// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // FixInit.cc -- // // Author : Rob Schluntz // Created On : Wed Jan 13 16:29:30 2016 // Last Modified By : Peter A. Buhr // Last Modified On : Sun Feb 16 04:17:07 2020 // Update Count : 82 // #include "FixInit.h" #include // for NULL #include // for set_difference, copy_if #include // for assert, strict_dynamic_cast #include // for operator<<, ostream, basic_ost... #include // for insert_iterator, back_inserter #include // for _List_iterator, list, list<>::... #include // for _Rb_tree_iterator, _Rb_tree_co... #include // for allocator_traits<>::value_type #include // for set, set<>::value_type #include // for unordered_map, unordered_map<>... #include // for unordered_set #include // for pair #include "CodeGen/GenType.h" // for genPrettyType #include "CodeGen/OperatorTable.h" #include "Common/PassVisitor.h" // for PassVisitor, WithStmtsToAdd #include "Common/SemanticError.h" // for SemanticError #include "Common/UniqueName.h" // for UniqueName #include "Common/utility.h" // for CodeLocation, ValueGuard, toSt... #include "FixGlobalInit.h" // for fixGlobalInit #include "GenInit.h" // for genCtorDtor #include "GenPoly/GenPoly.h" // for getFunctionType #include "InitTweak.h" // for getFunctionName, getCallArg #include "ResolvExpr/Resolver.h" // for findVoidExpression #include "ResolvExpr/typeops.h" // for typesCompatible #include "SymTab/Autogen.h" // for genImplicitCall #include "SymTab/Indexer.h" // for Indexer #include "SymTab/Mangler.h" // for Mangler #include "SynTree/LinkageSpec.h" // for C, Spec, Cforall, isBuiltin #include "SynTree/Attribute.h" // for Attribute #include "SynTree/Constant.h" // for Constant #include "SynTree/Declaration.h" // for ObjectDecl, FunctionDecl, Decl... #include "SynTree/Expression.h" // for UniqueExpr, VariableExpr, Unty... #include "SynTree/Initializer.h" // for ConstructorInit, SingleInit #include "SynTree/Label.h" // for Label, operator< #include "SynTree/Mutator.h" // for mutateAll, Mutator, maybeMutate #include "SynTree/Statement.h" // for ExprStmt, CompoundStmt, Branch... #include "SynTree/Type.h" // for Type, Type::StorageClasses #include "SynTree/TypeSubstitution.h" // for TypeSubstitution, operator<< #include "SynTree/DeclReplacer.h" // for DeclReplacer #include "SynTree/Visitor.h" // for acceptAll, maybeAccept #include "Validate/FindSpecialDecls.h" // for dtorStmt, dtorStructDestroy #include "AST/Expr.hpp" #include "AST/Node.hpp" #include "AST/Pass.hpp" #include "AST/Print.hpp" #include "AST/SymbolTable.hpp" #include "AST/Type.hpp" #include "AST/DeclReplacer.hpp" extern bool ctordtorp; // print all debug extern bool ctorp; // print ctor debug extern bool cpctorp; // print copy ctor debug extern bool dtorp; // print dtor debug #define PRINT( text ) if ( ctordtorp ) { text } #define CP_CTOR_PRINT( text ) if ( ctordtorp || cpctorp ) { text } #define DTOR_PRINT( text ) if ( ctordtorp || dtorp ) { text } namespace InitTweak { namespace { struct SelfAssignChecker { void previsit( const ast::ApplicationExpr * appExpr ); }; struct StmtExprResult { static void link( std::list > & translationUnit ); const ast::StmtExpr * previsit( const ast::StmtExpr * stmtExpr ); }; struct InsertImplicitCalls : public ast::WithConstTypeSubstitution, public ast::WithShortCircuiting { /// wrap function application expressions as ImplicitCopyCtorExpr nodes so that it is easy to identify which /// function calls need their parameters to be copy constructed static void insert( std::list > & translationUnit ); const ast::Expr * postvisit( const ast::ApplicationExpr * appExpr ); // only handles each UniqueExpr once // if order of visit does not change, this should be safe void previsit (const ast::UniqueExpr *); std::unordered_set visitedIds; }; struct ResolveCopyCtors final : public ast::WithGuards, public ast::WithStmtsToAdd<>, public ast::WithSymbolTable, public ast::WithShortCircuiting, public ast::WithVisitorRef { /// generate temporary ObjectDecls for each argument and return value of each ImplicitCopyCtorExpr, /// generate/resolve copy construction expressions for each, and generate/resolve destructors for both /// arguments and return value temporaries static void resolveImplicitCalls( std::list > & translationUnit ); const ast::Expr * postvisit( const ast::ImplicitCopyCtorExpr * impCpCtorExpr ); const ast::StmtExpr * previsit( const ast::StmtExpr * stmtExpr ); const ast::UniqueExpr * previsit( const ast::UniqueExpr * unqExpr ); /// handles distant mutations of environment manually. /// WithConstTypeSubstitution cannot remember where the environment is from /// MUST be called at start of overload previsit void previsit( const ast::Expr * expr); /// MUST be called at return of overload postvisit const ast::Expr * postvisit(const ast::Expr * expr); /// create and resolve ctor/dtor expression: fname(var, [cpArg]) const ast::Expr * makeCtorDtor( const std::string & fname, const ast::ObjectDecl * var, const ast::Expr * cpArg = nullptr ); /// true if type does not need to be copy constructed to ensure correctness bool skipCopyConstruct( const ast::Type * type ); ast::ptr< ast::Expr > copyConstructArg( const ast::Expr * arg, const ast::ImplicitCopyCtorExpr * impCpCtorExpr, const ast::Type * formal ); ast::Expr * destructRet( const ast::ObjectDecl * ret, const ast::Expr * arg ); private: /// hack to implement WithTypeSubstitution while conforming to mutation safety. ast::TypeSubstitution * env; bool envModified; }; /// collects constructed object decls - used as a base class struct ObjDeclCollector : public ast::WithGuards, public ast::WithShortCircuiting { // use ordered data structure to maintain ordering for set_difference and for consistent error messages typedef std::list< const ast::ObjectDecl * > ObjectSet; void previsit( const ast::CompoundStmt *compoundStmt ); void previsit( const ast::DeclStmt *stmt ); // don't go into other functions void previsit( const ast::FunctionDecl * ) { visit_children = false; } protected: ObjectSet curVars; }; // debug template struct PrintSet { PrintSet( const ObjectSet & objs ) : objs( objs ) {} const ObjectSet & objs; }; template PrintSet printSet( const ObjectSet & objs ) { return PrintSet( objs ); } template std::ostream & operator<<( std::ostream & out, const PrintSet & set) { out << "{ "; for ( auto & obj : set.objs ) { out << obj->name << ", " ; } // for out << " }"; return out; } struct LabelFinder final : public ObjDeclCollector { typedef std::map< std::string, ObjectSet > LabelMap; // map of Label -> live variables at that label LabelMap vars; typedef ObjDeclCollector Parent; using Parent::previsit; void previsit( const ast::Stmt * stmt ); void previsit( const ast::CompoundStmt *compoundStmt ); void previsit( const ast::DeclStmt *stmt ); }; struct InsertDtors final : public ObjDeclCollector, public ast::WithStmtsToAdd<> { /// insert destructor calls at the appropriate places. must happen before CtorInit nodes are removed /// (currently by FixInit) static void insert( std::list< ast::ptr > & translationUnit ); typedef std::list< ObjectDecl * > OrderedDecls; typedef std::list< OrderedDecls > OrderedDeclsStack; InsertDtors( ast::Pass & finder ) : finder( finder ), labelVars( finder.core.vars ) {} typedef ObjDeclCollector Parent; using Parent::previsit; void previsit( const ast::FunctionDecl * funcDecl ); void previsit( const ast::BranchStmt * stmt ); private: void handleGoto( const ast::BranchStmt * stmt ); ast::Pass & finder; LabelFinder::LabelMap & labelVars; OrderedDeclsStack reverseDeclOrder; }; class FixInit : public ast::WithStmtsToAdd<> { public: /// expand each object declaration to use its constructor after it is declared. static void fixInitializers( std::list< ast::ptr > &translationUnit ); const ast::DeclWithType * postvisit( const ast::ObjectDecl *objDecl ); std::list< ast::ptr< ast::Decl > > staticDtorDecls; }; struct GenStructMemberCalls final : public ast::WithGuards, public ast::WithShortCircuiting, public ast::WithSymbolTable, public ast::WithVisitorRef { /// generate default/copy ctor and dtor calls for user-defined struct ctor/dtors /// for any member that is missing a corresponding ctor/dtor call. /// error if a member is used before constructed static void generate( std::list< ast::ptr > & translationUnit ); void previsit( const ast::FunctionDecl * funcDecl ); const ast::DeclWithType * postvisit( const ast::FunctionDecl * funcDecl ); void previsit( const ast::MemberExpr * memberExpr ); void previsit( const ast::ApplicationExpr * appExpr ); /// Note: this post mutate used to be in a separate visitor. If this pass breaks, one place to examine is whether it is /// okay for this part of the recursion to occur alongside the rest. const ast::Expr * postvisit( const ast::UntypedExpr * expr ); SemanticErrorException errors; private: template< typename... Params > void emit( CodeLocation, const Params &... params ); ast::FunctionDecl * function = nullptr; std::set< const ast::DeclWithType * > unhandled; std::map< const ast::DeclWithType *, CodeLocation > usedUninit; const ast::ObjectDecl * thisParam = nullptr; bool isCtor = false; // true if current function is a constructor const ast::StructDecl * structDecl = nullptr; }; struct FixCtorExprs final : public ast::WithDeclsToAdd<>, public ast::WithSymbolTable, public ast::WithShortCircuiting { /// expands ConstructorExpr nodes into comma expressions, using a temporary for the first argument static void fix( std::list< ast::ptr > & translationUnit ); const ast::Expr * postvisit( const ast::ConstructorExpr * ctorExpr ); }; struct SplitExpressions : public ast::WithShortCircuiting { /// add CompoundStmts around top-level expressions so that temporaries are destroyed in the correct places. static void split( std::list > & translationUnit ); ast::Stmt * postvisit( const ast::ExprStmt * stmt ); void previsit( const ast::TupleAssignExpr * expr ); }; } // namespace void fix( std::list< ast::ptr > & translationUnit, bool inLibrary ) { ast::Pass checker; accept_all( translationUnit, checker ); // fixes StmtExpr to properly link to their resulting expression StmtExprResult::link( translationUnit ); // fixes ConstructorInit for global variables. should happen before fixInitializers. InitTweak::fixGlobalInit( translationUnit, inLibrary ); // must happen before ResolveCopyCtors because temporaries have to be inserted into the correct scope SplitExpressions::split( translationUnit ); InsertImplicitCalls::insert( translationUnit ); // Needs to happen before ResolveCopyCtors, because argument/return temporaries should not be considered in // error checking branch statements InsertDtors::insert( translationUnit ); ResolveCopyCtors::resolveImplicitCalls( translationUnit ); FixInit::fixInitializers( translationUnit ); GenStructMemberCalls::generate( translationUnit ); // Needs to happen after GenStructMemberCalls, since otherwise member constructors exprs // don't have the correct form, and a member can be constructed more than once. FixCtorExprs::fix( translationUnit ); } namespace { /// find and return the destructor used in `input`. If `input` is not a simple destructor call, generate a thunk /// that wraps the destructor, insert it into `stmtsToAdd` and return the new function declaration const ast::DeclWithType * getDtorFunc( const ast::ObjectDecl * objDecl, const ast::Stmt * input, std::list< ast::ptr > & stmtsToAdd ) { const CodeLocation loc = input->location; // unwrap implicit statement wrapper // Statement * dtor = input; assert( input ); // std::list< const ast::Expr * > matches; auto matches = collectCtorDtorCalls( input ); if ( dynamic_cast< const ast::ExprStmt * >( input ) ) { // only one destructor call in the expression if ( matches.size() == 1 ) { auto func = getFunction( matches.front() ); assertf( func, "getFunction failed to find function in %s", toString( matches.front() ).c_str() ); // cleanup argument must be a function, not an object (including function pointer) if ( auto dtorFunc = dynamic_cast< const ast::FunctionDecl * > ( func ) ) { if ( dtorFunc->type->forall.empty() ) { // simple case where the destructor is a monomorphic function call - can simply // use that function as the cleanup function. return func; } } } } // otherwise the cleanup is more complicated - need to build a single argument cleanup function that // wraps the more complicated code. static UniqueName dtorNamer( "__cleanup_dtor" ); std::string name = dtorNamer.newName(); ast::FunctionDecl * dtorFunc = SymTab::genDefaultFunc( loc, name, objDecl->type->stripReferences(), false ); stmtsToAdd.push_back( new ast::DeclStmt(loc, dtorFunc ) ); // the original code contains uses of objDecl - replace them with the newly generated 'this' parameter. const ast::ObjectDecl * thisParam = getParamThis( dtorFunc ); const ast::Expr * replacement = new ast::VariableExpr( loc, thisParam ); auto base = replacement->result->stripReferences(); if ( dynamic_cast< const ast::ArrayType * >( base ) || dynamic_cast< const ast::TupleType * > ( base ) ) { // need to cast away reference for array types, since the destructor is generated without the reference type, // and for tuple types since tuple indexing does not work directly on a reference replacement = new ast::CastExpr( replacement, base ); } auto dtor = ast::DeclReplacer::replace( input, ast::DeclReplacer::ExprMap{ std::make_pair( objDecl, replacement ) } ); auto mutStmts = dtorFunc->stmts.get_and_mutate(); mutStmts->push_back(strict_dynamic_cast( dtor )); dtorFunc->stmts = mutStmts; return dtorFunc; } void StmtExprResult::link( std::list > & translationUnit ) { ast::Pass linker; accept_all( translationUnit, linker ); } void SplitExpressions::split( std::list > & translationUnit ) { ast::Pass splitter; accept_all( translationUnit, splitter ); } void InsertImplicitCalls::insert( std::list > & translationUnit ) { ast::Pass inserter; accept_all( translationUnit, inserter ); } void ResolveCopyCtors::resolveImplicitCalls( std::list< ast::ptr > & translationUnit ) { ast::Pass resolver; accept_all( translationUnit, resolver ); } void FixInit::fixInitializers( std::list< ast::ptr > & translationUnit ) { ast::Pass fixer; // can't use mutateAll, because need to insert declarations at top-level // can't use DeclMutator, because sometimes need to insert IfStmt, etc. SemanticErrorException errors; for ( auto i = translationUnit.begin(); i != translationUnit.end(); ++i ) { try { // maybeAccept( *i, fixer ); translationUnit should never contain null *i = (*i)->accept(fixer); translationUnit.splice( i, fixer.core.staticDtorDecls ); } catch( SemanticErrorException &e ) { errors.append( e ); } // try } // for if ( ! errors.isEmpty() ) { throw errors; } // if } void InsertDtors::insert( std::list< ast::ptr > & translationUnit ) { ast::Pass finder; ast::Pass inserter( finder ); accept_all( translationUnit, inserter ); } void GenStructMemberCalls::generate( std::list< ast::ptr > & translationUnit ) { ast::Pass warner; accept_all( translationUnit, warner ); } void FixCtorExprs::fix( std::list< ast::ptr > & translationUnit ) { ast::Pass fixer; accept_all( translationUnit, fixer ); } const ast::StmtExpr * StmtExprResult::previsit( const ast::StmtExpr * stmtExpr ) { // we might loose the result expression here so add a pointer to trace back assert( stmtExpr->result ); const ast::Type * result = stmtExpr->result; if ( ! result->isVoid() ) { auto mutExpr = mutate(stmtExpr); const ast::CompoundStmt * body = mutExpr->stmts; assert( ! body->kids.empty() ); mutExpr->resultExpr = body->kids.back().strict_as(); return mutExpr; } return stmtExpr; } ast::Stmt * SplitExpressions::postvisit( const ast::ExprStmt * stmt ) { // wrap each top-level ExprStmt in a block so that destructors for argument and return temporaries are destroyed // in the correct places ast::CompoundStmt * ret = new ast::CompoundStmt( stmt->location, { stmt } ); return ret; } void SplitExpressions::previsit( const ast::TupleAssignExpr * ) { // don't do this within TupleAssignExpr, since it is already broken up into multiple expressions visit_children = false; } // Relatively simple structural comparison for expressions, needed to determine // if two expressions are "the same" (used to determine if self assignment occurs) struct StructuralChecker { const ast::Expr * stripCasts( const ast::Expr * expr ) { // this might be too permissive. It's possible that only particular casts are relevant. while ( auto cast = dynamic_cast< const ast::CastExpr * >( expr ) ) { expr = cast->arg; } return expr; } void previsit( const ast::Expr * ) { // anything else does not qualify isSimilar = false; } template T * cast( const ast::Expr * node ) { // all expressions need to ignore casts, so this bit has been factored out return dynamic_cast< T * >( stripCasts( node ) ); } // ignore casts void previsit( const ast::CastExpr * ) {} void previsit( const ast::MemberExpr * memExpr ) { if ( auto otherMember = cast< const ast::MemberExpr >( other ) ) { if ( otherMember->member == memExpr->member ) { other = otherMember->aggregate; return; } } isSimilar = false; } void previsit( const ast::VariableExpr * varExpr ) { if ( auto otherVar = cast< const ast::VariableExpr >( other ) ) { if ( otherVar->var == varExpr->var ) { return; } } isSimilar = false; } void previsit( const ast::AddressExpr * ) { if ( auto addrExpr = cast< const ast::AddressExpr >( other ) ) { other = addrExpr->arg; return; } isSimilar = false; } const ast::Expr * other = nullptr; bool isSimilar = true; }; bool structurallySimilar( const ast::Expr * e1, const ast::Expr * e2 ) { ast::Pass checker; checker.core.other = e2; e1->accept( checker ); return checker.core.isSimilar; } void SelfAssignChecker::previsit( const ast::ApplicationExpr * appExpr ) { auto function = getFunction( appExpr ); if ( function->name == "?=?" ) { // doesn't use isAssignment, because ?+=?, etc. should not count as self-assignment if ( appExpr->args.size() == 2 ) { // check for structural similarity (same variable use, ignore casts, etc. - but does not look too deeply, anything looking like a function is off limits) if ( structurallySimilar( appExpr->args.front(), appExpr->args.back() ) ) { SemanticWarning( appExpr->location, Warning::SelfAssignment, toCString( appExpr->args.front() ) ); } } } } const ast::Expr * InsertImplicitCalls::postvisit( const ast::ApplicationExpr * appExpr ) { if ( auto function = appExpr->func.as() ) { if ( function->var->linkage.is_builtin ) { // optimization: don't need to copy construct in order to call intrinsic functions return appExpr; } else if ( auto funcDecl = function->var.as() ) { auto ftype = dynamic_cast< const ast::FunctionType * >( GenPoly::getFunctionType( funcDecl->get_type() ) ); assertf( ftype, "Function call without function type: %s", toString( funcDecl ).c_str() ); if ( CodeGen::isConstructor( funcDecl->name ) && ftype->params.size() == 2 ) { auto t1 = getPointerBase( ftype->params.front() ); auto t2 = ftype->params.back(); assert( t1 ); if ( ResolvExpr::typesCompatible( t1, t2 ) ) { // optimization: don't need to copy construct in order to call a copy constructor return appExpr; } // if } else if ( CodeGen::isDestructor( funcDecl->name ) ) { // correctness: never copy construct arguments to a destructor return appExpr; } // if } // if } // if CP_CTOR_PRINT( std::cerr << "InsertImplicitCalls: adding a wrapper " << appExpr << std::endl; ) // wrap each function call so that it is easy to identify nodes that have to be copy constructed ast::ptr tmp = appExpr->env; auto mutExpr = mutate(appExpr); mutExpr->env = nullptr; auto expr = new ast::ImplicitCopyCtorExpr( appExpr->location, mutExpr ); // Move the type substitution to the new top-level, if it is attached to the appExpr. // Ensure it is not deleted with the ImplicitCopyCtorExpr by removing it before deletion. // The substitution is needed to obtain the type of temporary variables so that copy constructor // calls can be resolved. assert( typeSubs ); // assert (mutExpr->env); expr->env = tmp; // mutExpr->env = nullptr; //std::swap( expr->env, appExpr->env ); return expr; } void ResolveCopyCtors::previsit(const ast::Expr * expr) { if (expr->env) { GuardValue(env); GuardValue(envModified); env = expr->env->clone(); envModified = false; } } const ast::Expr * ResolveCopyCtors::postvisit(const ast::Expr * expr) { if (expr->env) { if (envModified) { auto mutExpr = mutate(expr); mutExpr->env = env; return mutExpr; } else { // env was not mutated, skip and delete the shallow copy delete env; return expr; } } else { return expr; } } bool ResolveCopyCtors::skipCopyConstruct( const ast::Type * type ) { return ! isConstructable( type ); } const ast::Expr * ResolveCopyCtors::makeCtorDtor( const std::string & fname, const ast::ObjectDecl * var, const ast::Expr * cpArg ) { assert( var ); assert (var->isManaged()); assert (!cpArg || cpArg->isManaged()); // arrays are not copy constructed, so this should always be an ExprStmt ast::ptr< ast::Stmt > stmt = genCtorDtor(var->location, fname, var, cpArg ); assertf( stmt, "ResolveCopyCtors: genCtorDtor returned nullptr: %s / %s / %s", fname.c_str(), toString( var ).c_str(), toString( cpArg ).c_str() ); auto exprStmt = stmt.strict_as()->callStmt.strict_as(); ast::ptr untyped = exprStmt->expr; // take ownership of expr // exprStmt->expr = nullptr; // resolve copy constructor // should only be one alternative for copy ctor and dtor expressions, since all arguments are fixed // (VariableExpr and already resolved expression) CP_CTOR_PRINT( std::cerr << "ResolvingCtorDtor " << untyped << std::endl; ) ast::ptr resolved = ResolvExpr::findVoidExpression(untyped, symtab); assert( resolved ); if ( resolved->env ) { // Extract useful information and discard new environments. Keeping them causes problems in PolyMutator passes. env->add( *resolved->env ); envModified = true; // delete resolved->env; auto mut = mutate(resolved.get()); assertf(mut == resolved.get(), "newly resolved expression must be unique"); mut->env = nullptr; } // if // delete stmt; if ( auto assign = resolved.as() ) { // fix newly generated StmtExpr previsit( assign->stmtExpr ); } return resolved.release(); } ast::ptr ResolveCopyCtors::copyConstructArg( const ast::Expr * arg, const ast::ImplicitCopyCtorExpr * impCpCtorExpr, const ast::Type * formal ) { static UniqueName tempNamer("_tmp_cp"); assert( env ); const CodeLocation loc = impCpCtorExpr->location; // CP_CTOR_PRINT( std::cerr << "Type Substitution: " << *env << std::endl; ) assert( arg->result ); ast::ptr result = arg->result; if ( skipCopyConstruct( result ) ) return arg; // skip certain non-copyable types // type may involve type variables, so apply type substitution to get temporary variable's actual type, // since result type may not be substituted (e.g., if the type does not appear in the parameter list) // Use applyFree so that types bound in function pointers are not substituted, e.g. in forall(dtype T) void (*)(T). // xxx - this originally mutates arg->result in place. is it correct? result = env->applyFree( result.get() ).node; auto mutResult = result.get_and_mutate(); mutResult->set_const(false); auto mutArg = mutate(arg); mutArg->result = mutResult; ast::ptr guard = mutArg; ast::ptr tmp = new ast::ObjectDecl({}, "__tmp", mutResult, nullptr ); // create and resolve copy constructor CP_CTOR_PRINT( std::cerr << "makeCtorDtor for an argument" << std::endl; ) auto cpCtor = makeCtorDtor( "?{}", tmp, mutArg ); if ( auto appExpr = dynamic_cast< const ast::ApplicationExpr * >( cpCtor ) ) { // if the chosen constructor is intrinsic, the copy is unnecessary, so // don't create the temporary and don't call the copy constructor auto function = appExpr->func.strict_as(); if ( function->var->linkage == ast::Linkage::Intrinsic ) { // arguments that need to be boxed need a temporary regardless of whether the copy constructor is intrinsic, // so that the object isn't changed inside of the polymorphic function if ( ! GenPoly::needsBoxing( formal, result, impCpCtorExpr->callExpr, env ) ) { // xxx - should arg->result be mutated? see comment above. return guard; } } } // set a unique name for the temporary once it's certain the call is necessary auto mut = tmp.get_and_mutate(); assertf (mut == tmp, "newly created ObjectDecl must be unique"); mut->name = tempNamer.newName(); // replace argument to function call with temporary stmtsToAddBefore.push_back( new ast::DeclStmt(loc, tmp ) ); arg = cpCtor; return destructRet( tmp, arg ); // impCpCtorExpr->dtors.push_front( makeCtorDtor( "^?{}", tmp ) ); } ast::Expr * ResolveCopyCtors::destructRet( const ast::ObjectDecl * ret, const ast::Expr * arg ) { // TODO: refactor code for generating cleanup attribute, since it's common and reused in ~3-4 places // check for existing cleanup attribute before adding another(?) // need to add __Destructor for _tmp_cp variables as well assertf( ast::dtorStruct && ast::dtorStruct->members.size() == 2, "Destructor generation requires __Destructor definition." ); assertf( ast::dtorStructDestroy, "Destructor generation requires __destroy_Destructor." ); const CodeLocation loc = ret->location; // generate a __Destructor for ret that calls the destructor auto res = makeCtorDtor( "^?{}", ret ); auto dtor = mutate(res); // if the chosen destructor is intrinsic, elide the generated dtor handler if ( arg && isIntrinsicCallExpr( dtor ) ) { return new ast::CommaExpr(loc, arg, new ast::VariableExpr(loc, ret ) ); // return; } if ( ! dtor->env ) dtor->env = maybeClone( env ); auto dtorFunc = getDtorFunc( ret, new ast::ExprStmt(loc, dtor ), stmtsToAddBefore ); auto dtorStructType = new ast::StructInstType(ast::dtorStruct); // what does this do??? dtorStructType->params.push_back( new ast::TypeExpr(loc, new ast::VoidType() ) ); // cast destructor pointer to void (*)(void *), to silence GCC incompatible pointer warnings auto dtorFtype = new ast::FunctionType(); dtorFtype->params.push_back( new ast::PointerType(new ast::VoidType( ) ) ); auto dtorType = new ast::PointerType( dtorFtype ); static UniqueName namer( "_ret_dtor" ); auto retDtor = new ast::ObjectDecl(loc, namer.newName(), dtorStructType, new ast::ListInit(loc, { new ast::SingleInit(loc, ast::ConstantExpr::null(loc) ), new ast::SingleInit(loc, new ast::CastExpr( new ast::VariableExpr(loc, dtorFunc ), dtorType ) ) } ) ); retDtor->attributes.push_back( new ast::Attribute( "cleanup", { new ast::VariableExpr(loc, ast::dtorStructDestroy ) } ) ); stmtsToAddBefore.push_back( new ast::DeclStmt(loc, retDtor ) ); if ( arg ) { auto member = new ast::MemberExpr(loc, ast::dtorStruct->members.front().strict_as(), new ast::VariableExpr(loc, retDtor ) ); auto object = new ast::CastExpr( new ast::AddressExpr( new ast::VariableExpr(loc, ret ) ), new ast::PointerType(new ast::VoidType() ) ); ast::Expr * assign = createBitwiseAssignment( member, object ); return new ast::CommaExpr(loc, new ast::CommaExpr(loc, arg, assign ), new ast::VariableExpr(loc, ret ) ); } return nullptr; // impCpCtorExpr->get_dtors().push_front( makeCtorDtor( "^?{}", ret ) ); } const ast::Expr * ResolveCopyCtors::postvisit( const ast::ImplicitCopyCtorExpr *impCpCtorExpr ) { CP_CTOR_PRINT( std::cerr << "ResolveCopyCtors: " << impCpCtorExpr << std::endl; ) ast::ApplicationExpr * appExpr = mutate(impCpCtorExpr->callExpr.get()); const ast::ObjectDecl * returnDecl = nullptr; const CodeLocation loc = appExpr->location; // take each argument and attempt to copy construct it. auto ftype = GenPoly::getFunctionType( appExpr->func->result ); assert( ftype ); auto & params = ftype->params; auto iter = params.begin(); for ( auto & arg : appExpr->args ) { const ast::Type * formal = nullptr; if ( iter != params.end() ) { // does not copy construct C-style variadic arguments // DeclarationWithType * param = *iter++; formal = *iter++; } arg = copyConstructArg( arg, impCpCtorExpr, formal ); } // for // each return value from the call needs to be connected with an ObjectDecl at the call site, which is // initialized with the return value and is destructed later // xxx - handle named return values? const ast::Type * result = appExpr->result; if ( ! result->isVoid() ) { static UniqueName retNamer("_tmp_cp_ret"); // result = result->clone(); auto subResult = env->apply( result ).node; auto ret = new ast::ObjectDecl(loc, retNamer.newName(), subResult, nullptr ); auto mutType = mutate(ret->type.get()); mutType->set_const( false ); ret->type = mutType; returnDecl = ret; stmtsToAddBefore.push_back( new ast::DeclStmt(loc, ret ) ); CP_CTOR_PRINT( std::cerr << "makeCtorDtor for a return" << std::endl; ) } // for CP_CTOR_PRINT( std::cerr << "after Resolving: " << impCpCtorExpr << std::endl; ) // ------------------------------------------------------ CP_CTOR_PRINT( std::cerr << "Coming out the back..." << impCpCtorExpr << std::endl; ) // detach fields from wrapper node so that it can be deleted without deleting too much // xxx - actual env might be somewhere else, need to keep invariant // deletion of wrapper should be handled by pass template now // impCpCtorExpr->callExpr = nullptr; assert (appExpr->env == nullptr); appExpr->env = impCpCtorExpr->env; // std::swap( impCpCtorExpr->env, appExpr->env ); // assert( impCpCtorExpr->env == nullptr ); // delete impCpCtorExpr; if ( returnDecl ) { ast::Expr * assign = createBitwiseAssignment( new ast::VariableExpr(loc, returnDecl ), appExpr ); if ( ! dynamic_cast< const ast::ReferenceType * >( result ) ) { // destructing reference returns is bad because it can cause multiple destructor calls to the same object - the returned object is not a temporary assign = destructRet( returnDecl, assign ); assert(assign); } else { assign = new ast::CommaExpr(loc, assign, new ast::VariableExpr(loc, returnDecl ) ); } // move env from appExpr to retExpr // std::swap( assign->env, appExpr->env ); assign->env = appExpr->env; // actual env is handled by common routine that replaces WithTypeSubstitution return postvisit((const ast::Expr *)assign); } else { return postvisit((const ast::Expr *)appExpr); } // if } const ast::StmtExpr * ResolveCopyCtors::previsit( const ast::StmtExpr * _stmtExpr ) { // function call temporaries should be placed at statement-level, rather than nested inside of a new statement expression, // since temporaries can be shared across sub-expressions, e.g. // [A, A] f(); // decl // g([A] x, [A] y); // decl // g(f()); // call // f is executed once, so the return temporary is shared across the tuple constructors for x and y. // Explicitly mutating children instead of mutating the inner compound statement forces the temporaries to be added // to the outer context, rather than inside of the statement expression. // call the common routine that replaces WithTypeSubstitution previsit((const ast::Expr *) _stmtExpr); visit_children = false; const CodeLocation loc = _stmtExpr->location; assert( env ); symtab.enterScope(); // visit all statements auto stmtExpr = mutate(_stmtExpr); auto mutStmts = mutate(stmtExpr->stmts.get()); auto & stmts = mutStmts->kids; for ( auto & stmt : stmts ) { stmt = stmt->accept( *visitor ); } // for stmtExpr->stmts = mutStmts; symtab.leaveScope(); assert( stmtExpr->result ); // const ast::Type * result = stmtExpr->result; if ( ! stmtExpr->result->isVoid() ) { static UniqueName retNamer("_tmp_stmtexpr_ret"); // result = result->clone(); auto result = env->apply( stmtExpr->result.get() ).node; if ( ! InitTweak::isConstructable( result ) ) { // delete result; return stmtExpr; } auto mutResult = result.get_and_mutate(); mutResult->set_const(false); // create variable that will hold the result of the stmt expr auto ret = new ast::ObjectDecl(loc, retNamer.newName(), mutResult, nullptr ); stmtsToAddBefore.push_back( new ast::DeclStmt(loc, ret ) ); assertf( stmtExpr->resultExpr, "Statement-Expression should have a resulting expression at %s:%d", stmtExpr->location.filename.c_str(), stmtExpr->location.first_line ); const ast::ExprStmt * last = stmtExpr->resultExpr; // xxx - if this is non-unique, need to copy while making resultExpr ref assertf(last->unique(), "attempt to modify weakly shared statement"); auto mutLast = mutate(last); // above assertion means in-place mutation is OK try { mutLast->expr = makeCtorDtor( "?{}", ret, mutLast->expr ); } catch(...) { std::cerr << "*CFA internal error: "; std::cerr << "can't resolve implicit constructor"; std::cerr << " at " << stmtExpr->location.filename; std::cerr << ":" << stmtExpr->location.first_line << std::endl; abort(); } // add destructors after current statement stmtsToAddAfter.push_back( new ast::ExprStmt(loc, makeCtorDtor( "^?{}", ret ) ) ); // must have a non-empty body, otherwise it wouldn't have a result assert( ! stmts.empty() ); // if there is a return decl, add a use as the last statement; will not have return decl on non-constructable returns stmts.push_back( new ast::ExprStmt(loc, new ast::VariableExpr(loc, ret ) ) ); } // if assert( stmtExpr->returnDecls.empty() ); assert( stmtExpr->dtors.empty() ); return stmtExpr; } // to prevent warnings ('_unq0' may be used uninitialized in this function), // insert an appropriate zero initializer for UniqueExpr temporaries. ast::Init * makeInit( const ast::Type * t ) { if ( auto inst = dynamic_cast< const ast::StructInstType * >( t ) ) { // initizer for empty struct must be empty if ( inst->base->members.empty() ) return new ast::ListInit({}, {}); } else if ( auto inst = dynamic_cast< const ast::UnionInstType * >( t ) ) { // initizer for empty union must be empty if ( inst->base->members.empty() ) return new ast::ListInit({}, {}); } return new ast::ListInit( {}, { new ast::SingleInit( {}, ast::ConstantExpr::from_int({}, 0) ) } ); } const ast::UniqueExpr * ResolveCopyCtors::previsit( const ast::UniqueExpr * unqExpr ) { visit_children = false; // xxx - hack to prevent double-handling of unique exprs, otherwise too many temporary variables and destructors are generated static std::unordered_map< int, const ast::UniqueExpr * > unqMap; auto mutExpr = mutate(unqExpr); if ( ! unqMap.count( unqExpr->id ) ) { // resolve expr and find its auto impCpCtorExpr = mutExpr->expr.as(); // PassVisitor fixer; mutExpr->expr = mutExpr->expr->accept( *visitor ); // it should never be necessary to wrap a void-returning expression in a UniqueExpr - if this assumption changes, this needs to be rethought assert( unqExpr->result ); if ( impCpCtorExpr ) { auto comma = unqExpr->expr.strict_as(); auto var = comma->arg2.strict_as(); // note the variable used as the result from the call mutExpr->var = var; } else { // expr isn't a call expr, so create a new temporary variable to use to hold the value of the unique expression mutExpr->object = new ast::ObjectDecl( mutExpr->location, toString("_unq", mutExpr->id), mutExpr->result, makeInit( mutExpr->result ) ); mutExpr->var = new ast::VariableExpr( mutExpr->location, mutExpr->object ); } // stmtsToAddBefore.splice( stmtsToAddBefore.end(), fixer.pass.stmtsToAddBefore ); // stmtsToAddAfter.splice( stmtsToAddAfter.end(), fixer.pass.stmtsToAddAfter ); unqMap[mutExpr->id] = mutExpr; } else { // take data from other UniqueExpr to ensure consistency // delete unqExpr->get_expr(); mutExpr->expr = unqMap[mutExpr->id]->expr; // delete unqExpr->result; mutExpr->result = mutExpr->expr->result; } return mutExpr; } const ast::DeclWithType * FixInit::postvisit( const ast::ObjectDecl *_objDecl ) { const CodeLocation loc = _objDecl->location; // since this removes the init field from objDecl, it must occur after children are mutated (i.e. postvisit) if ( ast::ptr ctorInit = _objDecl->init.as() ) { auto objDecl = mutate(_objDecl); // could this be non-unique? if (objDecl != _objDecl) { std::cerr << "FixInit: non-unique object decl " << objDecl->location << objDecl->name << std::endl; } // a decision should have been made by the resolver, so ctor and init are not both non-NULL assert( ! ctorInit->ctor || ! ctorInit->init ); if ( const ast::Stmt * ctor = ctorInit->ctor ) { if ( objDecl->storage.is_static ) { // originally wanted to take advantage of gcc nested functions, but // we get memory errors with this approach. To remedy this, the static // variable is hoisted when the destructor needs to be called. // // generate: // static T __objName_static_varN; // void __objName_dtor_atexitN() { // __dtor__...; // } // int f(...) { // ... // static bool __objName_uninitialized = true; // if (__objName_uninitialized) { // __ctor(__objName); // __objName_uninitialized = false; // atexit(__objName_dtor_atexitN); // } // ... // } static UniqueName dtorCallerNamer( "_dtor_atexit" ); // static bool __objName_uninitialized = true auto boolType = new ast::BasicType( ast::BasicType::Kind::Bool ); auto boolInitExpr = new ast::SingleInit(loc, ast::ConstantExpr::from_int(loc, 1 ) ); auto isUninitializedVar = new ast::ObjectDecl(loc, objDecl->mangleName + "_uninitialized", boolType, boolInitExpr, ast::Storage::Static, ast::Linkage::Cforall); isUninitializedVar->fixUniqueId(); // __objName_uninitialized = false; auto setTrue = new ast::UntypedExpr(loc, new ast::NameExpr(loc, "?=?" ) ); setTrue->args.push_back( new ast::VariableExpr(loc, isUninitializedVar ) ); setTrue->args.push_back( ast::ConstantExpr::from_int(loc, 0 ) ); // generate body of if auto initStmts = new ast::CompoundStmt(loc); auto & body = initStmts->kids; body.push_back( ctor ); body.push_back( new ast::ExprStmt(loc, setTrue ) ); // put it all together auto ifStmt = new ast::IfStmt(loc, new ast::VariableExpr(loc, isUninitializedVar ), initStmts, 0 ); stmtsToAddAfter.push_back( new ast::DeclStmt(loc, isUninitializedVar ) ); stmtsToAddAfter.push_back( ifStmt ); const ast::Stmt * dtor = ctorInit->dtor; // these should be automatically managed once reassigned // objDecl->set_init( nullptr ); // ctorInit->set_ctor( nullptr ); // ctorInit->set_dtor( nullptr ); if ( dtor ) { // if the object has a non-trivial destructor, have to // hoist it and the object into the global space and // call the destructor function with atexit. // Statement * dtorStmt = dtor->clone(); // void __objName_dtor_atexitN(...) {...} ast::FunctionDecl * dtorCaller = new ast::FunctionDecl(loc, objDecl->mangleName + dtorCallerNamer.newName(), {}, {}, {}, new ast::CompoundStmt(loc, {dtor}), ast::Storage::Static, ast::Linkage::C ); dtorCaller->fixUniqueId(); // dtorCaller->stmts->push_back( dtor ); // atexit(dtor_atexit); auto callAtexit = new ast::UntypedExpr(loc, new ast::NameExpr(loc, "atexit" ) ); callAtexit->args.push_back( new ast::VariableExpr(loc, dtorCaller ) ); body.push_back( new ast::ExprStmt(loc, callAtexit ) ); // hoist variable and dtor caller decls to list of decls that will be added into global scope staticDtorDecls.push_back( objDecl ); staticDtorDecls.push_back( dtorCaller ); // need to rename object uniquely since it now appears // at global scope and there could be multiple function-scoped // static variables with the same name in different functions. // Note: it isn't sufficient to modify only the mangleName, because // then subsequent Indexer passes can choke on seeing the object's name // if another object has the same name and type. An unfortunate side-effect // of renaming the object is that subsequent NameExprs may fail to resolve, // but there shouldn't be any remaining past this point. static UniqueName staticNamer( "_static_var" ); objDecl->name = objDecl->name + staticNamer.newName(); objDecl->mangleName = Mangle::mangle( objDecl ); // xxx - temporary hack: need to return a declaration, but want to hoist the current object out of this scope // create a new object which is never used static UniqueName dummyNamer( "_dummy" ); auto dummy = new ast::ObjectDecl(loc, dummyNamer.newName(), new ast::PointerType(new ast::VoidType()), nullptr, ast::Storage::Static, ast::Linkage::Cforall, 0, { new ast::Attribute("unused") } ); // delete ctorInit; return dummy; } else { objDecl->init = nullptr; return objDecl; } } else { auto implicit = strict_dynamic_cast< const ast::ImplicitCtorDtorStmt * > ( ctor ); auto ctorStmt = implicit->callStmt.as(); const ast::ApplicationExpr * ctorCall = nullptr; if ( ctorStmt && (ctorCall = isIntrinsicCallExpr( ctorStmt->expr )) && ctorCall->args.size() == 2 ) { // clean up intrinsic copy constructor calls by making them into SingleInits const ast::Expr * ctorArg = ctorCall->args.back(); // ctorCall should be gone afterwards auto mutArg = mutate(ctorArg); mutArg->env = ctorCall->env; // std::swap( ctorArg->env, ctorCall->env ); objDecl->init = new ast::SingleInit(loc, mutArg ); // ctorCall->args.pop_back(); } else { stmtsToAddAfter.push_back( ctor ); objDecl->init = nullptr; // ctorInit->ctor = nullptr; } const ast::Stmt * dtor = ctorInit->dtor; if ( dtor ) { auto implicit = strict_dynamic_cast< const ast::ImplicitCtorDtorStmt * >( dtor ); const ast::Stmt * dtorStmt = implicit->callStmt; // don't need to call intrinsic dtor, because it does nothing, but // non-intrinsic dtors must be called if ( ! isIntrinsicSingleArgCallStmt( dtorStmt ) ) { // set dtor location to the object's location for error messages auto dtorFunc = getDtorFunc( objDecl, dtorStmt, stmtsToAddBefore ); objDecl->attributes.push_back( new ast::Attribute( "cleanup", { new ast::VariableExpr(loc, dtorFunc ) } ) ); // ctorInit->dtor = nullptr; } // if } } // if } else if ( const ast::Init * init = ctorInit->init ) { objDecl->init = init; // ctorInit->init = nullptr; } else { // no constructor and no initializer, which is okay objDecl->init = nullptr; } // if // delete ctorInit; return objDecl; } // if return _objDecl; } void ObjDeclCollector::previsit( const ast::CompoundStmt * ) { GuardValue( curVars ); } void ObjDeclCollector::previsit( const ast::DeclStmt * stmt ) { // keep track of all variables currently in scope if ( auto objDecl = stmt->decl.as() ) { curVars.push_back( objDecl ); } // if } void LabelFinder::previsit( const ast::Stmt * stmt ) { // for each label, remember the variables in scope at that label. for ( auto l : stmt->labels ) { vars[l] = curVars; } // for } void LabelFinder::previsit( const ast::CompoundStmt * stmt ) { previsit( (const ast::Stmt *) stmt ); Parent::previsit( stmt ); } void LabelFinder::previsit( const ast::DeclStmt * stmt ) { previsit( (const ast::Stmt *)stmt ); Parent::previsit( stmt ); } void InsertDtors::previsit( const ast::FunctionDecl * funcDecl ) { // each function needs to have its own set of labels GuardValue( labelVars ); labelVars.clear(); // LabelFinder does not recurse into FunctionDecl, so need to visit // its children manually. if (funcDecl->type) funcDecl->type->accept(finder); // maybeAccept( funcDecl->type, finder ); if (funcDecl->stmts) funcDecl->stmts->accept(finder) ; // all labels for this function have been collected, insert destructors as appropriate via implicit recursion. } // Handle break/continue/goto in the same manner as C++. Basic idea: any objects that are in scope at the // BranchStmt but not at the labelled (target) statement must be destructed. If there are any objects in scope // at the target location but not at the BranchStmt then those objects would be uninitialized so notify the user // of the error. See C++ Reference 6.6 Jump Statements for details. void InsertDtors::handleGoto( const ast::BranchStmt * stmt ) { // can't do anything for computed goto if ( stmt->computedTarget ) return; assertf( stmt->target.name != "", "BranchStmt missing a label: %s", toString( stmt ).c_str() ); // S_L = lvars = set of objects in scope at label definition // S_G = curVars = set of objects in scope at goto statement ObjectSet & lvars = labelVars[ stmt->target ]; DTOR_PRINT( std::cerr << "at goto label: " << stmt->target.name << std::endl; std::cerr << "S_G = " << printSet( curVars ) << std::endl; std::cerr << "S_L = " << printSet( lvars ) << std::endl; ) // std::set_difference requires that the inputs be sorted. lvars.sort(); curVars.sort(); ObjectSet diff; // S_L-S_G results in set of objects whose construction is skipped - it's an error if this set is non-empty std::set_difference( lvars.begin(), lvars.end(), curVars.begin(), curVars.end(), std::inserter( diff, diff.begin() ) ); DTOR_PRINT( std::cerr << "S_L-S_G = " << printSet( diff ) << std::endl; ) if ( ! diff.empty() ) { SemanticError( stmt, std::string("jump to label '") + stmt->target.name + "' crosses initialization of " + (*diff.begin())->name + " " ); } // if } void InsertDtors::previsit( const ast::BranchStmt * stmt ) { switch( stmt->kind ) { case ast::BranchStmt::Continue: case ast::BranchStmt::Break: // could optimize the break/continue case, because the S_L-S_G check is unnecessary (this set should // always be empty), but it serves as a small sanity check. case ast::BranchStmt::Goto: handleGoto( stmt ); break; default: assert( false ); } // switch } bool checkWarnings( const ast::FunctionDecl * funcDecl ) { // only check for warnings if the current function is a user-defined // constructor or destructor if ( ! funcDecl ) return false; if ( ! funcDecl->stmts ) return false; return CodeGen::isCtorDtor( funcDecl->name ) && ! funcDecl->linkage.is_overrideable; } void GenStructMemberCalls::previsit( const ast::FunctionDecl * funcDecl ) { GuardValue( function ); GuardValue( unhandled ); GuardValue( usedUninit ); GuardValue( thisParam ); GuardValue( isCtor ); GuardValue( structDecl ); errors = SemanticErrorException(); // clear previous errors // need to start with fresh sets unhandled.clear(); usedUninit.clear(); function = mutate(funcDecl); // could this be non-unique? if (function != funcDecl) { std::cerr << "GenStructMemberCalls: non-unique FunctionDecl " << funcDecl->location << funcDecl->name << std::endl; } isCtor = CodeGen::isConstructor( function->name ); if ( checkWarnings( function ) ) { // const ast::FunctionType * type = function->type; // assert( ! type->params.empty() ); thisParam = function->params.front().strict_as(); auto thisType = getPointerBase( thisParam->get_type() ); auto structType = dynamic_cast< const ast::StructInstType * >( thisType ); if ( structType ) { structDecl = structType->base; for ( auto & member : structDecl->members ) { if ( auto field = member.as() ) { // record all of the struct type's members that need to be constructed or // destructed by the end of the function unhandled.insert( field ); } } } } } const ast::DeclWithType * GenStructMemberCalls::postvisit( const ast::FunctionDecl * funcDecl ) { // remove the unhandled objects from usedUninit, because a call is inserted // to handle them - only objects that are later constructed are used uninitialized. std::map< const ast::DeclWithType *, CodeLocation > diff; // need the comparator since usedUninit and unhandled have different types struct comp_t { typedef decltype(usedUninit)::value_type usedUninit_t; typedef decltype(unhandled)::value_type unhandled_t; bool operator()(usedUninit_t x, unhandled_t y) { return x.first < y; } bool operator()(unhandled_t x, usedUninit_t y) { return x < y.first; } } comp; std::set_difference( usedUninit.begin(), usedUninit.end(), unhandled.begin(), unhandled.end(), std::inserter( diff, diff.begin() ), comp ); for ( auto p : diff ) { auto member = p.first; auto loc = p.second; // xxx - make error message better by also tracking the location that the object is constructed at? emit( loc, "in ", function->name, ", field ", member->name, " used before being constructed" ); } const CodeLocation loc = funcDecl->location; if ( ! unhandled.empty() ) { auto mutStmts = function->stmts.get_and_mutate(); // need to explicitly re-add function parameters to the indexer in order to resolve copy constructors auto guard = makeFuncGuard( [this]() { symtab.enterScope(); }, [this]() { symtab.leaveScope(); } ); symtab.addFunction( function ); // need to iterate through members in reverse in order for // ctor/dtor statements to come out in the right order for ( auto & member : reverseIterate( structDecl->members ) ) { auto field = member.as(); // skip non-DWT members if ( ! field ) continue; // skip non-constructable members if ( ! tryConstruct( field ) ) continue; // skip handled members if ( ! unhandled.count( field ) ) continue; // insert and resolve default/copy constructor call for each field that's unhandled // std::list< const ast::Stmt * > stmt; ast::Expr * arg2 = nullptr; if ( function->name == "?{}" && isCopyFunction( function ) ) { // if copy ctor, need to pass second-param-of-this-function.field // std::list< DeclarationWithType * > & params = function->get_functionType()->get_parameters(); assert( function->params.size() == 2 ); arg2 = new ast::MemberExpr(funcDecl->location, field, new ast::VariableExpr(funcDecl->location, function->params.back() ) ); } InitExpander_new srcParam( arg2 ); // cast away reference type and construct field. ast::Expr * thisExpr = new ast::CastExpr(funcDecl->location, new ast::VariableExpr(funcDecl->location, thisParam ), thisParam->get_type()->stripReferences()); ast::Expr * memberDest = new ast::MemberExpr(funcDecl->location, field, thisExpr ); ast::ptr callStmt = SymTab::genImplicitCall( srcParam, memberDest, loc, function->name, field, static_cast(isCtor) ); if ( callStmt ) { // auto & callStmt = stmt.front(); try { callStmt = callStmt->accept( *visitor ); if ( isCtor ) { mutStmts->push_front( callStmt ); } else { // TODO: don't generate destructor function/object for intrinsic calls // destructor statements should be added at the end // function->get_statements()->push_back( callStmt ); // Optimization: do not need to call intrinsic destructors on members if ( isIntrinsicSingleArgCallStmt( callStmt ) ) continue; // __Destructor _dtor0 = { (void *)&b.a1, (void (*)(void *)_destroy_A }; std::list< ast::ptr > stmtsToAdd; static UniqueName memberDtorNamer = { "__memberDtor" }; assertf( Validate::dtorStruct, "builtin __Destructor not found." ); assertf( Validate::dtorStructDestroy, "builtin __destroy_Destructor not found." ); ast::Expr * thisExpr = new ast::CastExpr( new ast::AddressExpr( new ast::VariableExpr(loc, thisParam ) ), new ast::PointerType( new ast::VoidType(), ast::CV::Qualifiers() ) ); ast::Expr * dtorExpr = new ast::VariableExpr(loc, getDtorFunc( thisParam, callStmt, stmtsToAdd ) ); // cast destructor pointer to void (*)(void *), to silence GCC incompatible pointer warnings auto dtorFtype = new ast::FunctionType(); dtorFtype->params.emplace_back( new ast::PointerType( new ast::VoidType() ) ); auto dtorType = new ast::PointerType( dtorFtype ); auto destructor = new ast::ObjectDecl(loc, memberDtorNamer.newName(), new ast::StructInstType( ast::dtorStruct ), new ast::ListInit(loc, { new ast::SingleInit(loc, thisExpr ), new ast::SingleInit(loc, new ast::CastExpr( dtorExpr, dtorType ) ) } ) ); destructor->attributes.push_back( new ast::Attribute( "cleanup", { new ast::VariableExpr({}, ast::dtorStructDestroy ) } ) ); mutStmts->push_front( new ast::DeclStmt(loc, destructor ) ); mutStmts->kids.splice( mutStmts->kids.begin(), stmtsToAdd ); } } catch ( SemanticErrorException & error ) { emit( funcDecl->location, "in ", function->name , ", field ", field->name, " not explicitly ", isCtor ? "constructed" : "destructed", " and no ", isCtor ? "default constructor" : "destructor", " found" ); } } } function->stmts = mutStmts; } if (! errors.isEmpty()) { throw errors; } // return funcDecl; return function; } /// true if expr is effectively just the 'this' parameter bool isThisExpression( const ast::Expr * expr, const ast::DeclWithType * thisParam ) { // TODO: there are more complicated ways to pass 'this' to a constructor, e.g. &*, *&, etc. if ( auto varExpr = dynamic_cast< const ast::VariableExpr * >( expr ) ) { return varExpr->var == thisParam; } else if ( auto castExpr = dynamic_cast< const ast::CastExpr * > ( expr ) ) { return isThisExpression( castExpr->arg, thisParam ); } return false; } /// returns a MemberExpr if expr is effectively just member access on the 'this' parameter, else nullptr const ast::MemberExpr * isThisMemberExpr( const ast::Expr * expr, const ast::DeclWithType * thisParam ) { if ( auto memberExpr = dynamic_cast< const ast::MemberExpr * >( expr ) ) { if ( isThisExpression( memberExpr->aggregate, thisParam ) ) { return memberExpr; } } else if ( auto castExpr = dynamic_cast< const ast::CastExpr * >( expr ) ) { return isThisMemberExpr( castExpr->arg, thisParam ); } return nullptr; } void GenStructMemberCalls::previsit( const ast::ApplicationExpr * appExpr ) { if ( ! checkWarnings( function ) ) { visit_children = false; return; } std::string fname = getFunctionName( appExpr ); if ( fname == function->name ) { // call to same kind of function const ast::Expr * firstParam = appExpr->args.front(); if ( isThisExpression( firstParam, thisParam ) ) { // if calling another constructor on thisParam, assume that function handles // all members - if it doesn't a warning will appear in that function. unhandled.clear(); } else if ( auto memberExpr = isThisMemberExpr( firstParam, thisParam ) ) { // if first parameter is a member expression on the this parameter, // then remove the member from unhandled set. if ( isThisExpression( memberExpr->aggregate, thisParam ) ) { unhandled.erase( memberExpr->member ); } } } } void GenStructMemberCalls::previsit( const ast::MemberExpr * memberExpr ) { if ( ! checkWarnings( function ) || ! isCtor ) { visit_children = false; return; } if ( isThisExpression( memberExpr->aggregate, thisParam ) ) { if ( unhandled.count( memberExpr->member ) ) { // emit a warning because a member was used before it was constructed usedUninit.insert( { memberExpr->member, memberExpr->location } ); } } } template< typename Visitor, typename... Params > void error( Visitor & v, CodeLocation loc, const Params &... params ) { SemanticErrorException err( loc, toString( params... ) ); v.errors.append( err ); } template< typename... Params > void GenStructMemberCalls::emit( CodeLocation loc, const Params &... params ) { // toggle warnings vs. errors here. // warn( params... ); error( *this, loc, params... ); } const ast::Expr * GenStructMemberCalls::postvisit( const ast::UntypedExpr * untypedExpr ) { // Expression * newExpr = untypedExpr; // xxx - functions returning ast::ptr seems wrong... auto res = ResolvExpr::findVoidExpression( untypedExpr, symtab ); return res.release(); // return newExpr; } void InsertImplicitCalls::previsit(const ast::UniqueExpr * unqExpr) { if (visitedIds.count(unqExpr->id)) visit_children = false; else visitedIds.insert(unqExpr->id); } const ast::Expr * FixCtorExprs::postvisit( const ast::ConstructorExpr * ctorExpr ) { const CodeLocation loc = ctorExpr->location; static UniqueName tempNamer( "_tmp_ctor_expr" ); // xxx - is the size check necessary? assert( ctorExpr->result && ctorExpr->result->size() == 1 ); // xxx - this can be TupleAssignExpr now. Need to properly handle this case. // take possession of expr and env ast::ptr callExpr = ctorExpr->callExpr.strict_as(); ast::ptr env = ctorExpr->env; // ctorExpr->set_callExpr( nullptr ); // ctorExpr->set_env( nullptr ); // xxx - ideally we would reuse the temporary generated from the copy constructor passes from within firstArg if it exists and not generate a temporary if it's unnecessary. auto tmp = new ast::ObjectDecl(loc, tempNamer.newName(), callExpr->args.front()->result ); declsToAddBefore.push_back( tmp ); // delete ctorExpr; // build assignment and replace constructor's first argument with new temporary auto mutCallExpr = callExpr.get_and_mutate(); const ast::Expr * firstArg = callExpr->args.front(); ast::Expr * assign = new ast::UntypedExpr(loc, new ast::NameExpr(loc, "?=?" ), { new ast::AddressExpr(loc, new ast::VariableExpr(loc, tmp ) ), new ast::AddressExpr( firstArg ) } ); firstArg = new ast::VariableExpr(loc, tmp ); mutCallExpr->args.front() = firstArg; // resolve assignment and dispose of new env auto resolved = ResolvExpr::findVoidExpression( assign, symtab ); auto mut = resolved.get_and_mutate(); assertf(resolved.get() == mut, "newly resolved expression must be unique"); mut->env = nullptr; // for constructor expr: // T x; // x{}; // results in: // T x; // T & tmp; // &tmp = &x, ?{}(tmp), tmp ast::CommaExpr * commaExpr = new ast::CommaExpr(loc, resolved, new ast::CommaExpr(loc, mutCallExpr, new ast::VariableExpr(loc, tmp ) ) ); commaExpr->env = env; return commaExpr; } } // namespace } // namespace InitTweak // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //