nullptr; variable.initializer = nullptr; assert.condition = nullptr; assert.message = nullptr; } DeclarationNode::~DeclarationNode() { // delete variable.name; delete variable.assertions; delete variable.initializer; // delete type; delete bitfieldWidth; delete asmStmt; // asmName, no delete, passed to next stage delete initializer; delete assert.condition; delete assert.message; } DeclarationNode * DeclarationNode::clone() const { DeclarationNode * newnode = new DeclarationNode; newnode->set_next( maybeClone( get_next() ) ); newnode->name = name ? new string( *name ) : nullptr; newnode->builtin = NoBuiltinType; newnode->type = maybeClone( type ); newnode->inLine = inLine; newnode->storageClasses = storageClasses; newnode->funcSpecs = funcSpecs; newnode->bitfieldWidth = maybeClone( bitfieldWidth ); newnode->enumeratorValue.reset( maybeClone( enumeratorValue.get() ) ); newnode->hasEllipsis = hasEllipsis; newnode->linkage = linkage; newnode->asmName = maybeCopy( asmName ); newnode->attributes = attributes; newnode->initializer = maybeClone( initializer ); newnode->extension = extension; newnode->asmStmt = maybeClone( asmStmt ); newnode->error = error; // newnode->variable.name = variable.name ? new string( *variable.name ) : nullptr; newnode->variable.tyClass = variable.tyClass; newnode->variable.assertions = maybeClone( variable.assertions ); newnode->variable.initializer = maybeClone( variable.initializer ); newnode->assert.condition = maybeClone( assert.condition ); newnode->assert.message = maybeCopy( assert.message ); return newnode; } // DeclarationNode::clone void DeclarationNode::print( std::ostream & os, int indent ) const { os << string( indent, ' ' ); if ( name ) { os << *name << ": "; } // if if ( linkage != ast::Linkage::Cforall ) { os << ast::Linkage::name( linkage ) << " "; } // if ast::print( os, storageClasses ); ast::print( os, funcSpecs ); if ( type ) { type->print( os, indent ); } else { os << "untyped entity "; } // if if ( bitfieldWidth ) { os << endl << string( indent + 2, ' ' ) << "with bitfield width "; bitfieldWidth->printOneLine( os ); } // if if ( initializer ) { os << endl << string( indent + 2, ' ' ) << "with initializer "; initializer->printOneLine( os ); os << " maybe constructed? " << initializer->get_maybeConstructed(); } // if if ( ! attributes.empty() ) { os << string( indent + 2, ' ' ) << "with attributes " << endl; for ( ast::ptr const & attr : reverseIterate( attributes ) ) { os << string( indent + 4, ' ' ) << attr->name.c_str() << endl; } // for } // if os << endl; } void DeclarationNode::printList( std::ostream & os, int indent ) const { ParseNode::printList( os, indent ); if ( hasEllipsis ) { os << string( indent, ' ' ) << "and a variable number of other arguments" << endl; } // if } DeclarationNode * DeclarationNode::newStorageClass( ast::Storage::Classes sc ) { DeclarationNode * newnode = new DeclarationNode; newnode->storageClasses = sc; return newnode; } // DeclarationNode::newStorageClass DeclarationNode * DeclarationNode::newFuncSpecifier( ast::Function::Specs fs ) { DeclarationNode * newnode = new DeclarationNode; newnode->funcSpecs = fs; return newnode; } // DeclarationNode::newFuncSpecifier DeclarationNode * DeclarationNode::newTypeQualifier( ast::CV::Qualifiers tq ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData(); newnode->type->qualifiers = tq; return newnode; } // DeclarationNode::newQualifier DeclarationNode * DeclarationNode::newBasicType( BasicType bt ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData( TypeData::Basic ); newnode->type->basictype = bt; return newnode; } // DeclarationNode::newBasicType DeclarationNode * DeclarationNode::newComplexType( ComplexType ct ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData( TypeData::Basic ); newnode->type->complextype = ct; return newnode; } // DeclarationNode::newComplexType DeclarationNode * DeclarationNode::newSignedNess( Signedness sn ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData( TypeData::Basic ); newnode->type->signedness = sn; return newnode; } // DeclarationNode::newSignedNess DeclarationNode * DeclarationNode::newLength( Length lnth ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData( TypeData::Basic ); newnode->type->length = lnth; return newnode; } // DeclarationNode::newLength DeclarationNode * DeclarationNode::newForall( DeclarationNode * forall ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData( TypeData::Unknown ); newnode->type->forall = forall; return newnode; } // DeclarationNode::newForall DeclarationNode * DeclarationNode::newFromGlobalScope() { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData( TypeData::GlobalScope ); return newnode; } DeclarationNode * DeclarationNode::newQualifiedType( DeclarationNode * parent, DeclarationNode * child) { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData( TypeData::Qualified ); newnode->type->qualified.parent = parent->type; newnode->type->qualified.child = child->type; parent->type = nullptr; child->type = nullptr; delete parent; delete child; return newnode; } DeclarationNode * DeclarationNode::newAggregate( ast::AggregateDecl::Aggregate kind, const string * name, ExpressionNode * actuals, DeclarationNode * fields, bool body ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData( TypeData::Aggregate ); newnode->type->aggregate.kind = kind; newnode->type->aggregate.anon = name == nullptr; newnode->type->aggregate.name = newnode->type->aggregate.anon ? new string( DeclarationNode::anonymous.newName() ) : name; newnode->type->aggregate.actuals = actuals; newnode->type->aggregate.fields = fields; newnode->type->aggregate.body = body; newnode->type->aggregate.tagged = false; newnode->type->aggregate.parent = nullptr; return newnode; } // DeclarationNode::newAggregate DeclarationNode * DeclarationNode::newEnum( const string * name, DeclarationNode * constants, bool body, bool typed, DeclarationNode * base, EnumHiding hiding ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData( TypeData::Enum ); newnode->type->enumeration.anon = name == nullptr; newnode->type->enumeration.name = newnode->type->enumeration.anon ? new string( DeclarationNode::anonymous.newName() ) : name; newnode->type->enumeration.constants = constants; newnode->type->enumeration.body = body; newnode->type->enumeration.typed = typed; newnode->type->enumeration.hiding = hiding; if ( base && base->type ) { newnode->type->base = base->type; } // if return newnode; } // DeclarationNode::newEnum DeclarationNode * DeclarationNode::newName( const string * name ) { DeclarationNode * newnode = new DeclarationNode; assert( ! newnode->name ); newnode->name = name; return newnode; } // DeclarationNode::newName DeclarationNode * DeclarationNode::newEnumConstant( const string * name, ExpressionNode * constant ) { DeclarationNode * newnode = newName( name ); newnode->enumeratorValue.reset( constant ); return newnode; } // DeclarationNode::newEnumConstant DeclarationNode * DeclarationNode::newEnumValueGeneric( const string * name, InitializerNode * init ) { if ( init ) { if ( init->get_expression() ) { return newEnumConstant( name, init->get_expression() ); } else { DeclarationNode * newnode = newName( name ); newnode->initializer = init; return newnode; } // if } else { return newName( name ); } // if } // DeclarationNode::newEnumValueGeneric DeclarationNode * DeclarationNode::newEnumInLine( const string name ) { DeclarationNode * newnode = newName( new std::string(name) ); newnode->enumInLine = true; return newnode; } DeclarationNode * DeclarationNode::newFromTypedef( const string * name ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData( TypeData::SymbolicInst ); newnode->type->symbolic.name = name; newnode->type->symbolic.isTypedef = true; newnode->type->symbolic.params = nullptr; return newnode; } // DeclarationNode::newFromTypedef DeclarationNode * DeclarationNode::newFromTypeGen( const string * name, ExpressionNode * params ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData( TypeData::SymbolicInst ); newnode->type->symbolic.name = name; newnode->type->symbolic.isTypedef = false; newnode->type->symbolic.actuals = params; return newnode; } // DeclarationNode::newFromTypeGen DeclarationNode * DeclarationNode::newTypeParam( ast::TypeDecl::Kind tc, const string * name ) { DeclarationNode * newnode = newName( name ); newnode->type = nullptr; newnode->variable.tyClass = tc; newnode->variable.assertions = nullptr; return newnode; } // DeclarationNode::newTypeParam DeclarationNode * DeclarationNode::newTrait( const string * name, DeclarationNode * params, DeclarationNode * asserts ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData( TypeData::Aggregate ); newnode->type->aggregate.name = name; newnode->type->aggregate.kind = ast::AggregateDecl::Trait; newnode->type->aggregate.params = params; newnode->type->aggregate.fields = asserts; return newnode; } // DeclarationNode::newTrait DeclarationNode * DeclarationNode::newTraitUse( const string * name, ExpressionNode * params ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData( TypeData::AggregateInst ); newnode->type->aggInst.aggregate = new TypeData( TypeData::Aggregate ); newnode->type->aggInst.aggregate->aggregate.kind = ast::AggregateDecl::Trait; newnode->type->aggInst.aggregate->aggregate.name = name; newnode->type->aggInst.params = params; return newnode; } // DeclarationNode::newTraitUse DeclarationNode * DeclarationNode::newTypeDecl( const string * name, DeclarationNode * typeParams ) { DeclarationNode * newnode = newName( name ); newnode->type = new TypeData( TypeData::Symbolic ); newnode->type->symbolic.isTypedef = false; newnode->type->symbolic.params = typeParams; return newnode; } // DeclarationNode::newTypeDecl DeclarationNode * DeclarationNode::newPointer( DeclarationNode * qualifiers, OperKinds kind ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData( kind == OperKinds::PointTo ? TypeData::Pointer : TypeData::Reference ); if ( kind == OperKinds::And ) { // T && is parsed as 'And' operator rather than two references => add a second reference type TypeData * td = new TypeData( TypeData::Reference ); td->base = newnode->type; newnode->type = td; } if ( qualifiers ) { return newnode->addQualifiers( qualifiers ); } else { return newnode; } // if } // DeclarationNode::newPointer DeclarationNode * DeclarationNode::newArray( ExpressionNode * size, DeclarationNode * qualifiers, bool isStatic ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData( TypeData::Array ); newnode->type->array.dimension = size; newnode->type->array.isStatic = isStatic; if ( newnode->type->array.dimension == nullptr || newnode->type->array.dimension->isExpressionType() ) { newnode->type->array.isVarLen = false; } else { newnode->type->array.isVarLen = true; } // if return newnode->addQualifiers( qualifiers ); } // DeclarationNode::newArray DeclarationNode * DeclarationNode::newVarArray( DeclarationNode * qualifiers ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData( TypeData::Array ); newnode->type->array.dimension = nullptr; newnode->type->array.isStatic = false; newnode->type->array.isVarLen = true; return newnode->addQualifiers( qualifiers ); } DeclarationNode * DeclarationNode::newBitfield( ExpressionNode * size ) { DeclarationNode * newnode = new DeclarationNode; newnode->bitfieldWidth = size; return newnode; } DeclarationNode * DeclarationNode::newTuple( DeclarationNode * members ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData( TypeData::Tuple ); newnode->type->tuple = members; return newnode; } DeclarationNode * DeclarationNode::newTypeof( ExpressionNode * expr, bool basetypeof ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData( basetypeof ? TypeData::Basetypeof : TypeData::Typeof ); newnode->type->typeexpr = expr; return newnode; } DeclarationNode * DeclarationNode::newVtableType( DeclarationNode * decl ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData( TypeData::Vtable ); newnode->setBase( decl->type ); return newnode; } DeclarationNode * DeclarationNode::newBuiltinType( BuiltinType bt ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = new TypeData( TypeData::Builtin ); newnode->builtin = bt; newnode->type->builtintype = newnode->builtin; return newnode; } // DeclarationNode::newBuiltinType DeclarationNode * DeclarationNode::newFunction( const string * name, DeclarationNode * ret, DeclarationNode * param, StatementNode * body ) { DeclarationNode * newnode = newName( name ); newnode->type = new TypeData( TypeData::Function ); newnode->type->function.params = param; newnode->type->function.body = body; if ( ret ) { newnode->type->base = ret->type; ret->type = nullptr; delete ret; } // if return newnode; } // DeclarationNode::newFunction DeclarationNode * DeclarationNode::newAttribute( const string * name, ExpressionNode * expr ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = nullptr; std::vector> exprs; buildList( expr, exprs ); newnode->attributes.push_back( new ast::Attribute( *name, std::move( exprs ) ) ); delete name; return newnode; } DeclarationNode * DeclarationNode::newDirectiveStmt( StatementNode * stmt ) { DeclarationNode * newnode = new DeclarationNode; newnode->directiveStmt = stmt; return newnode; } DeclarationNode * DeclarationNode::newAsmStmt( StatementNode * stmt ) { DeclarationNode * newnode = new DeclarationNode; newnode->asmStmt = stmt; return newnode; } DeclarationNode * DeclarationNode::newStaticAssert( ExpressionNode * condition, ast::Expr * message ) { DeclarationNode * newnode = new DeclarationNode; newnode->assert.condition = condition; newnode->assert.message = message; return newnode; } static void appendError( string & dst, const string & src ) { if ( src.empty() ) return; if ( dst.empty() ) { dst = src; return; } dst += ", " + src; } // appendError void DeclarationNode::checkQualifiers( const TypeData * src, const TypeData * dst ) { const ast::CV::Qualifiers qsrc = src->qualifiers, qdst = dst->qualifiers; // optimization const ast::CV::Qualifiers duplicates = qsrc & qdst; if ( duplicates.any() ) { std::stringstream str; str << "duplicate "; ast::print( str, duplicates ); str << "qualifier(s)"; appendError( error, str.str() ); } // for } // DeclarationNode::checkQualifiers void DeclarationNode::checkSpecifiers( DeclarationNode * src ) { ast::Function::Specs fsDups = funcSpecs & src->funcSpecs; if ( fsDups.any() ) { std::stringstream str; str << "duplicate "; ast::print( str, fsDups ); str << "function specifier(s)"; appendError( error, str.str() ); } // if // Skip if everything is unset. if ( storageClasses.any() && src->storageClasses.any() ) { ast::Storage::Classes dups = storageClasses & src->storageClasses; // Check for duplicates. if ( dups.any() ) { std::stringstream str; str << "duplicate "; ast::print( str, dups ); str << "storage class(es)"; appendError( error, str.str() ); // Check for conflicts. } else if ( !src->storageClasses.is_threadlocal_any() ) { std::stringstream str; str << "conflicting "; ast::print( str, ast::Storage::Classes( 1 << storageClasses.ffs() ) ); str << "& "; ast::print( str, ast::Storage::Classes( 1 << src->storageClasses.ffs() ) ); str << "storage classes"; appendError( error, str.str() ); // FIX to preserve invariant of one basic storage specifier src->storageClasses.reset(); } } // if appendError( error, src->error ); } // DeclarationNode::checkSpecifiers DeclarationNode * DeclarationNode::copySpecifiers( DeclarationNode * q ) { funcSpecs |= q->funcSpecs; storageClasses |= q->storageClasses; std::vector> tmp; tmp.reserve( q->attributes.size() ); for ( auto const & attr : q->attributes ) { tmp.emplace_back( ast::shallowCopy( attr.get() ) ); } spliceBegin( attributes, tmp ); return this; } // DeclarationNode::copySpecifiers static void addQualifiersToType( TypeData *& src, TypeData * dst ) { if ( dst->base ) { addQualifiersToType( src, dst->base ); } else if ( dst->kind == TypeData::Function ) { dst->base = src; src = nullptr; } else { dst->qualifiers |= src->qualifiers; } // if } // addQualifiersToType DeclarationNode * DeclarationNode::addQualifiers( DeclarationNode * q ) { if ( ! q ) { return this; } // empty qualifier checkSpecifiers( q ); copySpecifiers( q ); if ( ! q->type ) { delete q; return this; } if ( ! type ) { type = q->type; // reuse structure q->type = nullptr; delete q; return this; } // if if ( q->type->forall ) { // forall qualifier ? if ( type->forall ) { // polymorphic routine ? type->forall->appendList( q->type->forall ); // augment forall qualifier } else { if ( type->kind == TypeData::Aggregate ) { // struct/union ? if ( type->aggregate.params ) { // polymorphic ? type->aggregate.params->appendList( q->type->forall ); // augment forall qualifier } else { // not polymorphic type->aggregate.params = q->type->forall; // set forall qualifier } // if } else { // not polymorphic type->forall = q->type->forall; // make polymorphic routine } // if } // if q->type->forall = nullptr; // forall qualifier moved } // if checkQualifiers( type, q->type ); if ( (builtin == Zero || builtin == One) && q->type->qualifiers.any() && error.length() == 0 ) { SemanticWarning( yylloc, Warning::BadQualifiersZeroOne, builtinTypeNames[builtin] ); } // if addQualifiersToType( q->type, type ); delete q; return this; } // addQualifiers static void addTypeToType( TypeData *& src, TypeData *& dst ) { if ( src->forall && dst->kind == TypeData::Function ) { if ( dst->forall ) { dst->forall->appendList( src->forall ); } else { dst->forall = src->forall; } // if src->forall = nullptr; } // if if ( dst->base ) { addTypeToType( src, dst->base ); } else { switch ( dst->kind ) { case TypeData::Unknown: src->qualifiers |= dst->qualifiers; dst = src; src = nullptr; break; case TypeData::Basic: dst->qualifiers |= src->qualifiers; if ( src->kind != TypeData::Unknown ) { assert( src->kind == TypeData::Basic ); if ( dst->basictype == DeclarationNode::NoBasicType ) { dst->basictype = src->basictype; } else if ( src->basictype != DeclarationNode::NoBasicType ) SemanticError( yylloc, "multiple declaration types \"%s\" and \"%s\".", DeclarationNode::basicTypeNames[ dst->basictype ], DeclarationNode::basicTypeNames[ src->basictype ] ); if ( dst->complextype == DeclarationNode::NoComplexType ) { dst->complextype = src->complextype; } else if ( src->complextype != DeclarationNode::NoComplexType ) SemanticError( yylloc, "multiple declaration types \"%s\" and \"%s\".", DeclarationNode::complexTypeNames[ src->complextype ], DeclarationNode::complexTypeNames[ src->complextype ] ); if ( dst->signedness == DeclarationNode::NoSignedness ) { dst->signedness = src->signedness; } else if ( src->signedness != DeclarationNode::NoSignedness ) SemanticError( yylloc, "conflicting type specifier \"%s\" and \"%s\".", DeclarationNode::signednessNames[ dst->signedness ], DeclarationNode::signednessNames[ src->signedness ] ); if ( dst->length == DeclarationNode::NoLength ) { dst->length = src->length; } else if ( dst->length == DeclarationNode::Long && src->length == DeclarationNode::Long ) { dst->length = DeclarationNode::LongLong; } else if ( src->length != DeclarationNode::NoLength ) SemanticError( yylloc, "conflicting type specifier \"%s\" and \"%s\".", DeclarationNode::lengthNames[ dst->length ], DeclarationNode::lengthNames[ src->length ] ); } // if break; default: switch ( src->kind ) { case TypeData::Aggregate: case TypeData::Enum: dst->base = new TypeData( TypeData::AggregateInst ); dst->base->aggInst.aggregate = src; if ( src->kind == TypeData::Aggregate ) { dst->base->aggInst.params = maybeClone( src->aggregate.actuals ); } // if dst->base->qualifiers |= src->qualifiers; src = nullptr; break; default: if ( dst->forall ) { dst->forall->appendList( src->forall ); } else { dst->forall = src->forall; } // if src->forall = nullptr; dst->base = src; src = nullptr; } // switch } // switch } // if } DeclarationNode * DeclarationNode::addType( DeclarationNode * o ) { if ( o ) { checkSpecifiers( o ); copySpecifiers( o ); if ( o->type ) { if ( ! type ) { if ( o->type->kind == TypeData::Aggregate || o->type->kind == TypeData::Enum ) { type = new TypeData( TypeData::AggregateInst ); type->aggInst.aggregate = o->type; if ( o->type->kind == TypeData::Aggregate ) { type->aggInst.hoistType = o->type->aggregate.body; type->aggInst.params = maybeClone( o->type->aggregate.actuals ); } else { type->aggInst.hoistType = o->type->enumeration.body; } // if type->qualifiers |= o->type->qualifiers; } else { type = o->type; } // if o->type = nullptr; } else { addTypeToType( o->type, type ); } // if } // if if ( o->bitfieldWidth ) { bitfieldWidth = o->bitfieldWidth; } // if // there may be typedefs chained onto the type if ( o->get_next() ) { set_last( o->get_next()->clone() ); } // if } // if delete o; return this; } DeclarationNode * DeclarationNode::addEnumBase( DeclarationNode * o ) { if ( o && o->type) { type->base= o->type; } // if delete o; return this; } DeclarationNode * DeclarationNode::addTypedef() { TypeData * newtype = new TypeData( TypeData::Symbolic ); newtype->symbolic.params = nullptr; newtype->symbolic.isTypedef = true; newtype->symbolic.name = name ? new string( *name ) : nullptr; newtype->base = type; type = newtype; return this; } DeclarationNode * DeclarationNode::addAssertions( DeclarationNode * assertions ) { if ( variable.tyClass != ast::TypeDecl::NUMBER_OF_KINDS ) { if ( variable.assertions ) { variable.assertions->appendList( assertions ); } else { variable.assertions = assertions; } // if return this; } // if assert( type ); switch ( type->kind ) { case TypeData::Symbolic: if ( type->symbolic.assertions ) { type->symbolic.assertions->appendList( assertions ); } else { type->symbolic.assertions = assertions; } // if break; default: assert( false ); } // switch return this; } DeclarationNode * DeclarationNode::addName( string * newname ) { assert( ! name ); name = newname; return this; } DeclarationNode * DeclarationNode::addAsmName( DeclarationNode * newname ) { assert( ! asmName ); asmName = newname ? newname->asmName : nullptr; return this->addQualifiers( newname ); } DeclarationNode * DeclarationNode::addBitfield( ExpressionNode * size ) { bitfieldWidth = size; return this; } DeclarationNode * DeclarationNode::addVarArgs() { assert( type ); hasEllipsis = true; return this; } DeclarationNode * DeclarationNode::addFunctionBody( StatementNode * body, ExpressionNode * withExprs ) { assert( type ); assert( type->kind == TypeData::Function ); assert( ! type->function.body ); type->function.body = body; type->function.withExprs = withExprs; return this; } DeclarationNode * DeclarationNode::addOldDeclList( DeclarationNode * list ) { assert( type ); assert( type->kind == TypeData::Function ); assert( ! type->function.oldDeclList ); type->function.oldDeclList = list; return this; } DeclarationNode * DeclarationNode::setBase( TypeData * newType ) { if ( type ) { TypeData * prevBase = type; TypeData * curBase = type->base; while ( curBase != nullptr ) { prevBase = curBase; curBase = curBase->base; } // while prevBase->base = newType; } else { type = newType; } // if return this; } DeclarationNode * DeclarationNode::copyAttribute( DeclarationNode * a ) { if ( a ) { spliceBegin( attributes, a->attributes ); a->attributes.clear(); } // if return this; } // copyAttribute DeclarationNode * DeclarationNode::addPointer( DeclarationNode * p ) { if ( p ) { assert( p->type->kind == TypeData::Pointer || p->type->kind == TypeData::Reference ); setBase( p->type ); p->type = nullptr; copyAttribute( p ); delete p; } // if return this; } DeclarationNode * DeclarationNode::addArray( DeclarationNode * a ) { if ( a ) { assert( a->type->kind == TypeData::Array ); setBase( a->type ); a->type = nullptr; copyAttribute( a ); delete a; } // if return this; } DeclarationNode * DeclarationNode::addNewPointer( DeclarationNode * p ) { if ( p ) { assert( p->type->kind == TypeData::Pointer || p->type->kind == TypeData::Reference ); if ( type ) { switch ( type->kind ) { case TypeData::Aggregate: case TypeData::Enum: p->type->base = new TypeData( TypeData::AggregateInst ); p->type->base->aggInst.aggregate = type; if ( type->kind == TypeData::Aggregate ) { p->type->base->aggInst.params = maybeClone( type->aggregate.actuals ); } // if p->type->base->qualifiers |= type->qualifiers; break; default: p->type->base = type; } // switch type = nullptr; } // if delete this; return p; } else { return this; } // if } static TypeData * findLast( TypeData * a ) { assert( a ); TypeData * cur = a; while ( cur->base ) { cur = cur->base; } // while return cur; } DeclarationNode * DeclarationNode::addNewArray( DeclarationNode * a ) { if ( ! a ) return this; assert( a->type->kind == TypeData::Array ); TypeData * lastArray = findLast( a->type ); if ( type ) { switch ( type->kind ) { case TypeData::Aggregate: case TypeData::Enum: lastArray->base = new TypeData( TypeData::AggregateInst ); lastArray->base->aggInst.aggregate = type; if ( type->kind == TypeData::Aggregate ) { lastArray->base->aggInst.params = maybeClone( type->aggregate.actuals ); } // if lastArray->base->qualifiers |= type->qualifiers; break; default: lastArray->base = type; } // switch type = nullptr; } // if delete this; return a; } DeclarationNode * DeclarationNode::addParamList( DeclarationNode * params ) { TypeData * ftype = new TypeData( TypeData::Function ); ftype->function.params = params; setBase( ftype ); return this; } static TypeData * addIdListToType( TypeData * type, DeclarationNode * ids ) { if ( type ) { if ( type->kind != TypeData::Function ) { type->base = addIdListToType( type->base, ids ); } else { type->function.idList = ids; } // if return type; } else { TypeData * newtype = new TypeData( TypeData::Function ); newtype->function.idList = ids; return newtype; } // if } // addIdListToType DeclarationNode * DeclarationNode::addIdList( DeclarationNode * ids ) { type = addIdListToType( type, ids ); return this; } DeclarationNode * DeclarationNode::addInitializer( InitializerNode * init ) { initializer = init; return this; } DeclarationNode * DeclarationNode::addTypeInitializer( DeclarationNode * init ) { assertf( variable.tyClass != ast::TypeDecl::NUMBER_OF_KINDS, "Called addTypeInitializer on something that isn't a type variable." ); variable.initializer = init; return this; } DeclarationNode * DeclarationNode::cloneType( string * name ) { DeclarationNode * newnode = newName( name ); newnode->type = maybeClone( type ); newnode->copySpecifiers( this ); return newnode; } DeclarationNode * DeclarationNode::cloneBaseType( DeclarationNode * o ) { if ( ! o ) return nullptr; o->copySpecifiers( this ); if ( type ) { TypeData * srcType = type; // search for the base type by scanning off pointers and array designators while ( srcType->base ) { srcType = srcType->base; } // while TypeData * newType = srcType->clone(); if ( newType->kind == TypeData::AggregateInst ) { // don't duplicate members if ( newType->aggInst.aggregate->kind == TypeData::Enum ) { delete newType->aggInst.aggregate->enumeration.constants; newType->aggInst.aggregate->enumeration.constants = nullptr; newType->aggInst.aggregate->enumeration.body = false; } else { assert( newType->aggInst.aggregate->kind == TypeData::Aggregate ); delete newType->aggInst.aggregate->aggregate.fields; newType->aggInst.aggregate->aggregate.fields = nullptr; newType->aggInst.aggregate->aggregate.body = false; } // if // don't hoist twice newType->aggInst.hoistType = false; } // if newType->forall = maybeClone( type->forall ); if ( ! o->type ) { o->type = newType; } else { addTypeToType( newType, o->type ); delete newType; } // if } // if return o; } DeclarationNode * DeclarationNode::extractAggregate() const { if ( type ) { TypeData * ret = typeextractAggregate( type ); if ( ret ) { DeclarationNode * newnode = new DeclarationNode; newnode->type = ret; return newnode; } // if } // if return nullptr; } // If a typedef wraps an anonymous declaration, name the inner declaration so it has a consistent name across // translation units. static void nameTypedefedDecl( DeclarationNode * innerDecl, const DeclarationNode * outerDecl ) { TypeData * outer = outerDecl->type; assert( outer ); // First make sure this is a typedef: if ( outer->kind != TypeData::Symbolic || !outer->symbolic.isTypedef ) { return; } TypeData * inner = innerDecl->type; assert( inner ); // Always clear any CVs associated with the aggregate: inner->qualifiers.reset(); // Handle anonymous aggregates: typedef struct { int i; } foo if ( inner->kind == TypeData::Aggregate && inner->aggregate.anon ) { delete inner->aggregate.name; inner->aggregate.name = new string( "__anonymous_" + *outerDecl->name ); inner->aggregate.anon = false; assert( outer->base ); delete outer->base->aggInst.aggregate->aggregate.name; outer->base->aggInst.aggregate->aggregate.name = new string( "__anonymous_" + *outerDecl->name ); outer->base->aggInst.aggregate->aggregate.anon = false; outer->base->aggInst.aggregate->qualifiers.reset(); // Handle anonymous enumeration: typedef enum { A, B, C } foo } else if ( inner->kind == TypeData::Enum && inner->enumeration.anon ) { delete inner->enumeration.name; inner->enumeration.name = new string( "__anonymous_" + *outerDecl->name ); inner->enumeration.anon = false; assert( outer->base ); delete outer->base->aggInst.aggregate->enumeration.name; outer->base->aggInst.aggregate->enumeration.name = new string( "__anonymous_" + *outerDecl->name ); outer->base->aggInst.aggregate->enumeration.anon = false; // No qualifiers.reset() here. } } // This code handles a special issue with the attribute transparent_union. // // typedef union U { int i; } typedef_name __attribute__(( aligned(16) )) __attribute__(( transparent_union )) // // Here the attribute aligned goes with the typedef_name, so variables declared of this type are // aligned. However, the attribute transparent_union must be moved from the typedef_name to // alias union U. Currently, this is the only know attribute that must be moved from typedef to // alias. static void moveUnionAttribute( ast::Decl * decl, ast::UnionDecl * unionDecl ) { if ( auto typedefDecl = dynamic_cast( decl ) ) { // Is the typedef alias a union aggregate? if ( nullptr == unionDecl ) return; // If typedef is an alias for a union, then its alias type was hoisted above and remembered. if ( auto unionInstType = typedefDecl->base.as() ) { auto instType = ast::mutate( unionInstType ); // Remove all transparent_union attributes from typedef and move to alias union. for ( auto attr = instType->attributes.begin() ; attr != instType->attributes.end() ; ) { assert( *attr ); if ( (*attr)->name == "transparent_union" || (*attr)->name == "__transparent_union__" ) { unionDecl->attributes.emplace_back( attr->release() ); attr = instType->attributes.erase( attr ); } else { attr++; } } typedefDecl->base = instType; } } } // Get the non-anonymous name of the instance type of the declaration, // if one exists. static const std::string * getInstTypeOfName( ast::Decl * decl ) { if ( auto dwt = dynamic_cast( decl ) ) { if ( auto aggr = dynamic_cast( dwt->get_type() ) ) { if ( aggr->name.find("anonymous") == std::string::npos ) { return &aggr->name; } } } return nullptr; } void buildList( DeclarationNode * firstNode, std::vector> & outputList ) { SemanticErrorException errors; std::back_insert_iterator>> out( outputList ); for ( const DeclarationNode * cur = firstNode ; cur ; cur = strict_next( cur ) ) { try { bool extracted_named = false; ast::UnionDecl * unionDecl = nullptr; if ( DeclarationNode * extr = cur->extractAggregate() ) { assert( cur->type ); nameTypedefedDecl( extr, cur ); if ( ast::Decl * decl = extr->build() ) { // Remember the declaration if it is a union aggregate ? unionDecl = dynamic_cast( decl ); *out++ = decl; // need to remember the cases where a declaration contains an anonymous aggregate definition assert( extr->type ); if ( extr->type->kind == TypeData::Aggregate ) { // typedef struct { int A } B is the only case? extracted_named = !extr->type->aggregate.anon; } else if ( extr->type->kind == TypeData::Enum ) { // typedef enum { A } B is the only case? extracted_named = !extr->type->enumeration.anon; } else { extracted_named = true; } } // if delete extr; } // if if ( ast::Decl * decl = cur->build() ) { moveUnionAttribute( decl, unionDecl ); if ( "" == decl->name && !cur->get_inLine() ) { // Don't include anonymous declaration for named aggregates, // but do include them for anonymous aggregates, e.g.: // struct S { // struct T { int x; }; // no anonymous member // struct { int y; }; // anonymous member // struct T; // anonymous member // }; if ( extracted_named ) { continue; } if ( auto name = getInstTypeOfName( decl ) ) { // Temporary: warn about anonymous member declarations of named types, since // this conflicts with the syntax for the forward declaration of an anonymous type. SemanticWarning( cur->location, Warning::AggrForwardDecl, name->c_str() ); } } // if *out++ = decl; } // if } catch ( SemanticErrorException & e ) { errors.append( e ); } // try } // for if ( ! errors.isEmpty() ) { throw errors; } // if } // buildList // currently only builds assertions, function parameters, and return values void buildList( DeclarationNode * firstNode, std::vector> & outputList ) { SemanticErrorException errors; std::back_insert_iterator>> out( outputList ); for ( const DeclarationNode * cur = firstNode; cur; cur = strict_next( cur ) ) { try { ast::Decl * decl = cur->build(); assertf( decl, "buildList: build for ast::DeclWithType." ); if ( ast::DeclWithType * dwt = dynamic_cast( decl ) ) { dwt->location = cur->location; *out++ = dwt; } else if ( ast::StructDecl * agg = dynamic_cast( decl ) ) { // e.g., int foo(struct S) {} auto inst = new ast::StructInstType( agg->name ); auto obj = new ast::ObjectDecl( cur->location, "", inst ); obj->linkage = linkage; *out++ = obj; delete agg; } else if ( ast::UnionDecl * agg = dynamic_cast( decl ) ) { // e.g., int foo(union U) {} auto inst = new ast::UnionInstType( agg->name ); auto obj = new ast::ObjectDecl( cur->location, "", inst, nullptr, ast::Storage::Classes(), linkage ); *out++ = obj; } else if ( ast::EnumDecl * agg = dynamic_cast( decl ) ) { // e.g., int foo(enum E) {} auto inst = new ast::EnumInstType( agg->name ); auto obj = new ast::ObjectDecl( cur->location, "", inst, nullptr, ast::Storage::Classes(), linkage ); *out++ = obj; } else { assertf( false, "buildList: Could not convert to ast::DeclWithType." ); } // if } catch ( SemanticErrorException & e ) { errors.append( e ); } // try } // for if ( ! errors.isEmpty() ) { throw errors; } // if } // buildList void buildTypeList( const DeclarationNode * firstNode, std::vector> & outputList ) { SemanticErrorException errors; std::back_insert_iterator>> out( outputList ); for ( const DeclarationNode * cur = firstNode ; cur ; cur = strict_next( cur ) ) { try { * out++ = cur->buildType(); } catch ( SemanticErrorException & e ) { errors.append( e ); } // try } // for if ( ! errors.isEmpty() ) { throw errors; } // if } // buildTypeList ast::Decl * DeclarationNode::build() const { if ( ! error.empty() ) SemanticError( this, error + " in declaration of " ); if ( asmStmt ) { auto stmt = strict_dynamic_cast( asmStmt->build() ); return new ast::AsmDecl( stmt->location, stmt ); } // if if ( directiveStmt ) { auto stmt = strict_dynamic_cast( directiveStmt->build() ); return new ast::DirectiveDecl( stmt->location, stmt ); } // if if ( variable.tyClass != ast::TypeDecl::NUMBER_OF_KINDS ) { // otype is internally converted to dtype + otype parameters static const ast::TypeDecl::Kind kindMap[] = { ast::TypeDecl::Dtype, ast::TypeDecl::Dtype, ast::TypeDecl::Dtype, ast::TypeDecl::Ftype, ast::TypeDecl::Ttype, ast::TypeDecl::Dimension }; static_assert( sizeof(kindMap) / sizeof(kindMap[0]) == ast::TypeDecl::NUMBER_OF_KINDS, "DeclarationNode::build: kindMap is out of sync." ); assertf( variable.tyClass < sizeof(kindMap)/sizeof(kindMap[0]), "Variable's tyClass is out of bounds." ); ast::TypeDecl * ret = new ast::TypeDecl( location, *name, ast::Storage::Classes(), (ast::Type *)nullptr, kindMap[ variable.tyClass ], variable.tyClass == ast::TypeDecl::Otype || variable.tyClass == ast::TypeDecl::DStype, variable.initializer ? variable.initializer->buildType() : nullptr ); buildList( variable.assertions, ret->assertions ); return ret; } // if if ( type ) { // Function specifiers can only appear on a function definition/declaration. // // inline _Noreturn int f(); // allowed // inline _Noreturn int g( int i ); // allowed // inline _Noreturn int i; // disallowed if ( type->kind != TypeData::Function && funcSpecs.any() ) { SemanticError( this, "invalid function specifier for " ); } // if // Forall qualifier can only appear on a function/aggregate definition/declaration. // // forall int f(); // allowed // forall int g( int i ); // allowed // forall int i; // disallowed if ( type->kind != TypeData::Function && type->forall ) { SemanticError( this, "invalid type qualifier for " ); } // if bool isDelete = initializer && initializer->get_isDelete(); ast::Decl * decl = buildDecl( type, name ? *name : string( "" ), storageClasses, maybeBuild( bitfieldWidth ), funcSpecs, linkage, asmName, isDelete ? nullptr : maybeBuild( initializer ), copy( attributes ) )->set_extension( extension ); if ( isDelete ) { auto dwt = strict_dynamic_cast( decl ); dwt->isDeleted = true; } return decl; } // if if ( assert.condition ) { auto cond = maybeBuild( assert.condition ); auto msg = strict_dynamic_cast( maybeCopy( assert.message ) ); return new ast::StaticAssertDecl( location, cond, msg ); } // SUE's cannot have function specifiers, either // // inline _Noreturn struct S { ... }; // disallowed // inline _Noreturn enum E { ... }; // disallowed if ( funcSpecs.any() ) { SemanticError( this, "invalid function specifier for " ); } // if if ( enumInLine ) { return new ast::InlineMemberDecl( location, *name, (ast::Type*)nullptr, storageClasses, linkage ); } // if assertf( name, "ObjectDecl must a have name\n" ); auto ret = new ast::ObjectDecl( location, *name, (ast::Type*)nullptr, maybeBuild( initializer ), storageClasses, linkage, maybeBuild( bitfieldWidth ) ); ret->asmName = asmName; ret->extension = extension; return ret; } ast::Type * DeclarationNode::buildType() const { assert( type ); switch ( type->kind ) { case TypeData::Enum: case TypeData::Aggregate: { ast::BaseInstType * ret = buildComAggInst( type, copy( attributes ), linkage ); buildList( type->aggregate.actuals, ret->params ); return ret; } case TypeData::Symbolic: { ast::TypeInstType * ret = new ast::TypeInstType( *type->symbolic.name, // This is just a default, the true value is not known yet. ast::TypeDecl::Dtype, buildQualifiers( type ), copy( attributes ) ); buildList( type->symbolic.actuals, ret->params ); return ret; } default: ast::Type * simpletypes = typebuild( type ); // copy because member is const simpletypes->attributes = attributes; return simpletypes; } // switch } // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //