// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // GenInit.cc -- // // Author : Rob Schluntz // Created On : Mon May 18 07:44:20 2015 // Last Modified By : Peter A. Buhr // Last Modified On : Fri Mar 17 09:12:36 2017 // Update Count : 183 // #include "GenInit.h" #include // for NULL #include // for any_of #include // for assert, strict_dynamic_cast, assertf #include // for back_inserter, inserter, back_inse... #include // for _List_iterator, list #include "CodeGen/OperatorTable.h" #include "Common/PassVisitor.h" // for PassVisitor, WithGuards, WithShort... #include "Common/SemanticError.h" // for SemanticError #include "Common/UniqueName.h" // for UniqueName #include "Common/utility.h" // for ValueGuard, maybeClone #include "GenPoly/GenPoly.h" // for getFunctionType, isPolyType #include "GenPoly/ScopedSet.h" // for ScopedSet, ScopedSet<>::const_iter... #include "InitTweak.h" // for isConstExpr, InitExpander, checkIn... #include "Parser/LinkageSpec.h" // for isOverridable, C #include "ResolvExpr/Resolver.h" #include "SymTab/Autogen.h" // for genImplicitCall, SizeType #include "SymTab/Mangler.h" // for Mangler #include "SynTree/Declaration.h" // for ObjectDecl, DeclarationWithType #include "SynTree/Expression.h" // for VariableExpr, UntypedExpr, Address... #include "SynTree/Initializer.h" // for ConstructorInit, SingleInit, Initi... #include "SynTree/Label.h" // for Label #include "SynTree/Mutator.h" // for mutateAll #include "SynTree/Statement.h" // for CompoundStmt, ImplicitCtorDtorStmt #include "SynTree/Type.h" // for Type, ArrayType, Type::Qualifiers #include "SynTree/Visitor.h" // for acceptAll, maybeAccept #include "Tuples/Tuples.h" // for maybeImpure namespace InitTweak { namespace { const std::vector< Label > noLabels; const std::list noDesignators; } struct ReturnFixer : public WithStmtsToAdd, public WithGuards { /// consistently allocates a temporary variable for the return value /// of a function so that anything which the resolver decides can be constructed /// into the return type of a function can be returned. static void makeReturnTemp( std::list< Declaration * > &translationUnit ); void premutate( FunctionDecl *functionDecl ); void premutate( ReturnStmt * returnStmt ); protected: FunctionType * ftype = nullptr; std::string funcName; }; struct CtorDtor : public WithGuards, public WithShortCircuiting, public WithVisitorRef { /// create constructor and destructor statements for object declarations. /// the actual call statements will be added in after the resolver has run /// so that the initializer expression is only removed if a constructor is found /// and the same destructor call is inserted in all of the appropriate locations. static void generateCtorDtor( std::list< Declaration * > &translationUnit ); void previsit( ObjectDecl * ); void previsit( FunctionDecl *functionDecl ); // should not traverse into any of these declarations to find objects // that need to be constructed or destructed void previsit( StructDecl *aggregateDecl ); void previsit( AggregateDecl * ) { visit_children = false; } void previsit( NamedTypeDecl * ) { visit_children = false; } void previsit( FunctionType * ) { visit_children = false; } void previsit( CompoundStmt * compoundStmt ); private: // set of mangled type names for which a constructor or destructor exists in the current scope. // these types require a ConstructorInit node to be generated, anything else is a POD type and thus // should not have a ConstructorInit generated. ManagedTypes managedTypes; bool inFunction = false; }; struct HoistArrayDimension final : public WithDeclsToAdd, public WithShortCircuiting, public WithGuards, public WithIndexer { /// hoist dimension from array types in object declaration so that it uses a single /// const variable of type size_t, so that side effecting array dimensions are only /// computed once. static void hoistArrayDimension( std::list< Declaration * > & translationUnit ); void premutate( ObjectDecl * objectDecl ); DeclarationWithType * postmutate( ObjectDecl * objectDecl ); void premutate( FunctionDecl *functionDecl ); // should not traverse into any of these declarations to find objects // that need to be constructed or destructed void premutate( AggregateDecl * ) { visit_children = false; } void premutate( NamedTypeDecl * ) { visit_children = false; } void premutate( FunctionType * ) { visit_children = false; } // need this so that enumerators are added to the indexer, due to premutate(AggregateDecl *) void premutate( EnumDecl * ) {} void hoist( Type * type ); Type::StorageClasses storageClasses; bool inFunction = false; }; void genInit( std::list< Declaration * > & translationUnit ) { fixReturnStatements( translationUnit ); HoistArrayDimension::hoistArrayDimension( translationUnit ); CtorDtor::generateCtorDtor( translationUnit ); } void fixReturnStatements( std::list< Declaration * > & translationUnit ) { PassVisitor fixer; mutateAll( translationUnit, fixer ); } void ReturnFixer::premutate( ReturnStmt *returnStmt ) { std::list< DeclarationWithType * > & returnVals = ftype->get_returnVals(); assert( returnVals.size() == 0 || returnVals.size() == 1 ); // hands off if the function returns a reference - we don't want to allocate a temporary if a variable's address // is being returned if ( returnStmt->expr && returnVals.size() == 1 && isConstructable( returnVals.front()->get_type() ) ) { // explicitly construct the return value using the return expression and the retVal object assertf( returnVals.front()->name != "", "Function %s has unnamed return value\n", funcName.c_str() ); ObjectDecl * retVal = strict_dynamic_cast< ObjectDecl * >( returnVals.front() ); if ( VariableExpr * varExpr = dynamic_cast< VariableExpr * >( returnStmt->expr ) ) { // return statement has already been mutated - don't need to do it again if ( varExpr->var == retVal ) return; } Statement * stmt = genCtorDtor( "?{}", retVal, returnStmt->expr ); assertf( stmt, "ReturnFixer: genCtorDtor returned nullptr: %s / %s", toString( retVal ).c_str(), toString( returnStmt->expr ).c_str() ); stmtsToAddBefore.push_back( stmt ); // return the retVal object returnStmt->expr = new VariableExpr( returnVals.front() ); } // if } void ReturnFixer::premutate( FunctionDecl *functionDecl ) { GuardValue( ftype ); GuardValue( funcName ); ftype = functionDecl->type; funcName = functionDecl->name; } // precompute array dimension expression, because constructor generation may duplicate it, // which would be incorrect if it is a side-effecting computation. void HoistArrayDimension::hoistArrayDimension( std::list< Declaration * > & translationUnit ) { PassVisitor hoister; mutateAll( translationUnit, hoister ); } void HoistArrayDimension::premutate( ObjectDecl * objectDecl ) { GuardValue( storageClasses ); storageClasses = objectDecl->get_storageClasses(); } DeclarationWithType * HoistArrayDimension::postmutate( ObjectDecl * objectDecl ) { hoist( objectDecl->get_type() ); return objectDecl; } void HoistArrayDimension::hoist( Type * type ) { // if in function, generate const size_t var static UniqueName dimensionName( "_array_dim" ); // C doesn't allow variable sized arrays at global scope or for static variables, so don't hoist dimension. if ( ! inFunction ) return; if ( storageClasses.is_static ) return; if ( ArrayType * arrayType = dynamic_cast< ArrayType * >( type ) ) { if ( ! arrayType->get_dimension() ) return; // xxx - recursive call to hoist? // need to resolve array dimensions in order to accurately determine if constexpr ResolvExpr::findSingleExpression( arrayType->dimension, SymTab::SizeType->clone(), indexer ); // array is variable-length when the dimension is not constexpr arrayType->isVarLen = ! isConstExpr( arrayType->dimension ); // don't need to hoist dimension if it's definitely pure - only need to if there's potential for side effects. if ( ! Tuples::maybeImpure( arrayType->dimension ) ) return; ObjectDecl * arrayDimension = new ObjectDecl( dimensionName.newName(), storageClasses, LinkageSpec::C, 0, SymTab::SizeType->clone(), new SingleInit( arrayType->get_dimension() ) ); arrayDimension->get_type()->set_const( true ); arrayType->set_dimension( new VariableExpr( arrayDimension ) ); declsToAddBefore.push_back( arrayDimension ); hoist( arrayType->get_base() ); return; } } void HoistArrayDimension::premutate( FunctionDecl * ) { GuardValue( inFunction ); inFunction = true; } void CtorDtor::generateCtorDtor( std::list< Declaration * > & translationUnit ) { PassVisitor ctordtor; acceptAll( translationUnit, ctordtor ); } bool ManagedTypes::isManaged( Type * type ) const { // references are never constructed if ( dynamic_cast< ReferenceType * >( type ) ) return false; // need to clear and reset qualifiers when determining if a type is managed ValueGuard< Type::Qualifiers > qualifiers( type->get_qualifiers() ); type->get_qualifiers() = Type::Qualifiers(); if ( TupleType * tupleType = dynamic_cast< TupleType * > ( type ) ) { // tuple is also managed if any of its components are managed if ( std::any_of( tupleType->types.begin(), tupleType->types.end(), [&](Type * type) { return isManaged( type ); }) ) { return true; } } // a type is managed if it appears in the map of known managed types, or if it contains any polymorphism (is a type variable or generic type containing a type variable) return managedTypes.find( SymTab::Mangler::mangleConcrete( type ) ) != managedTypes.end() || GenPoly::isPolyType( type ); } bool ManagedTypes::isManaged( ObjectDecl * objDecl ) const { Type * type = objDecl->get_type(); while ( ArrayType * at = dynamic_cast< ArrayType * >( type ) ) { // must always construct VLAs with an initializer, since this is an error in C if ( at->isVarLen && objDecl->init ) return true; type = at->get_base(); } return isManaged( type ); } void ManagedTypes::handleDWT( DeclarationWithType * dwt ) { // if this function is a user-defined constructor or destructor, mark down the type as "managed" if ( ! LinkageSpec::isOverridable( dwt->get_linkage() ) && CodeGen::isCtorDtor( dwt->get_name() ) ) { std::list< DeclarationWithType * > & params = GenPoly::getFunctionType( dwt->get_type() )->get_parameters(); assert( ! params.empty() ); Type * type = InitTweak::getPointerBase( params.front()->get_type() ); assert( type ); managedTypes.insert( SymTab::Mangler::mangleConcrete( type ) ); } } void ManagedTypes::handleStruct( StructDecl * aggregateDecl ) { // don't construct members, but need to take note if there is a managed member, // because that means that this type is also managed for ( Declaration * member : aggregateDecl->get_members() ) { if ( ObjectDecl * field = dynamic_cast< ObjectDecl * >( member ) ) { if ( isManaged( field ) ) { // generic parameters should not play a role in determining whether a generic type is constructed - construct all generic types, so that // polymorphic constructors make generic types managed types StructInstType inst( Type::Qualifiers(), aggregateDecl ); managedTypes.insert( SymTab::Mangler::mangleConcrete( &inst ) ); break; } } } } void ManagedTypes::beginScope() { managedTypes.beginScope(); } void ManagedTypes::endScope() { managedTypes.endScope(); } ImplicitCtorDtorStmt * genCtorDtor( const std::string & fname, ObjectDecl * objDecl, Expression * arg ) { // call into genImplicitCall from Autogen.h to generate calls to ctor/dtor assertf( objDecl, "genCtorDtor passed null objDecl" ); std::list< Statement * > stmts; InitExpander srcParam( maybeClone( arg ) ); SymTab::genImplicitCall( srcParam, new VariableExpr( objDecl ), fname, back_inserter( stmts ), objDecl ); assert( stmts.size() <= 1 ); return stmts.size() == 1 ? strict_dynamic_cast< ImplicitCtorDtorStmt * >( stmts.front() ) : nullptr; } ConstructorInit * genCtorInit( ObjectDecl * objDecl ) { // call into genImplicitCall from Autogen.h to generate calls to ctor/dtor // for each constructable object std::list< Statement * > ctor; std::list< Statement * > dtor; InitExpander srcParam( objDecl->get_init() ); InitExpander nullParam( (Initializer *)NULL ); SymTab::genImplicitCall( srcParam, new VariableExpr( objDecl ), "?{}", back_inserter( ctor ), objDecl ); SymTab::genImplicitCall( nullParam, new VariableExpr( objDecl ), "^?{}", front_inserter( dtor ), objDecl, false ); // Currently genImplicitCall produces a single Statement - a CompoundStmt // which wraps everything that needs to happen. As such, it's technically // possible to use a Statement ** in the above calls, but this is inherently // unsafe, so instead we take the slightly less efficient route, but will be // immediately informed if somehow the above assumption is broken. In this case, // we could always wrap the list of statements at this point with a CompoundStmt, // but it seems reasonable at the moment for this to be done by genImplicitCall // itself. It is possible that genImplicitCall produces no statements (e.g. if // an array type does not have a dimension). In this case, it's fine to ignore // the object for the purposes of construction. assert( ctor.size() == dtor.size() && ctor.size() <= 1 ); if ( ctor.size() == 1 ) { // need to remember init expression, in case no ctors exist // if ctor does exist, want to use ctor expression instead of init // push this decision to the resolver assert( dynamic_cast< ImplicitCtorDtorStmt * > ( ctor.front() ) && dynamic_cast< ImplicitCtorDtorStmt * > ( dtor.front() ) ); return new ConstructorInit( ctor.front(), dtor.front(), objDecl->get_init() ); } return nullptr; } void CtorDtor::previsit( ObjectDecl * objDecl ) { managedTypes.handleDWT( objDecl ); // hands off if @=, extern, builtin, etc. // even if unmanaged, try to construct global or static if initializer is not constexpr, since this is not legal C if ( tryConstruct( objDecl ) && ( managedTypes.isManaged( objDecl ) || ((! inFunction || objDecl->get_storageClasses().is_static ) && ! isConstExpr( objDecl->get_init() ) ) ) ) { // constructed objects cannot be designated if ( isDesignated( objDecl->get_init() ) ) SemanticError( objDecl, "Cannot include designations in the initializer for a managed Object. If this is really what you want, then initialize with @=.\n" ); // constructed objects should not have initializers nested too deeply if ( ! checkInitDepth( objDecl ) ) SemanticError( objDecl, "Managed object's initializer is too deep " ); objDecl->set_init( genCtorInit( objDecl ) ); } } void CtorDtor::previsit( FunctionDecl *functionDecl ) { visit_children = false; // do not try and construct parameters or forall parameters GuardValue( inFunction ); inFunction = true; managedTypes.handleDWT( functionDecl ); GuardScope( managedTypes ); // go through assertions and recursively add seen ctor/dtors for ( auto & tyDecl : functionDecl->get_functionType()->get_forall() ) { for ( DeclarationWithType *& assertion : tyDecl->get_assertions() ) { managedTypes.handleDWT( assertion ); } } maybeAccept( functionDecl->get_statements(), *visitor ); } void CtorDtor::previsit( StructDecl *aggregateDecl ) { visit_children = false; // do not try to construct and destruct aggregate members managedTypes.handleStruct( aggregateDecl ); } void CtorDtor::previsit( CompoundStmt * ) { GuardScope( managedTypes ); } } // namespace InitTweak // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //