// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // FixInit.h -- // // Author : Rob Schluntz // Created On : Wed Jan 13 16:29:30 2016 // Last Modified By : Peter A. Buhr // Last Modified On : Wed Jun 21 17:35:05 2017 // Update Count : 74 // #include "FixInit.h" #include // for NULL #include // for set_difference, copy_if #include // for assert, strict_dynamic_cast #include // for operator<<, ostream, basic_ost... #include // for insert_iterator, back_inserter #include // for _List_iterator, list, list<>::... #include // for _Rb_tree_iterator, _Rb_tree_co... #include // for allocator_traits<>::value_type #include // for set, set<>::value_type #include // for unordered_map, unordered_map<>... #include // for unordered_set #include // for pair #include "CodeGen/GenType.h" // for genPrettyType #include "CodeGen/OperatorTable.h" #include "Common/PassVisitor.h" // for PassVisitor, WithStmtsToAdd #include "Common/SemanticError.h" // for SemanticError #include "Common/UniqueName.h" // for UniqueName #include "Common/utility.h" // for CodeLocation, ValueGuard, toSt... #include "FixGlobalInit.h" // for fixGlobalInit #include "GenInit.h" // for genCtorDtor #include "GenPoly/GenPoly.h" // for getFunctionType #include "GenPoly/PolyMutator.h" // for PolyMutator #include "InitTweak.h" // for getFunctionName, getCallArg #include "Parser/LinkageSpec.h" // for C, Spec, Cforall, isBuiltin #include "ResolvExpr/Resolver.h" // for findVoidExpression #include "ResolvExpr/typeops.h" // for typesCompatible #include "SymTab/Autogen.h" // for genImplicitCall #include "SymTab/Indexer.h" // for Indexer #include "SymTab/Mangler.h" // for Mangler #include "SynTree/AddStmtVisitor.h" // for AddStmtVisitor #include "SynTree/Attribute.h" // for Attribute #include "SynTree/Constant.h" // for Constant #include "SynTree/Declaration.h" // for ObjectDecl, FunctionDecl, Decl... #include "SynTree/Expression.h" // for UniqueExpr, VariableExpr, Unty... #include "SynTree/Initializer.h" // for ConstructorInit, SingleInit #include "SynTree/Label.h" // for Label, noLabels, operator< #include "SynTree/Mutator.h" // for mutateAll, Mutator, maybeMutate #include "SynTree/Statement.h" // for ExprStmt, CompoundStmt, Branch... #include "SynTree/Type.h" // for Type, Type::StorageClasses #include "SynTree/TypeSubstitution.h" // for TypeSubstitution, operator<< #include "SynTree/Visitor.h" // for acceptAll, maybeAccept bool ctordtorp = false; // print all debug bool ctorp = false; // print ctor debug bool cpctorp = false; // print copy ctor debug bool dtorp = false; // print dtor debug #define PRINT( text ) if ( ctordtorp ) { text } #define CP_CTOR_PRINT( text ) if ( ctordtorp || cpctorp ) { text } #define DTOR_PRINT( text ) if ( ctordtorp || dtorp ) { text } namespace InitTweak { namespace { typedef std::unordered_map< int, int > UnqCount; struct InsertImplicitCalls : public WithTypeSubstitution { /// wrap function application expressions as ImplicitCopyCtorExpr nodes so that it is easy to identify which /// function calls need their parameters to be copy constructed static void insert( std::list< Declaration * > & translationUnit ); Expression * postmutate( ApplicationExpr * appExpr ); }; struct ResolveCopyCtors final : public WithIndexer, public WithShortCircuiting, public WithTypeSubstitution { /// generate temporary ObjectDecls for each argument and return value of each ImplicitCopyCtorExpr, /// generate/resolve copy construction expressions for each, and generate/resolve destructors for both /// arguments and return value temporaries static void resolveImplicitCalls( std::list< Declaration * > & translationUnit, UnqCount & unqCount ); ResolveCopyCtors( UnqCount & unqCount ) : unqCount( unqCount ) {} void postvisit( ImplicitCopyCtorExpr * impCpCtorExpr ); void postvisit( StmtExpr * stmtExpr ); void previsit( UniqueExpr * unqExpr ); void postvisit( UniqueExpr * unqExpr ); /// create and resolve ctor/dtor expression: fname(var, [cpArg]) Expression * makeCtorDtor( const std::string & fname, ObjectDecl * var, Expression * cpArg = NULL ); /// true if type does not need to be copy constructed to ensure correctness bool skipCopyConstruct( Type * type ); void copyConstructArg( Expression *& arg, ImplicitCopyCtorExpr * impCpCtorExpr ); void destructRet( ObjectDecl * ret, ImplicitCopyCtorExpr * impCpCtorExpr ); UnqCount & unqCount; // count the number of times each unique expr ID appears std::unordered_set< int > vars; }; /// collects constructed object decls - used as a base class struct ObjDeclCollector : public WithGuards, public WithShortCircuiting { // use ordered data structure to maintain ordering for set_difference and for consistent error messages typedef std::list< ObjectDecl * > ObjectSet; void previsit( CompoundStmt *compoundStmt ); void previsit( DeclStmt *stmt ); // don't go into other functions void previsit( FunctionDecl * ) { visit_children = false; } protected: ObjectSet curVars; }; // debug template struct PrintSet { PrintSet( const ObjectSet & objs ) : objs( objs ) {} const ObjectSet & objs; }; template PrintSet printSet( const ObjectSet & objs ) { return PrintSet( objs ); } template std::ostream & operator<<( std::ostream & out, const PrintSet & set) { out << "{ "; for ( ObjectDecl * obj : set.objs ) { out << obj->get_name() << ", " ; } // for out << " }"; return out; } struct LabelFinder final : public ObjDeclCollector { typedef std::map< Label, ObjectSet > LabelMap; // map of Label -> live variables at that label LabelMap vars; typedef ObjDeclCollector Parent; using Parent::previsit; void previsit( Statement * stmt ); void previsit( CompoundStmt *compoundStmt ); void previsit( DeclStmt *stmt ); }; struct InsertDtors final : public ObjDeclCollector, public WithStmtsToAdd { /// insert destructor calls at the appropriate places. must happen before CtorInit nodes are removed /// (currently by FixInit) static void insert( std::list< Declaration * > & translationUnit ); typedef std::list< ObjectDecl * > OrderedDecls; typedef std::list< OrderedDecls > OrderedDeclsStack; InsertDtors( PassVisitor & finder ) : finder( finder ), labelVars( finder.pass.vars ) {} typedef ObjDeclCollector Parent; using Parent::previsit; void previsit( ObjectDecl * objDecl ); void previsit( FunctionDecl * funcDecl ); void previsit( CompoundStmt * compoundStmt ); void postvisit( CompoundStmt * compoundStmt ); void previsit( ReturnStmt * returnStmt ); void previsit( BranchStmt * stmt ); private: void handleGoto( BranchStmt * stmt ); PassVisitor & finder; LabelFinder::LabelMap & labelVars; OrderedDeclsStack reverseDeclOrder; }; class FixInit : public WithStmtsToAdd { public: /// expand each object declaration to use its constructor after it is declared. static void fixInitializers( std::list< Declaration * > &translationUnit ); DeclarationWithType * postmutate( ObjectDecl *objDecl ); std::list< Declaration * > staticDtorDecls; }; class FixCopyCtors final : public WithStmtsToAdd, public WithShortCircuiting, public WithVisitorRef { public: FixCopyCtors( UnqCount & unqCount ) : unqCount( unqCount ){} /// expand ImplicitCopyCtorExpr nodes into the temporary declarations, copy constructors, call expression, /// and destructors static void fixCopyCtors( std::list< Declaration * > &translationUnit, UnqCount & unqCount ); Expression * postmutate( ImplicitCopyCtorExpr * impCpCtorExpr ); void premutate( StmtExpr * stmtExpr ); void premutate( UniqueExpr * unqExpr ); UnqCount & unqCount; }; struct GenStructMemberCalls final : public WithGuards, public WithShortCircuiting, public WithIndexer { /// generate default/copy ctor and dtor calls for user-defined struct ctor/dtors /// for any member that is missing a corresponding ctor/dtor call. /// error if a member is used before constructed static void generate( std::list< Declaration * > & translationUnit ); void previsit( FunctionDecl * funcDecl ); void postvisit( FunctionDecl * funcDecl ); void previsit( MemberExpr * memberExpr ); void previsit( ApplicationExpr * appExpr ); SemanticError errors; private: template< typename... Params > void emit( CodeLocation, const Params &... params ); FunctionDecl * function = 0; std::set< DeclarationWithType * > unhandled; std::map< DeclarationWithType *, CodeLocation > usedUninit; ObjectDecl * thisParam = 0; bool isCtor = false; // true if current function is a constructor StructDecl * structDecl = 0; }; // very simple resolver-like mutator class - used to // resolve UntypedExprs that are found within newly // generated constructor/destructor calls class MutatingResolver final : public Mutator { public: MutatingResolver( SymTab::Indexer & indexer ) : indexer( indexer ) {} using Mutator::mutate; virtual DeclarationWithType* mutate( ObjectDecl *objectDecl ) override; virtual Expression* mutate( UntypedExpr *untypedExpr ) override; private: SymTab::Indexer & indexer; }; struct FixCtorExprs final : public WithDeclsToAdd, public WithIndexer { /// expands ConstructorExpr nodes into comma expressions, using a temporary for the first argument static void fix( std::list< Declaration * > & translationUnit ); Expression * postmutate( ConstructorExpr * ctorExpr ); }; } // namespace void fix( std::list< Declaration * > & translationUnit, const std::string & filename, bool inLibrary ) { // fixes ConstructorInit for global variables. should happen before fixInitializers. InitTweak::fixGlobalInit( translationUnit, filename, inLibrary ); UnqCount unqCount; InsertImplicitCalls::insert( translationUnit ); ResolveCopyCtors::resolveImplicitCalls( translationUnit, unqCount ); InsertDtors::insert( translationUnit ); FixInit::fixInitializers( translationUnit ); // FixCopyCtors must happen after FixInit, so that destructors are placed correctly FixCopyCtors::fixCopyCtors( translationUnit, unqCount ); GenStructMemberCalls::generate( translationUnit ); // xxx - ctor expansion currently has to be after FixCopyCtors, because there is currently a // hack in the way untyped assignments are generated, where the first argument cannot have // its address taken because of the way codegeneration handles UntypedExpr vs. ApplicationExpr. // Thus such assignment exprs must never pushed through expression resolution (and thus should // not go through the FixCopyCtors pass), otherwise they will fail -- guaranteed. // Also needs to happen after GenStructMemberCalls, since otherwise member constructors exprs // don't look right, and a member can be constructed more than once. FixCtorExprs::fix( translationUnit ); } namespace { void InsertImplicitCalls::insert( std::list< Declaration * > & translationUnit ) { PassVisitor inserter; mutateAll( translationUnit, inserter ); } void ResolveCopyCtors::resolveImplicitCalls( std::list< Declaration * > & translationUnit, UnqCount & unqCount ) { PassVisitor resolver( unqCount ); acceptAll( translationUnit, resolver ); } void FixInit::fixInitializers( std::list< Declaration * > & translationUnit ) { PassVisitor fixer; // can't use mutateAll, because need to insert declarations at top-level // can't use DeclMutator, because sometimes need to insert IfStmt, etc. SemanticError errors; for ( std::list< Declaration * >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) { try { *i = maybeMutate( *i, fixer ); translationUnit.splice( i, fixer.pass.staticDtorDecls ); } catch( SemanticError &e ) { e.set_location( (*i)->location ); errors.append( e ); } // try } // for if ( ! errors.isEmpty() ) { throw errors; } // if } void InsertDtors::insert( std::list< Declaration * > & translationUnit ) { PassVisitor finder; PassVisitor inserter( finder ); acceptAll( translationUnit, inserter ); } void FixCopyCtors::fixCopyCtors( std::list< Declaration * > & translationUnit, UnqCount & unqCount ) { PassVisitor fixer( unqCount ); mutateAll( translationUnit, fixer ); } void GenStructMemberCalls::generate( std::list< Declaration * > & translationUnit ) { PassVisitor warner; acceptAll( translationUnit, warner ); } void FixCtorExprs::fix( std::list< Declaration * > & translationUnit ) { PassVisitor fixer; mutateAll( translationUnit, fixer ); } Expression * InsertImplicitCalls::postmutate( ApplicationExpr * appExpr ) { assert( appExpr ); if ( VariableExpr * function = dynamic_cast< VariableExpr * > ( appExpr->get_function() ) ) { if ( LinkageSpec::isBuiltin( function->get_var()->get_linkage() ) ) { // optimization: don't need to copy construct in order to call intrinsic functions return appExpr; } else if ( DeclarationWithType * funcDecl = dynamic_cast< DeclarationWithType * > ( function->get_var() ) ) { FunctionType * ftype = dynamic_cast< FunctionType * >( GenPoly::getFunctionType( funcDecl->get_type() ) ); assertf( ftype, "Function call without function type: %s", toString( funcDecl ).c_str() ); if ( CodeGen::isConstructor( funcDecl->get_name() ) && ftype->get_parameters().size() == 2 ) { Type * t1 = getPointerBase( ftype->get_parameters().front()->get_type() ); Type * t2 = ftype->get_parameters().back()->get_type(); assert( t1 ); if ( ResolvExpr::typesCompatible( t1, t2, SymTab::Indexer() ) ) { // optimization: don't need to copy construct in order to call a copy constructor return appExpr; } // if } else if ( CodeGen::isDestructor( funcDecl->get_name() ) ) { // correctness: never copy construct arguments to a destructor return appExpr; } // if } // if } // if CP_CTOR_PRINT( std::cerr << "InsertImplicitCalls: adding a wrapper " << appExpr << std::endl; ) // wrap each function call so that it is easy to identify nodes that have to be copy constructed ImplicitCopyCtorExpr * expr = new ImplicitCopyCtorExpr( appExpr ); // Move the type substitution to the new top-level, if it is attached to the appExpr. // Ensure it is not deleted with the ImplicitCopyCtorExpr by removing it before deletion. // The substitution is needed to obtain the type of temporary variables so that copy constructor // calls can be resolved. assert( env ); std::swap( expr->env, appExpr->env ); return expr; } bool ResolveCopyCtors::skipCopyConstruct( Type * type ) { return ! isConstructable( type ); } Expression * ResolveCopyCtors::makeCtorDtor( const std::string & fname, ObjectDecl * var, Expression * cpArg ) { assert( var ); // arrays are not copy constructed, so this should always be an ExprStmt ImplicitCtorDtorStmt * stmt = genCtorDtor( fname, var, cpArg ); ExprStmt * exprStmt = strict_dynamic_cast< ExprStmt * >( stmt->get_callStmt() ); Expression * untyped = exprStmt->get_expr(); // resolve copy constructor // should only be one alternative for copy ctor and dtor expressions, since all arguments are fixed // (VariableExpr and already resolved expression) CP_CTOR_PRINT( std::cerr << "ResolvingCtorDtor " << untyped << std::endl; ) Expression * resolved = ResolvExpr::findVoidExpression( untyped, indexer ); assert( resolved ); if ( resolved->get_env() ) { // Extract useful information and discard new environments. Keeping them causes problems in PolyMutator passes. env->add( *resolved->get_env() ); delete resolved->get_env(); resolved->set_env( nullptr ); } // if delete stmt; return resolved; } void ResolveCopyCtors::copyConstructArg( Expression *& arg, ImplicitCopyCtorExpr * impCpCtorExpr ) { static UniqueName tempNamer("_tmp_cp"); assert( env ); CP_CTOR_PRINT( std::cerr << "Type Substitution: " << *env << std::endl; ) assert( arg->has_result() ); Type * result = arg->get_result(); if ( skipCopyConstruct( result ) ) return; // skip certain non-copyable types // type may involve type variables, so apply type substitution to get temporary variable's actual type result = result->clone(); env->apply( result ); ObjectDecl * tmp = ObjectDecl::newObject( "__tmp", result, nullptr ); tmp->get_type()->set_const( false ); // create and resolve copy constructor CP_CTOR_PRINT( std::cerr << "makeCtorDtor for an argument" << std::endl; ) Expression * cpCtor = makeCtorDtor( "?{}", tmp, arg ); if ( ApplicationExpr * appExpr = dynamic_cast< ApplicationExpr * >( cpCtor ) ) { // if the chosen constructor is intrinsic, the copy is unnecessary, so // don't create the temporary and don't call the copy constructor VariableExpr * function = dynamic_cast< VariableExpr * >( appExpr->get_function() ); assert( function ); if ( function->get_var()->get_linkage() == LinkageSpec::Intrinsic ) return; } // set a unique name for the temporary once it's certain the call is necessary tmp->name = tempNamer.newName(); // replace argument to function call with temporary arg = new CommaExpr( cpCtor, new VariableExpr( tmp ) ); impCpCtorExpr->get_tempDecls().push_back( tmp ); impCpCtorExpr->get_dtors().push_front( makeCtorDtor( "^?{}", tmp ) ); } void ResolveCopyCtors::destructRet( ObjectDecl * ret, ImplicitCopyCtorExpr * impCpCtorExpr ) { impCpCtorExpr->get_dtors().push_front( makeCtorDtor( "^?{}", ret ) ); } void ResolveCopyCtors::postvisit( ImplicitCopyCtorExpr *impCpCtorExpr ) { CP_CTOR_PRINT( std::cerr << "ResolveCopyCtors: " << impCpCtorExpr << std::endl; ) ApplicationExpr * appExpr = impCpCtorExpr->get_callExpr(); // take each argument and attempt to copy construct it. for ( Expression * & arg : appExpr->get_args() ) { copyConstructArg( arg, impCpCtorExpr ); } // for // each return value from the call needs to be connected with an ObjectDecl at the call site, which is // initialized with the return value and is destructed later // xxx - handle named return values? Type * result = appExpr->get_result(); if ( ! result->isVoid() ) { static UniqueName retNamer("_tmp_cp_ret"); result = result->clone(); env->apply( result ); ObjectDecl * ret = ObjectDecl::newObject( retNamer.newName(), result, nullptr ); ret->get_type()->set_const( false ); impCpCtorExpr->get_returnDecls().push_back( ret ); CP_CTOR_PRINT( std::cerr << "makeCtorDtor for a return" << std::endl; ) if ( ! dynamic_cast< ReferenceType * >( result ) ) { // destructing reference returns is bad because it can cause multiple destructor calls to the same object - the returned object is not a temporary destructRet( ret, impCpCtorExpr ); } } // for CP_CTOR_PRINT( std::cerr << "after Resolving: " << impCpCtorExpr << std::endl; ) } void ResolveCopyCtors::postvisit( StmtExpr * stmtExpr ) { assert( env ); assert( stmtExpr->get_result() ); Type * result = stmtExpr->get_result(); if ( ! result->isVoid() ) { static UniqueName retNamer("_tmp_stmtexpr_ret"); // create variable that will hold the result of the stmt expr result = result->clone(); env->apply( result ); ObjectDecl * ret = ObjectDecl::newObject( retNamer.newName(), result, nullptr ); ret->get_type()->set_const( false ); stmtExpr->get_returnDecls().push_front( ret ); // must have a non-empty body, otherwise it wouldn't have a result CompoundStmt * body = stmtExpr->get_statements(); assert( ! body->get_kids().empty() ); // must be an ExprStmt, otherwise it wouldn't have a result ExprStmt * last = strict_dynamic_cast< ExprStmt * >( body->get_kids().back() ); last->set_expr( makeCtorDtor( "?{}", ret, last->get_expr() ) ); stmtExpr->get_dtors().push_front( makeCtorDtor( "^?{}", ret ) ); } // if } void ResolveCopyCtors::previsit( UniqueExpr * unqExpr ) { unqCount[ unqExpr->get_id() ]++; // count the number of unique expressions for each ID if ( vars.count( unqExpr->get_id() ) ) { // xxx - hack to prevent double-handling of unique exprs, otherwise too many temporary variables and destructors are generated visit_children = false; } } void ResolveCopyCtors::postvisit( UniqueExpr * unqExpr ) { if ( vars.count( unqExpr->get_id() ) ) { // xxx - hack to prevent double-handling of unique exprs, otherwise too many temporary variables and destructors are generated return; } // it should never be necessary to wrap a void-returning expression in a UniqueExpr - if this assumption changes, this needs to be rethought assert( unqExpr->get_result() ); if ( ImplicitCopyCtorExpr * impCpCtorExpr = dynamic_cast( unqExpr->get_expr() ) ) { // note the variable used as the result from the call assert( impCpCtorExpr->get_result() && impCpCtorExpr->get_returnDecls().size() == 1 ); unqExpr->set_var( new VariableExpr( impCpCtorExpr->get_returnDecls().front() ) ); } else { // expr isn't a call expr, so create a new temporary variable to use to hold the value of the unique expression unqExpr->set_object( ObjectDecl::newObject( toString("_unq", unqExpr->get_id()), unqExpr->get_result()->clone(), nullptr ) ); unqExpr->set_var( new VariableExpr( unqExpr->get_object() ) ); } vars.insert( unqExpr->get_id() ); } Expression * FixCopyCtors::postmutate( ImplicitCopyCtorExpr * impCpCtorExpr ) { CP_CTOR_PRINT( std::cerr << "FixCopyCtors: " << impCpCtorExpr << std::endl; ) std::list< ObjectDecl * > & tempDecls = impCpCtorExpr->get_tempDecls(); std::list< ObjectDecl * > & returnDecls = impCpCtorExpr->get_returnDecls(); std::list< Expression * > & dtors = impCpCtorExpr->get_dtors(); // add all temporary declarations and their constructors for ( ObjectDecl * obj : tempDecls ) { stmtsToAddBefore.push_back( new DeclStmt( noLabels, obj ) ); } // for for ( ObjectDecl * obj : returnDecls ) { stmtsToAddBefore.push_back( new DeclStmt( noLabels, obj ) ); } // for // add destructors after current statement for ( Expression * dtor : dtors ) { stmtsToAddAfter.push_back( new ExprStmt( noLabels, dtor ) ); } // for ObjectDecl * returnDecl = returnDecls.empty() ? nullptr : returnDecls.front(); Expression * callExpr = impCpCtorExpr->get_callExpr(); CP_CTOR_PRINT( std::cerr << "Coming out the back..." << impCpCtorExpr << std::endl; ) // detach fields from wrapper node so that it can be deleted without deleting too much dtors.clear(); tempDecls.clear(); returnDecls.clear(); impCpCtorExpr->set_callExpr( nullptr ); std::swap( impCpCtorExpr->env, callExpr->env ); assert( impCpCtorExpr->env == nullptr ); delete impCpCtorExpr; if ( returnDecl ) { UntypedExpr * assign = new UntypedExpr( new NameExpr( "?=?" ) ); assign->get_args().push_back( new VariableExpr( returnDecl ) ); assign->get_args().push_back( callExpr ); // know the result type of the assignment is the type of the LHS (minus the pointer), so // add that onto the assignment expression so that later steps have the necessary information assign->set_result( returnDecl->get_type()->clone() ); Expression * retExpr = new CommaExpr( assign, new VariableExpr( returnDecl ) ); // move env from callExpr to retExpr retExpr->set_env( callExpr->get_env() ); callExpr->set_env( nullptr ); return retExpr; } else { return callExpr; } // if } void FixCopyCtors::premutate( StmtExpr * stmtExpr ) { // function call temporaries should be placed at statement-level, rather than nested inside of a new statement expression, // since temporaries can be shared across sub-expressions, e.g. // [A, A] f(); // g([A] x, [A] y); // g(f()); // f is executed once, so the return temporary is shared across the tuple constructors for x and y. // Explicitly mutating children instead of mutating the inner compound statment forces the temporaries to be added // to the outer context, rather than inside of the statement expression. visit_children = false; std::list< Statement * > & stmts = stmtExpr->get_statements()->get_kids(); for ( Statement *& stmt : stmts ) { stmt = stmt->acceptMutator( *visitor ); } // for assert( stmtExpr->get_result() ); Type * result = stmtExpr->get_result(); if ( ! result->isVoid() ) { for ( ObjectDecl * obj : stmtExpr->get_returnDecls() ) { stmtsToAddBefore.push_back( new DeclStmt( noLabels, obj ) ); } // for // add destructors after current statement for ( Expression * dtor : stmtExpr->get_dtors() ) { stmtsToAddAfter.push_back( new ExprStmt( noLabels, dtor ) ); } // for // must have a non-empty body, otherwise it wouldn't have a result assert( ! stmts.empty() ); assert( ! stmtExpr->get_returnDecls().empty() ); stmts.push_back( new ExprStmt( noLabels, new VariableExpr( stmtExpr->get_returnDecls().front() ) ) ); stmtExpr->get_returnDecls().clear(); stmtExpr->get_dtors().clear(); } assert( stmtExpr->get_returnDecls().empty() ); assert( stmtExpr->get_dtors().empty() ); } void FixCopyCtors::premutate( UniqueExpr * unqExpr ) { visit_children = false; unqCount[ unqExpr->get_id() ]--; static std::unordered_map< int, std::list< Statement * > > dtors; static std::unordered_map< int, UniqueExpr * > unqMap; // has to be done to clean up ImplicitCopyCtorExpr nodes, even when this node was skipped in previous passes if ( unqMap.count( unqExpr->get_id() ) ) { // take data from other UniqueExpr to ensure consistency delete unqExpr->get_expr(); unqExpr->set_expr( unqMap[unqExpr->get_id()]->get_expr()->clone() ); delete unqExpr->get_result(); unqExpr->set_result( maybeClone( unqExpr->get_expr()->get_result() ) ); if ( unqCount[ unqExpr->get_id() ] == 0 ) { // insert destructor after the last use of the unique expression stmtsToAddAfter.splice( stmtsToAddAfter.end(), dtors[ unqExpr->get_id() ] ); } return; } PassVisitor fixer( unqCount ); unqExpr->set_expr( unqExpr->get_expr()->acceptMutator( fixer ) ); // stmtexprs contained should not be separately fixed, so this must occur after the lookup stmtsToAddBefore.splice( stmtsToAddBefore.end(), fixer.pass.stmtsToAddBefore ); unqMap[unqExpr->get_id()] = unqExpr; if ( unqCount[ unqExpr->get_id() ] == 0 ) { // insert destructor after the last use of the unique expression stmtsToAddAfter.splice( stmtsToAddAfter.end(), dtors[ unqExpr->get_id() ] ); } else { // remember dtors for last instance of unique expr dtors[ unqExpr->get_id() ] = fixer.pass.stmtsToAddAfter; } return; } DeclarationWithType *FixInit::postmutate( ObjectDecl *objDecl ) { // since this removes the init field from objDecl, it must occur after children are mutated (i.e. postmutate) if ( ConstructorInit * ctorInit = dynamic_cast< ConstructorInit * >( objDecl->get_init() ) ) { // a decision should have been made by the resolver, so ctor and init are not both non-NULL assert( ! ctorInit->get_ctor() || ! ctorInit->get_init() ); if ( Statement * ctor = ctorInit->get_ctor() ) { if ( objDecl->get_storageClasses().is_static ) { // originally wanted to take advantage of gcc nested functions, but // we get memory errors with this approach. To remedy this, the static // variable is hoisted when the destructor needs to be called. // // generate: // static T __objName_static_varN; // void __objName_dtor_atexitN() { // __dtor__...; // } // int f(...) { // ... // static bool __objName_uninitialized = true; // if (__objName_uninitialized) { // __ctor(__objName); // __objName_uninitialized = false; // atexit(__objName_dtor_atexitN); // } // ... // } static UniqueName dtorCallerNamer( "_dtor_atexit" ); // static bool __objName_uninitialized = true BasicType * boolType = new BasicType( Type::Qualifiers(), BasicType::Bool ); SingleInit * boolInitExpr = new SingleInit( new ConstantExpr( Constant::from_int( 1 ) ) ); ObjectDecl * isUninitializedVar = new ObjectDecl( objDecl->get_mangleName() + "_uninitialized", Type::StorageClasses( Type::Static ), LinkageSpec::Cforall, 0, boolType, boolInitExpr ); isUninitializedVar->fixUniqueId(); // __objName_uninitialized = false; UntypedExpr * setTrue = new UntypedExpr( new NameExpr( "?=?" ) ); setTrue->get_args().push_back( new VariableExpr( isUninitializedVar ) ); setTrue->get_args().push_back( new ConstantExpr( Constant::from_int( 0 ) ) ); // generate body of if CompoundStmt * initStmts = new CompoundStmt( noLabels ); std::list< Statement * > & body = initStmts->get_kids(); body.push_back( ctor ); body.push_back( new ExprStmt( noLabels, setTrue ) ); // put it all together IfStmt * ifStmt = new IfStmt( noLabels, new VariableExpr( isUninitializedVar ), initStmts, 0 ); stmtsToAddAfter.push_back( new DeclStmt( noLabels, isUninitializedVar ) ); stmtsToAddAfter.push_back( ifStmt ); Statement * dtor = ctorInit->get_dtor(); objDecl->set_init( nullptr ); ctorInit->set_ctor( nullptr ); ctorInit->set_dtor( nullptr ); if ( dtor ) { // if the object has a non-trivial destructor, have to // hoist it and the object into the global space and // call the destructor function with atexit. Statement * dtorStmt = dtor->clone(); // void __objName_dtor_atexitN(...) {...} FunctionDecl * dtorCaller = new FunctionDecl( objDecl->get_mangleName() + dtorCallerNamer.newName(), Type::StorageClasses( Type::Static ), LinkageSpec::C, new FunctionType( Type::Qualifiers(), false ), new CompoundStmt( noLabels ) ); dtorCaller->fixUniqueId(); dtorCaller->get_statements()->push_back( dtorStmt ); // atexit(dtor_atexit); UntypedExpr * callAtexit = new UntypedExpr( new NameExpr( "atexit" ) ); callAtexit->get_args().push_back( new VariableExpr( dtorCaller ) ); body.push_back( new ExprStmt( noLabels, callAtexit ) ); // hoist variable and dtor caller decls to list of decls that will be added into global scope staticDtorDecls.push_back( objDecl ); staticDtorDecls.push_back( dtorCaller ); // need to rename object uniquely since it now appears // at global scope and there could be multiple function-scoped // static variables with the same name in different functions. // Note: it isn't sufficient to modify only the mangleName, because // then subsequent Indexer passes can choke on seeing the object's name // if another object has the same name and type. An unfortunate side-effect // of renaming the object is that subsequent NameExprs may fail to resolve, // but there shouldn't be any remaining past this point. static UniqueName staticNamer( "_static_var" ); objDecl->set_name( objDecl->get_name() + staticNamer.newName() ); objDecl->set_mangleName( SymTab::Mangler::mangle( objDecl ) ); // xxx - temporary hack: need to return a declaration, but want to hoist the current object out of this scope // create a new object which is never used static UniqueName dummyNamer( "_dummy" ); ObjectDecl * dummy = new ObjectDecl( dummyNamer.newName(), Type::StorageClasses( Type::Static ), LinkageSpec::Cforall, 0, new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ), 0, std::list< Attribute * >{ new Attribute("unused") } ); delete ctorInit; return dummy; } } else { ImplicitCtorDtorStmt * implicit = strict_dynamic_cast< ImplicitCtorDtorStmt * > ( ctor ); ExprStmt * ctorStmt = dynamic_cast< ExprStmt * >( implicit->get_callStmt() ); ApplicationExpr * ctorCall = nullptr; if ( ctorStmt && (ctorCall = isIntrinsicCallExpr( ctorStmt->get_expr() )) && ctorCall->get_args().size() == 2 ) { // clean up intrinsic copy constructor calls by making them into SingleInits objDecl->set_init( new SingleInit( ctorCall->get_args().back() ) ); ctorCall->get_args().pop_back(); } else { stmtsToAddAfter.push_back( ctor ); objDecl->set_init( nullptr ); ctorInit->set_ctor( nullptr ); } } // if } else if ( Initializer * init = ctorInit->get_init() ) { objDecl->set_init( init ); ctorInit->set_init( nullptr ); } else { // no constructor and no initializer, which is okay objDecl->set_init( nullptr ); } // if delete ctorInit; } // if return objDecl; } void ObjDeclCollector::previsit( CompoundStmt * ) { GuardValue( curVars ); } void ObjDeclCollector::previsit( DeclStmt * stmt ) { // keep track of all variables currently in scope if ( ObjectDecl * objDecl = dynamic_cast< ObjectDecl * > ( stmt->get_decl() ) ) { curVars.push_back( objDecl ); } // if } void LabelFinder::previsit( Statement * stmt ) { // for each label, remember the variables in scope at that label. for ( Label l : stmt->get_labels() ) { vars[l] = curVars; } // for } void LabelFinder::previsit( CompoundStmt * stmt ) { previsit( (Statement *)stmt ); Parent::previsit( stmt ); } void LabelFinder::previsit( DeclStmt * stmt ) { previsit( (Statement *)stmt ); Parent::previsit( stmt ); } template void insertDtors( Iterator begin, Iterator end, OutputIterator out ) { for ( Iterator it = begin ; it != end ; ++it ) { // extract destructor statement from the object decl and insert it into the output. Note that this is // only called on lists of non-static objects with implicit non-intrinsic dtors, so if the user manually // calls an intrinsic dtor then the call must (and will) still be generated since the argument may // contain side effects. ObjectDecl * objDecl = *it; ConstructorInit * ctorInit = dynamic_cast< ConstructorInit * >( objDecl->get_init() ); assert( ctorInit && ctorInit->get_dtor() ); *out++ = ctorInit->get_dtor()->clone(); } // for } void InsertDtors::previsit( ObjectDecl * objDecl ) { // remember non-static destructed objects so that their destructors can be inserted later if ( ! objDecl->get_storageClasses().is_static ) { if ( ConstructorInit * ctorInit = dynamic_cast< ConstructorInit * >( objDecl->get_init() ) ) { // a decision should have been made by the resolver, so ctor and init are not both non-NULL assert( ! ctorInit->get_ctor() || ! ctorInit->get_init() ); Statement * dtor = ctorInit->get_dtor(); // don't need to call intrinsic dtor, because it does nothing, but // non-intrinsic dtors must be called if ( dtor && ! isIntrinsicSingleArgCallStmt( dtor ) ) { // set dtor location to the object's location for error messages ctorInit->dtor->location = objDecl->location; reverseDeclOrder.front().push_front( objDecl ); } // if } // if } // if } void InsertDtors::previsit( FunctionDecl * funcDecl ) { // each function needs to have its own set of labels GuardValue( labelVars ); labelVars.clear(); maybeAccept( funcDecl->type, finder ); maybeAccept( funcDecl->statements, finder ); // all labels for this function have been collected, insert destructors as appropriate via implicit recursion. } void InsertDtors::previsit( CompoundStmt * compoundStmt ) { // visit statements - this will also populate reverseDeclOrder list. don't want to dump all destructors // when block is left, just the destructors associated with variables defined in this block, so push a new // list to the top of the stack so that we can differentiate scopes reverseDeclOrder.push_front( OrderedDecls() ); Parent::previsit( compoundStmt ); } void InsertDtors::postvisit( CompoundStmt * compoundStmt ) { // add destructors for the current scope that we're exiting, unless the last statement is a return, which // causes unreachable code warnings std::list< Statement * > & statements = compoundStmt->get_kids(); if ( ! statements.empty() && ! dynamic_cast< ReturnStmt * >( statements.back() ) ) { insertDtors( reverseDeclOrder.front().begin(), reverseDeclOrder.front().end(), back_inserter( statements ) ); } reverseDeclOrder.pop_front(); } void InsertDtors::previsit( ReturnStmt * ) { // return exits all scopes, so dump destructors for all scopes for ( OrderedDecls & od : reverseDeclOrder ) { insertDtors( od.begin(), od.end(), back_inserter( stmtsToAddBefore ) ); } // for } // Handle break/continue/goto in the same manner as C++. Basic idea: any objects that are in scope at the // BranchStmt but not at the labelled (target) statement must be destructed. If there are any objects in scope // at the target location but not at the BranchStmt then those objects would be uninitialized so notify the user // of the error. See C++ Reference 6.6 Jump Statements for details. void InsertDtors::handleGoto( BranchStmt * stmt ) { // can't do anything for computed goto if ( stmt->computedTarget ) return; assertf( stmt->get_target() != "", "BranchStmt missing a label: %s", toString( stmt ).c_str() ); // S_L = lvars = set of objects in scope at label definition // S_G = curVars = set of objects in scope at goto statement ObjectSet & lvars = labelVars[ stmt->get_target() ]; DTOR_PRINT( std::cerr << "at goto label: " << stmt->get_target().get_name() << std::endl; std::cerr << "S_G = " << printSet( curVars ) << std::endl; std::cerr << "S_L = " << printSet( lvars ) << std::endl; ) ObjectSet diff; // S_L-S_G results in set of objects whose construction is skipped - it's an error if this set is non-empty std::set_difference( lvars.begin(), lvars.end(), curVars.begin(), curVars.end(), std::inserter( diff, diff.begin() ) ); DTOR_PRINT( std::cerr << "S_L-S_G = " << printSet( diff ) << std::endl; ) if ( ! diff.empty() ) { throw SemanticError( std::string("jump to label '") + stmt->get_target().get_name() + "' crosses initialization of " + (*diff.begin())->get_name() + " ", stmt ); } // if // S_G-S_L results in set of objects that must be destructed diff.clear(); std::set_difference( curVars.begin(), curVars.end(), lvars.begin(), lvars.end(), std::inserter( diff, diff.end() ) ); DTOR_PRINT( std::cerr << "S_G-S_L = " << printSet( diff ) << std::endl; ) if ( ! diff.empty() ) { // create an auxilliary set for fast lookup -- can't make diff a set, because diff ordering should be consistent for error messages. std::unordered_set needsDestructor( diff.begin(), diff.end() ); // go through decl ordered list of objectdecl. for each element that occurs in diff, output destructor OrderedDecls ordered; for ( OrderedDecls & rdo : reverseDeclOrder ) { // add elements from reverseDeclOrder into ordered if they occur in diff - it is key that this happens in reverse declaration order. copy_if( rdo.begin(), rdo.end(), back_inserter( ordered ), [&]( ObjectDecl * objDecl ) { return needsDestructor.count( objDecl ); } ); } // for insertDtors( ordered.begin(), ordered.end(), back_inserter( stmtsToAddBefore ) ); } // if } void InsertDtors::previsit( BranchStmt * stmt ) { switch( stmt->get_type() ) { case BranchStmt::Continue: case BranchStmt::Break: // could optimize the break/continue case, because the S_L-S_G check is unnecessary (this set should // always be empty), but it serves as a small sanity check. case BranchStmt::Goto: handleGoto( stmt ); break; default: assert( false ); } // switch } bool checkWarnings( FunctionDecl * funcDecl ) { // only check for warnings if the current function is a user-defined // constructor or destructor if ( ! funcDecl ) return false; if ( ! funcDecl->get_statements() ) return false; return CodeGen::isCtorDtor( funcDecl->get_name() ) && ! LinkageSpec::isOverridable( funcDecl->get_linkage() ); } void GenStructMemberCalls::previsit( FunctionDecl * funcDecl ) { GuardValue( funcDecl ); GuardValue( unhandled ); GuardValue( usedUninit ); GuardValue( thisParam ); GuardValue( isCtor ); GuardValue( structDecl ); errors = SemanticError(); // clear previous errors // need to start with fresh sets unhandled.clear(); usedUninit.clear(); function = funcDecl; isCtor = CodeGen::isConstructor( function->get_name() ); if ( checkWarnings( function ) ) { FunctionType * type = function->get_functionType(); assert( ! type->get_parameters().empty() ); thisParam = strict_dynamic_cast< ObjectDecl * >( type->get_parameters().front() ); Type * thisType = getPointerBase( thisParam->get_type() ); StructInstType * structType = dynamic_cast< StructInstType * >( thisType ); if ( structType ) { structDecl = structType->get_baseStruct(); for ( Declaration * member : structDecl->get_members() ) { if ( ObjectDecl * field = dynamic_cast< ObjectDecl * >( member ) ) { // record all of the struct type's members that need to be constructed or // destructed by the end of the function unhandled.insert( field ); } } } } } void addIds( SymTab::Indexer & indexer, const std::list< DeclarationWithType * > & decls ) { for ( auto d : decls ) { indexer.addId( d ); } } void addTypes( SymTab::Indexer & indexer, const std::list< TypeDecl * > & tds ) { for ( auto td : tds ) { indexer.addType( td ); addIds( indexer, td->assertions ); } } void GenStructMemberCalls::postvisit( FunctionDecl * funcDecl ) { // remove the unhandled objects from usedUninit, because a call is inserted // to handle them - only objects that are later constructed are used uninitialized. std::map< DeclarationWithType *, CodeLocation > diff; // need the comparator since usedUninit and unhandled have different types struct comp_t { typedef decltype(usedUninit)::value_type usedUninit_t; typedef decltype(unhandled)::value_type unhandled_t; bool operator()(usedUninit_t x, unhandled_t y) { return x.first < y; } bool operator()(unhandled_t x, usedUninit_t y) { return x < y.first; } } comp; std::set_difference( usedUninit.begin(), usedUninit.end(), unhandled.begin(), unhandled.end(), std::inserter( diff, diff.begin() ), comp ); for ( auto p : diff ) { DeclarationWithType * member = p.first; CodeLocation loc = p.second; // xxx - make error message better by also tracking the location that the object is constructed at? emit( loc, "in ", CodeGen::genPrettyType( function->get_functionType(), function->get_name() ), ", field ", member->get_name(), " used before being constructed" ); } if ( ! unhandled.empty() ) { // need to explicitly re-add function parameters to the indexer in order to resolve copy constructors auto guard = makeFuncGuard( [this]() { indexer.enterScope(); }, [this]() { indexer.leaveScope(); } ); addTypes( indexer, function->type->forall ); addIds( indexer, function->type->returnVals ); addIds( indexer, function->type->parameters ); // need to iterate through members in reverse in order for // ctor/dtor statements to come out in the right order for ( Declaration * member : reverseIterate( structDecl->get_members() ) ) { DeclarationWithType * field = dynamic_cast< DeclarationWithType * >( member ); // skip non-DWT members if ( ! field ) continue; // skip non-constructable members if ( ! tryConstruct( field ) ) continue; // skip handled members if ( ! unhandled.count( field ) ) continue; // insert and resolve default/copy constructor call for each field that's unhandled std::list< Statement * > stmt; Expression * arg2 = 0; if ( isCopyConstructor( function ) ) { // if copy ctor, need to pass second-param-of-this-function.field std::list< DeclarationWithType * > & params = function->get_functionType()->get_parameters(); assert( params.size() == 2 ); arg2 = new MemberExpr( field, new VariableExpr( params.back() ) ); } InitExpander srcParam( arg2 ); // cast away reference type and construct field. Expression * thisExpr = new CastExpr( new VariableExpr( thisParam ), thisParam->get_type()->stripReferences()->clone() ); Expression * memberDest = new MemberExpr( field, thisExpr ); SymTab::genImplicitCall( srcParam, memberDest, function->get_name(), back_inserter( stmt ), field, isCtor ); assert( stmt.size() <= 1 ); if ( stmt.size() == 1 ) { Statement * callStmt = stmt.front(); MutatingResolver resolver( indexer ); try { callStmt->acceptMutator( resolver ); if ( isCtor ) { function->get_statements()->push_front( callStmt ); } else { // destructor statements should be added at the end function->get_statements()->push_back( callStmt ); } } catch ( SemanticError & error ) { emit( funcDecl->location, "in ", CodeGen::genPrettyType( function->get_functionType(), function->get_name() ), ", field ", field->get_name(), " not explicitly ", isCtor ? "constructed" : "destructed", " and no ", isCtor ? "default constructor" : "destructor", " found" ); } } } } if (! errors.isEmpty()) { throw errors; } } /// true if expr is effectively just the 'this' parameter bool isThisExpression( Expression * expr, DeclarationWithType * thisParam ) { // TODO: there are more complicated ways to pass 'this' to a constructor, e.g. &*, *&, etc. if ( VariableExpr * varExpr = dynamic_cast< VariableExpr * >( expr ) ) { return varExpr->get_var() == thisParam; } else if ( CastExpr * castExpr = dynamic_cast< CastExpr * > ( expr ) ) { return isThisExpression( castExpr->get_arg(), thisParam ); } return false; } /// returns a MemberExpr if expr is effectively just member access on the 'this' parameter, else nullptr MemberExpr * isThisMemberExpr( Expression * expr, DeclarationWithType * thisParam ) { if ( MemberExpr * memberExpr = dynamic_cast< MemberExpr * >( expr ) ) { if ( isThisExpression( memberExpr->get_aggregate(), thisParam ) ) { return memberExpr; } } else if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( expr ) ) { return isThisMemberExpr( castExpr->get_arg(), thisParam ); } return nullptr; } void GenStructMemberCalls::previsit( ApplicationExpr * appExpr ) { if ( ! checkWarnings( function ) ) { visit_children = false; return; } std::string fname = getFunctionName( appExpr ); if ( fname == function->get_name() ) { // call to same kind of function Expression * firstParam = appExpr->get_args().front(); if ( isThisExpression( firstParam, thisParam ) ) { // if calling another constructor on thisParam, assume that function handles // all members - if it doesn't a warning will appear in that function. unhandled.clear(); } else if ( MemberExpr * memberExpr = isThisMemberExpr( firstParam, thisParam ) ) { // if first parameter is a member expression on the this parameter, // then remove the member from unhandled set. if ( isThisExpression( memberExpr->get_aggregate(), thisParam ) ) { unhandled.erase( memberExpr->get_member() ); } } } } void GenStructMemberCalls::previsit( MemberExpr * memberExpr ) { if ( ! checkWarnings( function ) || ! isCtor ) { visit_children = false; return; } if ( isThisExpression( memberExpr->get_aggregate(), thisParam ) ) { if ( unhandled.count( memberExpr->get_member() ) ) { // emit a warning because a member was used before it was constructed usedUninit.insert( { memberExpr->get_member(), memberExpr->location } ); } } } template< typename Visitor, typename... Params > void error( Visitor & v, CodeLocation loc, const Params &... params ) { SemanticError err( toString( params... ) ); err.set_location( loc ); v.errors.append( err ); } template< typename... Params > void GenStructMemberCalls::emit( CodeLocation loc, const Params &... params ) { // toggle warnings vs. errors here. // warn( params... ); error( *this, loc, params... ); } DeclarationWithType * MutatingResolver::mutate( ObjectDecl *objectDecl ) { // add object to the indexer assumes that there will be no name collisions // in generated code. If this changes, add mutate methods for entities with // scope and call {enter,leave}Scope explicitly. indexer.addId( objectDecl ); return objectDecl; } Expression* MutatingResolver::mutate( UntypedExpr *untypedExpr ) { return strict_dynamic_cast< ApplicationExpr * >( ResolvExpr::findVoidExpression( untypedExpr, indexer ) ); } Expression * FixCtorExprs::postmutate( ConstructorExpr * ctorExpr ) { static UniqueName tempNamer( "_tmp_ctor_expr" ); // xxx - is the size check necessary? assert( ctorExpr->has_result() && ctorExpr->get_result()->size() == 1 ); // xxx - ideally we would reuse the temporary generated from the copy constructor passes from within firstArg if it exists and not generate a temporary if it's unnecessary. ObjectDecl * tmp = ObjectDecl::newObject( tempNamer.newName(), ctorExpr->get_result()->clone(), nullptr ); declsToAddBefore.push_back( tmp ); // xxx - this can be TupleAssignExpr now. Need to properly handle this case. ApplicationExpr * callExpr = strict_dynamic_cast< ApplicationExpr * > ( ctorExpr->get_callExpr() ); TypeSubstitution * env = ctorExpr->get_env(); ctorExpr->set_callExpr( nullptr ); ctorExpr->set_env( nullptr ); delete ctorExpr; // build assignment and replace constructor's first argument with new temporary Expression *& firstArg = callExpr->get_args().front(); Expression * assign = new UntypedExpr( new NameExpr( "?=?" ), { new AddressExpr( new VariableExpr( tmp ) ), new AddressExpr( firstArg ) } ); firstArg = new VariableExpr( tmp ); // resolve assignment and dispose of new env Expression * resolvedAssign = ResolvExpr::findVoidExpression( assign, indexer ); delete resolvedAssign->env; resolvedAssign->env = nullptr; delete assign; // for constructor expr: // T x; // x{}; // results in: // T x; // T & tmp; // &tmp = &x, ?{}(tmp), tmp CommaExpr * commaExpr = new CommaExpr( resolvedAssign, new CommaExpr( callExpr, new VariableExpr( tmp ) ) ); commaExpr->set_env( env ); return commaExpr; } } // namespace } // namespace InitTweak // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //