// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // FixInit.h -- // // Author : Rob Schluntz // Created On : Wed Jan 13 16:29:30 2016 // Last Modified By : Peter A. Buhr // Last Modified On : Fri Mar 17 09:13:47 2017 // Update Count : 71 // #include #include #include #include #include #include #include "InitTweak.h" #include "GenInit.h" #include "FixInit.h" #include "FixGlobalInit.h" #include "CodeGen/GenType.h" // for warning/error messages #include "Common/PassVisitor.h" #include "GenPoly/DeclMutator.h" #include "GenPoly/PolyMutator.h" #include "ResolvExpr/Resolver.h" #include "ResolvExpr/typeops.h" #include "SymTab/Autogen.h" #include "SymTab/Indexer.h" #include "SynTree/AddStmtVisitor.h" #include "SynTree/Attribute.h" #include "SynTree/Declaration.h" #include "SynTree/Expression.h" #include "SynTree/Initializer.h" #include "SynTree/Mutator.h" #include "SynTree/Statement.h" #include "SynTree/Type.h" #include "Tuples/Tuples.h" bool ctordtorp = false; // print all debug bool ctorp = false; // print ctor debug bool cpctorp = false; // print copy ctor debug bool dtorp = false; // print dtor debug #define PRINT( text ) if ( ctordtorp ) { text } #define CP_CTOR_PRINT( text ) if ( ctordtorp || cpctorp ) { text } #define DTOR_PRINT( text ) if ( ctordtorp || dtorp ) { text } namespace InitTweak { namespace { typedef std::unordered_map< Expression *, TypeSubstitution * > EnvMap; typedef std::unordered_map< int, int > UnqCount; class InsertImplicitCalls { public: /// wrap function application expressions as ImplicitCopyCtorExpr nodes so that it is easy to identify which /// function calls need their parameters to be copy constructed static void insert( std::list< Declaration * > & translationUnit, EnvMap & envMap ); InsertImplicitCalls( EnvMap & envMap ) : envMap( envMap ) {} Expression * postmutate( ApplicationExpr * appExpr ); void premutate( StmtExpr * stmtExpr ); // collects environments for relevant nodes EnvMap & envMap; TypeSubstitution * env; //Magically populated by the PassVisitor }; class ResolveCopyCtors final : public SymTab::Indexer { public: /// generate temporary ObjectDecls for each argument and return value of each ImplicitCopyCtorExpr, /// generate/resolve copy construction expressions for each, and generate/resolve destructors for both /// arguments and return value temporaries static void resolveImplicitCalls( std::list< Declaration * > & translationUnit, const EnvMap & envMap, UnqCount & unqCount ); typedef SymTab::Indexer Parent; using Parent::visit; ResolveCopyCtors( const EnvMap & envMap, UnqCount & unqCount ) : envMap( envMap ), unqCount( unqCount ) {} virtual void visit( ImplicitCopyCtorExpr * impCpCtorExpr ) override; virtual void visit( UniqueExpr * unqExpr ) override; virtual void visit( StmtExpr * stmtExpr ) override; /// create and resolve ctor/dtor expression: fname(var, [cpArg]) Expression * makeCtorDtor( const std::string & fname, ObjectDecl * var, Expression * cpArg = NULL ); /// true if type does not need to be copy constructed to ensure correctness bool skipCopyConstruct( Type * type ); void copyConstructArg( Expression *& arg, ImplicitCopyCtorExpr * impCpCtorExpr ); void destructRet( ObjectDecl * ret, ImplicitCopyCtorExpr * impCpCtorExpr ); TypeSubstitution * env; const EnvMap & envMap; UnqCount & unqCount; // count the number of times each unique expr ID appears }; /// collects constructed object decls - used as a base class class ObjDeclCollector : public AddStmtVisitor { public: typedef AddStmtVisitor Parent; using Parent::visit; typedef std::set< ObjectDecl * > ObjectSet; virtual void visit( CompoundStmt *compoundStmt ) override; virtual void visit( DeclStmt *stmt ) override; // don't go into other functions virtual void visit( FunctionDecl *decl ) override {} protected: ObjectSet curVars; }; // debug struct printSet { typedef ObjDeclCollector::ObjectSet ObjectSet; printSet( const ObjectSet & objs ) : objs( objs ) {} const ObjectSet & objs; }; std::ostream & operator<<( std::ostream & out, const printSet & set) { out << "{ "; for ( ObjectDecl * obj : set.objs ) { out << obj->get_name() << ", " ; } // for out << " }"; return out; } class LabelFinder final : public ObjDeclCollector { public: typedef ObjDeclCollector Parent; typedef std::map< Label, ObjectSet > LabelMap; // map of Label -> live variables at that label LabelMap vars; void handleStmt( Statement * stmt ); // xxx - This needs to be done better. // allow some generalization among different kinds of nodes with with similar parentage (e.g. all // expressions, all statements, etc.) important to have this to provide a single entry point so that as new // subclasses are added, there is only one place that the code has to be updated, rather than ensure that // every specialized class knows about every new kind of statement that might be added. using Parent::visit; virtual void visit( CompoundStmt *stmt ) override { handleStmt( stmt ); return Parent::visit( stmt ); } virtual void visit( ExprStmt *stmt ) override { handleStmt( stmt ); return Parent::visit( stmt ); } virtual void visit( AsmStmt *stmt ) override { handleStmt( stmt ); return Parent::visit( stmt ); } virtual void visit( IfStmt *stmt ) override { handleStmt( stmt ); return Parent::visit( stmt ); } virtual void visit( WhileStmt *stmt ) override { handleStmt( stmt ); return Parent::visit( stmt ); } virtual void visit( ForStmt *stmt ) override { handleStmt( stmt ); return Parent::visit( stmt ); } virtual void visit( SwitchStmt *stmt ) override { handleStmt( stmt ); return Parent::visit( stmt ); } virtual void visit( CaseStmt *stmt ) override { handleStmt( stmt ); return Parent::visit( stmt ); } virtual void visit( BranchStmt *stmt ) override { handleStmt( stmt ); return Parent::visit( stmt ); } virtual void visit( ReturnStmt *stmt ) override { handleStmt( stmt ); return Parent::visit( stmt ); } virtual void visit( TryStmt *stmt ) override { handleStmt( stmt ); return Parent::visit( stmt ); } virtual void visit( CatchStmt *stmt ) override { handleStmt( stmt ); return Parent::visit( stmt ); } virtual void visit( FinallyStmt *stmt ) override { handleStmt( stmt ); return Parent::visit( stmt ); } virtual void visit( NullStmt *stmt ) override { handleStmt( stmt ); return Parent::visit( stmt ); } virtual void visit( DeclStmt *stmt ) override { handleStmt( stmt ); return Parent::visit( stmt ); } virtual void visit( ImplicitCtorDtorStmt *stmt ) override { handleStmt( stmt ); return Parent::visit( stmt ); } }; class InsertDtors final : public ObjDeclCollector { public: /// insert destructor calls at the appropriate places. must happen before CtorInit nodes are removed /// (currently by FixInit) static void insert( std::list< Declaration * > & translationUnit ); typedef ObjDeclCollector Parent; typedef std::list< ObjectDecl * > OrderedDecls; typedef std::list< OrderedDecls > OrderedDeclsStack; InsertDtors( LabelFinder & finder ) : finder( finder ), labelVars( finder.vars ) {} using Parent::visit; virtual void visit( ObjectDecl * objDecl ) override; virtual void visit( FunctionDecl * funcDecl ) override; virtual void visit( CompoundStmt * compoundStmt ) override; virtual void visit( ReturnStmt * returnStmt ) override; virtual void visit( BranchStmt * stmt ) override; private: void handleGoto( BranchStmt * stmt ); LabelFinder & finder; LabelFinder::LabelMap & labelVars; OrderedDeclsStack reverseDeclOrder; }; class FixInit { public: /// expand each object declaration to use its constructor after it is declared. static void fixInitializers( std::list< Declaration * > &translationUnit ); DeclarationWithType * postmutate( ObjectDecl *objDecl ); std::list< Declaration * > staticDtorDecls; std::list< Statement * > stmtsToAddAfter; // found by PassVisitor }; class FixCopyCtors final : public GenPoly::PolyMutator { public: FixCopyCtors( UnqCount & unqCount ) : unqCount( unqCount ){} /// expand ImplicitCopyCtorExpr nodes into the temporary declarations, copy constructors, call expression, /// and destructors static void fixCopyCtors( std::list< Declaration * > &translationUnit, UnqCount & unqCount ); typedef GenPoly::PolyMutator Parent; using Parent::mutate; virtual Expression * mutate( ImplicitCopyCtorExpr * impCpCtorExpr ) override; virtual Expression * mutate( UniqueExpr * unqExpr ) override; virtual Expression * mutate( StmtExpr * stmtExpr ) override; UnqCount & unqCount; }; class GenStructMemberCalls final : public SymTab::Indexer { public: typedef Indexer Parent; /// generate default/copy ctor and dtor calls for user-defined struct ctor/dtors /// for any member that is missing a corresponding ctor/dtor call. /// error if a member is used before constructed static void generate( std::list< Declaration * > & translationUnit ); using Parent::visit; virtual void visit( FunctionDecl * funcDecl ) override; virtual void visit( MemberExpr * memberExpr ) override; virtual void visit( ApplicationExpr * appExpr ) override; SemanticError errors; private: void handleFirstParam( Expression * firstParam ); template< typename... Params > void emit( CodeLocation, const Params &... params ); FunctionDecl * function = 0; std::set< DeclarationWithType * > unhandled; std::map< DeclarationWithType *, CodeLocation > usedUninit; ObjectDecl * thisParam = 0; bool isCtor = false; // true if current function is a constructor StructDecl * structDecl = 0; }; // very simple resolver-like mutator class - used to // resolve UntypedExprs that are found within newly // generated constructor/destructor calls class MutatingResolver final : public Mutator { public: MutatingResolver( SymTab::Indexer & indexer ) : indexer( indexer ) {} using Mutator::mutate; virtual DeclarationWithType* mutate( ObjectDecl *objectDecl ) override; virtual Expression* mutate( UntypedExpr *untypedExpr ) override; private: SymTab::Indexer & indexer; }; class FixCtorExprs final : public GenPoly::DeclMutator { public: /// expands ConstructorExpr nodes into comma expressions, using a temporary for the first argument static void fix( std::list< Declaration * > & translationUnit ); using GenPoly::DeclMutator::mutate; virtual Expression * mutate( ConstructorExpr * ctorExpr ) override; }; } // namespace void fix( std::list< Declaration * > & translationUnit, const std::string & filename, bool inLibrary ) { // fixes ConstructorInit for global variables. should happen before fixInitializers. InitTweak::fixGlobalInit( translationUnit, filename, inLibrary ); EnvMap envMap; UnqCount unqCount; InsertImplicitCalls::insert( translationUnit, envMap ); ResolveCopyCtors::resolveImplicitCalls( translationUnit, envMap, unqCount ); InsertDtors::insert( translationUnit ); FixInit::fixInitializers( translationUnit ); // FixCopyCtors must happen after FixInit, so that destructors are placed correctly FixCopyCtors::fixCopyCtors( translationUnit, unqCount ); GenStructMemberCalls::generate( translationUnit ); // xxx - ctor expansion currently has to be after FixCopyCtors, because there is currently a // hack in the way untyped assignments are generated, where the first argument cannot have // its address taken because of the way codegeneration handles UntypedExpr vs. ApplicationExpr. // Thus such assignment exprs must never pushed through expression resolution (and thus should // not go through the FixCopyCtors pass), otherwise they will fail -- guaranteed. // Also needs to happen after GenStructMemberCalls, since otherwise member constructors exprs // don't look right, and a member can be constructed more than once. FixCtorExprs::fix( translationUnit ); } namespace { void InsertImplicitCalls::insert( std::list< Declaration * > & translationUnit, EnvMap & envMap ) { PassVisitor inserter( envMap ); mutateAll( translationUnit, inserter ); } void ResolveCopyCtors::resolveImplicitCalls( std::list< Declaration * > & translationUnit, const EnvMap & envMap, UnqCount & unqCount ) { ResolveCopyCtors resolver( envMap, unqCount ); acceptAll( translationUnit, resolver ); } void FixInit::fixInitializers( std::list< Declaration * > & translationUnit ) { PassVisitor fixer; // can't use mutateAll, because need to insert declarations at top-level // can't use DeclMutator, because sometimes need to insert IfStmt, etc. SemanticError errors; for ( std::list< Declaration * >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) { try { *i = maybeMutate( *i, fixer ); translationUnit.splice( i, fixer.pass.staticDtorDecls ); } catch( SemanticError &e ) { e.set_location( (*i)->location ); errors.append( e ); } // try } // for if ( ! errors.isEmpty() ) { throw errors; } // if } void InsertDtors::insert( std::list< Declaration * > & translationUnit ) { LabelFinder finder; InsertDtors inserter( finder ); acceptAll( translationUnit, inserter ); } void FixCopyCtors::fixCopyCtors( std::list< Declaration * > & translationUnit, UnqCount & unqCount ) { FixCopyCtors fixer( unqCount ); mutateAll( translationUnit, fixer ); } void GenStructMemberCalls::generate( std::list< Declaration * > & translationUnit ) { GenStructMemberCalls warner; acceptAll( translationUnit, warner ); } void FixCtorExprs::fix( std::list< Declaration * > & translationUnit ) { FixCtorExprs fixer; fixer.mutateDeclarationList( translationUnit ); } Expression * InsertImplicitCalls::postmutate( ApplicationExpr * appExpr ) { assert( appExpr ); if ( VariableExpr * function = dynamic_cast< VariableExpr * > ( appExpr->get_function() ) ) { if ( LinkageSpec::isBuiltin( function->get_var()->get_linkage() ) ) { // optimization: don't need to copy construct in order to call intrinsic functions return appExpr; } else if ( DeclarationWithType * funcDecl = dynamic_cast< DeclarationWithType * > ( function->get_var() ) ) { FunctionType * ftype = dynamic_cast< FunctionType * >( GenPoly::getFunctionType( funcDecl->get_type() ) ); assert( ftype ); if ( isConstructor( funcDecl->get_name() ) && ftype->get_parameters().size() == 2 ) { Type * t1 = ftype->get_parameters().front()->get_type(); Type * t2 = ftype->get_parameters().back()->get_type(); PointerType * ptrType = safe_dynamic_cast< PointerType * > ( t1 ); if ( ResolvExpr::typesCompatible( ptrType->get_base(), t2, SymTab::Indexer() ) ) { // optimization: don't need to copy construct in order to call a copy constructor return appExpr; } // if } else if ( isDestructor( funcDecl->get_name() ) ) { // correctness: never copy construct arguments to a destructor return appExpr; } // if } // if } // if CP_CTOR_PRINT( std::cerr << "InsertImplicitCalls: adding a wrapper " << appExpr << std::endl; ) // wrap each function call so that it is easy to identify nodes that have to be copy constructed ImplicitCopyCtorExpr * expr = new ImplicitCopyCtorExpr( appExpr ); // save the type substitution into the envMap so that it is easy to find. // Ensure it is not deleted with the ImplicitCopyCtorExpr by removing it before deletion. // The substitution is needed to obtain the type of temporary variables so that copy constructor // calls can be resolved. Normally this is what PolyMutator is for, but the pass that resolves // copy constructor calls must be an Indexer. We could alternatively make a PolyIndexer which // saves the environment, or compute the types of temporaries here, but it's much simpler to // save the environment here, and more cohesive to compute temporary variables and resolve copy // constructor calls together. assert( env ); envMap[expr] = env; return expr; } void InsertImplicitCalls::premutate( StmtExpr * stmtExpr ) { assert( env ); envMap[stmtExpr] = env; } bool ResolveCopyCtors::skipCopyConstruct( Type * type ) { return dynamic_cast< VarArgsType * >( type ) || GenPoly::getFunctionType( type ) || Tuples::isTtype( type ); } Expression * ResolveCopyCtors::makeCtorDtor( const std::string & fname, ObjectDecl * var, Expression * cpArg ) { assert( var ); // arrays are not copy constructed, so this should always be an ExprStmt ImplicitCtorDtorStmt * stmt = genCtorDtor( fname, var, cpArg ); ExprStmt * exprStmt = safe_dynamic_cast< ExprStmt * >( stmt->get_callStmt() ); Expression * untyped = exprStmt->get_expr(); // resolve copy constructor // should only be one alternative for copy ctor and dtor expressions, since all arguments are fixed // (VariableExpr and already resolved expression) CP_CTOR_PRINT( std::cerr << "ResolvingCtorDtor " << untyped << std::endl; ) Expression * resolved = ResolvExpr::findVoidExpression( untyped, *this ); assert( resolved ); if ( resolved->get_env() ) { // Extract useful information and discard new environments. Keeping them causes problems in PolyMutator passes. env->add( *resolved->get_env() ); delete resolved->get_env(); resolved->set_env( nullptr ); } // if delete stmt; return resolved; } void ResolveCopyCtors::copyConstructArg( Expression *& arg, ImplicitCopyCtorExpr * impCpCtorExpr ) { static UniqueName tempNamer("_tmp_cp"); assert( env ); CP_CTOR_PRINT( std::cerr << "Type Substitution: " << *env << std::endl; ) assert( arg->has_result() ); Type * result = arg->get_result(); if ( skipCopyConstruct( result ) ) return; // skip certain non-copyable types // type may involve type variables, so apply type substitution to get temporary variable's actual type result = result->clone(); env->apply( result ); ObjectDecl * tmp = new ObjectDecl( tempNamer.newName(), Type::StorageClasses(), LinkageSpec::C, 0, result, 0 ); tmp->get_type()->set_const( false ); // create and resolve copy constructor CP_CTOR_PRINT( std::cerr << "makeCtorDtor for an argument" << std::endl; ) Expression * cpCtor = makeCtorDtor( "?{}", tmp, arg ); if ( ApplicationExpr * appExpr = dynamic_cast< ApplicationExpr * >( cpCtor ) ) { // if the chosen constructor is intrinsic, the copy is unnecessary, so // don't create the temporary and don't call the copy constructor VariableExpr * function = dynamic_cast< VariableExpr * >( appExpr->get_function() ); assert( function ); if ( function->get_var()->get_linkage() == LinkageSpec::Intrinsic ) return; } // replace argument to function call with temporary arg = new CommaExpr( cpCtor, new VariableExpr( tmp ) ); impCpCtorExpr->get_tempDecls().push_back( tmp ); impCpCtorExpr->get_dtors().push_front( makeCtorDtor( "^?{}", tmp ) ); } void ResolveCopyCtors::destructRet( ObjectDecl * ret, ImplicitCopyCtorExpr * impCpCtorExpr ) { impCpCtorExpr->get_dtors().push_front( makeCtorDtor( "^?{}", ret ) ); } void ResolveCopyCtors::visit( ImplicitCopyCtorExpr *impCpCtorExpr ) { CP_CTOR_PRINT( std::cerr << "ResolveCopyCtors: " << impCpCtorExpr << std::endl; ) Parent::visit( impCpCtorExpr ); env = envMap.at(impCpCtorExpr); assert( env ); ApplicationExpr * appExpr = impCpCtorExpr->get_callExpr(); // take each argument and attempt to copy construct it. for ( Expression * & arg : appExpr->get_args() ) { copyConstructArg( arg, impCpCtorExpr ); } // for // each return value from the call needs to be connected with an ObjectDecl at the call site, which is // initialized with the return value and is destructed later // xxx - handle named return values? Type * result = appExpr->get_result(); if ( ! result->isVoid() ) { static UniqueName retNamer("_tmp_cp_ret"); result = result->clone(); env->apply( result ); ObjectDecl * ret = new ObjectDecl( retNamer.newName(), Type::StorageClasses(), LinkageSpec::C, 0, result, 0 ); ret->get_type()->set_const( false ); impCpCtorExpr->get_returnDecls().push_back( ret ); CP_CTOR_PRINT( std::cerr << "makeCtorDtor for a return" << std::endl; ) if ( ! result->get_lvalue() ) { // destructing lvalue returns is bad because it can cause multiple destructor calls to the same object - the returned object is not a temporary destructRet( ret, impCpCtorExpr ); } } // for CP_CTOR_PRINT( std::cerr << "after Resolving: " << impCpCtorExpr << std::endl; ) } void ResolveCopyCtors::visit( StmtExpr * stmtExpr ) { Parent::visit( stmtExpr ); env = envMap.at(stmtExpr); assert( stmtExpr->get_result() ); Type * result = stmtExpr->get_result(); if ( ! result->isVoid() ) { static UniqueName retNamer("_tmp_stmtexpr_ret"); // create variable that will hold the result of the stmt expr result = result->clone(); env->apply( result ); ObjectDecl * ret = new ObjectDecl( retNamer.newName(), Type::StorageClasses(), LinkageSpec::C, 0, result, 0 ); ret->get_type()->set_const( false ); stmtExpr->get_returnDecls().push_front( ret ); // must have a non-empty body, otherwise it wouldn't have a result CompoundStmt * body = stmtExpr->get_statements(); assert( ! body->get_kids().empty() ); // must be an ExprStmt, otherwise it wouldn't have a result ExprStmt * last = safe_dynamic_cast< ExprStmt * >( body->get_kids().back() ); last->set_expr( makeCtorDtor( "?{}", ret, last->get_expr() ) ); stmtExpr->get_dtors().push_front( makeCtorDtor( "^?{}", ret ) ); } // if } void ResolveCopyCtors::visit( UniqueExpr * unqExpr ) { static std::unordered_set< int > vars; unqCount[ unqExpr->get_id() ]++; // count the number of unique expressions for each ID if ( vars.count( unqExpr->get_id() ) ) { // xxx - hack to prevent double-handling of unique exprs, otherwise too many temporary variables and destructors are generated return; } Parent::visit( unqExpr ); // it should never be necessary to wrap a void-returning expression in a UniqueExpr - if this assumption changes, this needs to be rethought assert( unqExpr->get_result() ); if ( ImplicitCopyCtorExpr * impCpCtorExpr = dynamic_cast( unqExpr->get_expr() ) ) { // note the variable used as the result from the call assert( impCpCtorExpr->get_result() && impCpCtorExpr->get_returnDecls().size() == 1 ); unqExpr->set_var( new VariableExpr( impCpCtorExpr->get_returnDecls().front() ) ); } else { // expr isn't a call expr, so create a new temporary variable to use to hold the value of the unique expression unqExpr->set_object( new ObjectDecl( toString("_unq", unqExpr->get_id()), Type::StorageClasses(), LinkageSpec::C, nullptr, unqExpr->get_result()->clone(), nullptr ) ); unqExpr->set_var( new VariableExpr( unqExpr->get_object() ) ); } vars.insert( unqExpr->get_id() ); } Expression * FixCopyCtors::mutate( ImplicitCopyCtorExpr * impCpCtorExpr ) { CP_CTOR_PRINT( std::cerr << "FixCopyCtors: " << impCpCtorExpr << std::endl; ) impCpCtorExpr = safe_dynamic_cast< ImplicitCopyCtorExpr * >( Parent::mutate( impCpCtorExpr ) ); std::list< ObjectDecl * > & tempDecls = impCpCtorExpr->get_tempDecls(); std::list< ObjectDecl * > & returnDecls = impCpCtorExpr->get_returnDecls(); std::list< Expression * > & dtors = impCpCtorExpr->get_dtors(); // add all temporary declarations and their constructors for ( ObjectDecl * obj : tempDecls ) { stmtsToAdd.push_back( new DeclStmt( noLabels, obj ) ); } // for for ( ObjectDecl * obj : returnDecls ) { stmtsToAdd.push_back( new DeclStmt( noLabels, obj ) ); } // for // add destructors after current statement for ( Expression * dtor : dtors ) { stmtsToAddAfter.push_back( new ExprStmt( noLabels, dtor ) ); } // for // xxx - update to work with multiple return values ObjectDecl * returnDecl = returnDecls.empty() ? NULL : returnDecls.front(); Expression * callExpr = impCpCtorExpr->get_callExpr(); CP_CTOR_PRINT( std::cerr << "Coming out the back..." << impCpCtorExpr << std::endl; ) // detach fields from wrapper node so that it can be deleted without deleting too much dtors.clear(); tempDecls.clear(); returnDecls.clear(); impCpCtorExpr->set_callExpr( NULL ); impCpCtorExpr->set_env( NULL ); delete impCpCtorExpr; if ( returnDecl ) { UntypedExpr * assign = new UntypedExpr( new NameExpr( "?=?" ) ); assign->get_args().push_back( new VariableExpr( returnDecl ) ); assign->get_args().push_back( callExpr ); // know the result type of the assignment is the type of the LHS (minus the pointer), so // add that onto the assignment expression so that later steps have the necessary information assign->set_result( returnDecl->get_type()->clone() ); Expression * retExpr = new CommaExpr( assign, new VariableExpr( returnDecl ) ); if ( callExpr->get_result()->get_lvalue() ) { // lvalue returning functions are funny. Lvalue.cc inserts a *? in front of any lvalue returning // non-intrinsic function. Add an AddressExpr to the call to negate the derefence and change the // type of the return temporary from T to T* to properly capture the return value. Then dereference // the result of the comma expression, since the lvalue returning call was originally wrapped with // an AddressExpr. Effectively, this turns // lvalue T f(); // &*f(); // into // T * f(); // T * tmp_cp_retN; // &*(tmp_cp_retN = &*f(), tmp_cp_retN); // the first * and second & are generated here // which work out in terms of types, but is pretty messy. It would be nice to find a better way. assign->get_args().back() = new AddressExpr( assign->get_args().back() ); returnDecl->set_type( new PointerType( Type::Qualifiers(), returnDecl->get_type() ) ); retExpr->set_result( new PointerType( Type::Qualifiers(), retExpr->get_result() ) ); retExpr = UntypedExpr::createDeref( retExpr ); } // if // move env from callExpr to retExpr retExpr->set_env( callExpr->get_env() ); callExpr->set_env( nullptr ); return retExpr; } else { return callExpr; } // if } Expression * FixCopyCtors::mutate( StmtExpr * stmtExpr ) { // function call temporaries should be placed at statement-level, rather than nested inside of a new statement expression, // since temporaries can be shared across sub-expressions, e.g. // [A, A] f(); // g([A] x, [A] y); // f(g()); // f is executed once, so the return temporary is shared across the tuple constructors for x and y. std::list< Statement * > & stmts = stmtExpr->get_statements()->get_kids(); for ( Statement *& stmt : stmts ) { stmt = stmt->acceptMutator( *this ); } // for // stmtExpr = safe_dynamic_cast< StmtExpr * >( Parent::mutate( stmtExpr ) ); assert( stmtExpr->get_result() ); Type * result = stmtExpr->get_result(); if ( ! result->isVoid() ) { for ( ObjectDecl * obj : stmtExpr->get_returnDecls() ) { stmtsToAdd.push_back( new DeclStmt( noLabels, obj ) ); } // for // add destructors after current statement for ( Expression * dtor : stmtExpr->get_dtors() ) { stmtsToAddAfter.push_back( new ExprStmt( noLabels, dtor ) ); } // for // must have a non-empty body, otherwise it wouldn't have a result CompoundStmt * body = stmtExpr->get_statements(); assert( ! body->get_kids().empty() ); assert( ! stmtExpr->get_returnDecls().empty() ); body->get_kids().push_back( new ExprStmt( noLabels, new VariableExpr( stmtExpr->get_returnDecls().front() ) ) ); stmtExpr->get_returnDecls().clear(); stmtExpr->get_dtors().clear(); } assert( stmtExpr->get_returnDecls().empty() ); assert( stmtExpr->get_dtors().empty() ); return stmtExpr; } Expression * FixCopyCtors::mutate( UniqueExpr * unqExpr ) { unqCount[ unqExpr->get_id() ]--; static std::unordered_map< int, std::list< Statement * > > dtors; static std::unordered_map< int, UniqueExpr * > unqMap; static std::unordered_set< int > addDeref; // has to be done to clean up ImplicitCopyCtorExpr nodes, even when this node was skipped in previous passes if ( unqMap.count( unqExpr->get_id() ) ) { // take data from other UniqueExpr to ensure consistency delete unqExpr->get_expr(); unqExpr->set_expr( unqMap[unqExpr->get_id()]->get_expr()->clone() ); delete unqExpr->get_result(); unqExpr->set_result( maybeClone( unqExpr->get_expr()->get_result() ) ); if ( unqCount[ unqExpr->get_id() ] == 0 ) { // insert destructor after the last use of the unique expression stmtsToAddAfter.splice( stmtsToAddAfter.end(), dtors[ unqExpr->get_id() ] ); } if ( addDeref.count( unqExpr->get_id() ) ) { // other UniqueExpr was dereferenced because it was an lvalue return, so this one should be too return UntypedExpr::createDeref( unqExpr ); } return unqExpr; } FixCopyCtors fixer( unqCount ); unqExpr->set_expr( unqExpr->get_expr()->acceptMutator( fixer ) ); // stmtexprs contained should not be separately fixed, so this must occur after the lookup stmtsToAdd.splice( stmtsToAdd.end(), fixer.stmtsToAdd ); unqMap[unqExpr->get_id()] = unqExpr; if ( unqCount[ unqExpr->get_id() ] == 0 ) { // insert destructor after the last use of the unique expression stmtsToAddAfter.splice( stmtsToAddAfter.end(), dtors[ unqExpr->get_id() ] ); } else { // remember dtors for last instance of unique expr dtors[ unqExpr->get_id() ] = fixer.stmtsToAddAfter; } if ( UntypedExpr * deref = dynamic_cast< UntypedExpr * >( unqExpr->get_expr() ) ) { // unique expression is now a dereference, because the inner expression is an lvalue returning function call. // Normalize the expression by dereferencing the unique expression, rather than the inner expression // (i.e. move the dereference out a level) assert( getFunctionName( deref ) == "*?" ); unqExpr->set_expr( getCallArg( deref, 0 ) ); getCallArg( deref, 0 ) = unqExpr; addDeref.insert( unqExpr->get_id() ); return deref; } return unqExpr; } DeclarationWithType *FixInit::postmutate( ObjectDecl *objDecl ) { // since this removes the init field from objDecl, it must occur after children are mutated (i.e. postmutate) if ( ConstructorInit * ctorInit = dynamic_cast< ConstructorInit * >( objDecl->get_init() ) ) { // a decision should have been made by the resolver, so ctor and init are not both non-NULL assert( ! ctorInit->get_ctor() || ! ctorInit->get_init() ); if ( Statement * ctor = ctorInit->get_ctor() ) { if ( objDecl->get_storageClasses().is_static ) { // originally wanted to take advantage of gcc nested functions, but // we get memory errors with this approach. To remedy this, the static // variable is hoisted when the destructor needs to be called. // // generate: // static T __objName_static_varN; // void __objName_dtor_atexitN() { // __dtor__...; // } // int f(...) { // ... // static bool __objName_uninitialized = true; // if (__objName_uninitialized) { // __ctor(__objName); // __objName_uninitialized = false; // atexit(__objName_dtor_atexitN); // } // ... // } static UniqueName dtorCallerNamer( "_dtor_atexit" ); // static bool __objName_uninitialized = true BasicType * boolType = new BasicType( Type::Qualifiers(), BasicType::Bool ); SingleInit * boolInitExpr = new SingleInit( new ConstantExpr( Constant( boolType->clone(), "1" ) ), noDesignators ); ObjectDecl * isUninitializedVar = new ObjectDecl( objDecl->get_mangleName() + "_uninitialized", Type::StorageClasses( Type::Static ), LinkageSpec::Cforall, 0, boolType, boolInitExpr ); isUninitializedVar->fixUniqueId(); // __objName_uninitialized = false; UntypedExpr * setTrue = new UntypedExpr( new NameExpr( "?=?" ) ); setTrue->get_args().push_back( new VariableExpr( isUninitializedVar ) ); setTrue->get_args().push_back( new ConstantExpr( Constant( boolType->clone(), "0" ) ) ); // generate body of if CompoundStmt * initStmts = new CompoundStmt( noLabels ); std::list< Statement * > & body = initStmts->get_kids(); body.push_back( ctor ); body.push_back( new ExprStmt( noLabels, setTrue ) ); // put it all together IfStmt * ifStmt = new IfStmt( noLabels, new VariableExpr( isUninitializedVar ), initStmts, 0 ); stmtsToAddAfter.push_back( new DeclStmt( noLabels, isUninitializedVar ) ); stmtsToAddAfter.push_back( ifStmt ); Statement * dtor = ctorInit->get_dtor(); objDecl->set_init( NULL ); ctorInit->set_ctor( NULL ); ctorInit->set_dtor( nullptr ); if ( dtor ) { // if the object has a non-trivial destructor, have to // hoist it and the object into the global space and // call the destructor function with atexit. Statement * dtorStmt = dtor->clone(); // void __objName_dtor_atexitN(...) {...} FunctionDecl * dtorCaller = new FunctionDecl( objDecl->get_mangleName() + dtorCallerNamer.newName(), Type::StorageClasses( Type::Static ), LinkageSpec::C, new FunctionType( Type::Qualifiers(), false ), new CompoundStmt( noLabels ) ); dtorCaller->fixUniqueId(); dtorCaller->get_statements()->push_back( dtorStmt ); // atexit(dtor_atexit); UntypedExpr * callAtexit = new UntypedExpr( new NameExpr( "atexit" ) ); callAtexit->get_args().push_back( new VariableExpr( dtorCaller ) ); body.push_back( new ExprStmt( noLabels, callAtexit ) ); // hoist variable and dtor caller decls to list of decls that will be added into global scope staticDtorDecls.push_back( objDecl ); staticDtorDecls.push_back( dtorCaller ); // need to rename object uniquely since it now appears // at global scope and there could be multiple function-scoped // static variables with the same name in different functions. // Note: it isn't sufficient to modify only the mangleName, because // then subsequent Indexer passes can choke on seeing the object's name // if another object has the same name and type. An unfortunate side-effect // of renaming the object is that subsequent NameExprs may fail to resolve, // but there shouldn't be any remaining past this point. static UniqueName staticNamer( "_static_var" ); objDecl->set_name( objDecl->get_name() + staticNamer.newName() ); objDecl->set_mangleName( SymTab::Mangler::mangle( objDecl ) ); // xxx - temporary hack: need to return a declaration, but want to hoist the current object out of this scope // create a new object which is never used static UniqueName dummyNamer( "_dummy" ); ObjectDecl * dummy = new ObjectDecl( dummyNamer.newName(), Type::StorageClasses( Type::Static ), LinkageSpec::Cforall, 0, new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ), 0, std::list< Attribute * >{ new Attribute("unused") } ); delete ctorInit; return dummy; } } else { ImplicitCtorDtorStmt * implicit = safe_dynamic_cast< ImplicitCtorDtorStmt * > ( ctor ); ExprStmt * ctorStmt = dynamic_cast< ExprStmt * >( implicit->get_callStmt() ); ApplicationExpr * ctorCall = nullptr; if ( ctorStmt && (ctorCall = isIntrinsicCallExpr( ctorStmt->get_expr() )) && ctorCall->get_args().size() == 2 ) { // clean up intrinsic copy constructor calls by making them into SingleInits objDecl->set_init( new SingleInit( ctorCall->get_args().back() ) ); ctorCall->get_args().pop_back(); } else { stmtsToAddAfter.push_back( ctor ); objDecl->set_init( NULL ); ctorInit->set_ctor( NULL ); } } // if } else if ( Initializer * init = ctorInit->get_init() ) { objDecl->set_init( init ); ctorInit->set_init( NULL ); } else { // no constructor and no initializer, which is okay objDecl->set_init( NULL ); } // if delete ctorInit; } // if return objDecl; } void ObjDeclCollector::visit( CompoundStmt * compoundStmt ) { std::set< ObjectDecl * > prevVars = curVars; Parent::visit( compoundStmt ); curVars = prevVars; } void ObjDeclCollector::visit( DeclStmt * stmt ) { // keep track of all variables currently in scope if ( ObjectDecl * objDecl = dynamic_cast< ObjectDecl * > ( stmt->get_decl() ) ) { curVars.insert( objDecl ); } // if Parent::visit( stmt ); } void LabelFinder::handleStmt( Statement * stmt ) { // for each label, remember the variables in scope at that label. for ( Label l : stmt->get_labels() ) { vars[l] = curVars; } // for } template void insertDtors( Iterator begin, Iterator end, OutputIterator out ) { for ( Iterator it = begin ; it != end ; ++it ) { // extract destructor statement from the object decl and insert it into the output. Note that this is // only called on lists of non-static objects with implicit non-intrinsic dtors, so if the user manually // calls an intrinsic dtor then the call must (and will) still be generated since the argument may // contain side effects. ObjectDecl * objDecl = *it; ConstructorInit * ctorInit = dynamic_cast< ConstructorInit * >( objDecl->get_init() ); assert( ctorInit && ctorInit->get_dtor() ); *out++ = ctorInit->get_dtor()->clone(); } // for } void InsertDtors::visit( ObjectDecl * objDecl ) { // remember non-static destructed objects so that their destructors can be inserted later if ( ! objDecl->get_storageClasses().is_static ) { if ( ConstructorInit * ctorInit = dynamic_cast< ConstructorInit * >( objDecl->get_init() ) ) { // a decision should have been made by the resolver, so ctor and init are not both non-NULL assert( ! ctorInit->get_ctor() || ! ctorInit->get_init() ); Statement * dtor = ctorInit->get_dtor(); if ( dtor && ! isIntrinsicSingleArgCallStmt( dtor ) ) { // don't need to call intrinsic dtor, because it does nothing, but // non-intrinsic dtors must be called reverseDeclOrder.front().push_front( objDecl ); } // if } // if } // if Parent::visit( objDecl ); } template< typename Visitor > void handleFuncDecl( FunctionDecl * funcDecl, Visitor & visitor ) { maybeAccept( funcDecl->get_functionType(), visitor ); maybeAccept( funcDecl->get_statements(), visitor ); } void InsertDtors::visit( FunctionDecl * funcDecl ) { // each function needs to have its own set of labels ValueGuard< LabelFinder::LabelMap > oldLabels( labelVars ); labelVars.clear(); handleFuncDecl( funcDecl, finder ); // all labels for this function have been collected, insert destructors as appropriate. // can't be Parent::mutate, because ObjDeclCollector bottoms out on FunctionDecl handleFuncDecl( funcDecl, *this ); } void InsertDtors::visit( CompoundStmt * compoundStmt ) { // visit statements - this will also populate reverseDeclOrder list. don't want to dump all destructors // when block is left, just the destructors associated with variables defined in this block, so push a new // list to the top of the stack so that we can differentiate scopes reverseDeclOrder.push_front( OrderedDecls() ); Parent::visit( compoundStmt ); // add destructors for the current scope that we're exiting, unless the last statement is a return, which // causes unreachable code warnings std::list< Statement * > & statements = compoundStmt->get_kids(); if ( ! statements.empty() && ! dynamic_cast< ReturnStmt * >( statements.back() ) ) { insertDtors( reverseDeclOrder.front().begin(), reverseDeclOrder.front().end(), back_inserter( statements ) ); } reverseDeclOrder.pop_front(); } void InsertDtors::visit( ReturnStmt * returnStmt ) { // return exits all scopes, so dump destructors for all scopes for ( OrderedDecls & od : reverseDeclOrder ) { insertDtors( od.begin(), od.end(), back_inserter( stmtsToAdd ) ); } // for } // Handle break/continue/goto in the same manner as C++. Basic idea: any objects that are in scope at the // BranchStmt but not at the labelled (target) statement must be destructed. If there are any objects in scope // at the target location but not at the BranchStmt then those objects would be uninitialized so notify the user // of the error. See C++ Reference 6.6 Jump Statements for details. void InsertDtors::handleGoto( BranchStmt * stmt ) { assert( stmt->get_target() != "" && "BranchStmt missing a label" ); // S_L = lvars = set of objects in scope at label definition // S_G = curVars = set of objects in scope at goto statement ObjectSet & lvars = labelVars[ stmt->get_target() ]; DTOR_PRINT( std::cerr << "at goto label: " << stmt->get_target().get_name() << std::endl; std::cerr << "S_G = " << printSet( curVars ) << std::endl; std::cerr << "S_L = " << printSet( lvars ) << std::endl; ) ObjectSet diff; // S_L-S_G results in set of objects whose construction is skipped - it's an error if this set is non-empty std::set_difference( lvars.begin(), lvars.end(), curVars.begin(), curVars.end(), std::inserter( diff, diff.begin() ) ); DTOR_PRINT( std::cerr << "S_L-S_G = " << printSet( diff ) << std::endl; ) if ( ! diff.empty() ) { throw SemanticError( std::string("jump to label '") + stmt->get_target().get_name() + "' crosses initialization of " + (*diff.begin())->get_name() + " ", stmt ); } // if // S_G-S_L results in set of objects that must be destructed diff.clear(); std::set_difference( curVars.begin(), curVars.end(), lvars.begin(), lvars.end(), std::inserter( diff, diff.end() ) ); DTOR_PRINT( std::cerr << "S_G-S_L = " << printSet( diff ) << std::endl; ) if ( ! diff.empty() ) { // go through decl ordered list of objectdecl. for each element that occurs in diff, output destructor OrderedDecls ordered; for ( OrderedDecls & rdo : reverseDeclOrder ) { // add elements from reverseDeclOrder into ordered if they occur in diff - it is key that this happens in reverse declaration order. copy_if( rdo.begin(), rdo.end(), back_inserter( ordered ), [&]( ObjectDecl * objDecl ) { return diff.count( objDecl ); } ); } // for insertDtors( ordered.begin(), ordered.end(), back_inserter( stmtsToAdd ) ); } // if } void InsertDtors::visit( BranchStmt * stmt ) { switch( stmt->get_type() ) { case BranchStmt::Continue: case BranchStmt::Break: // could optimize the break/continue case, because the S_L-S_G check is unnecessary (this set should // always be empty), but it serves as a small sanity check. case BranchStmt::Goto: handleGoto( stmt ); break; default: assert( false ); } // switch } bool checkWarnings( FunctionDecl * funcDecl ) { // only check for warnings if the current function is a user-defined // constructor or destructor if ( ! funcDecl ) return false; if ( ! funcDecl->get_statements() ) return false; return isCtorDtor( funcDecl->get_name() ) && ! LinkageSpec::isOverridable( funcDecl->get_linkage() ); } void GenStructMemberCalls::visit( FunctionDecl * funcDecl ) { ValueGuard< FunctionDecl * > oldFunction( funcDecl ); ValueGuard< std::set< DeclarationWithType * > > oldUnhandled( unhandled ); ValueGuard< std::map< DeclarationWithType *, CodeLocation > > oldUsedUninit( usedUninit ); ValueGuard< ObjectDecl * > oldThisParam( thisParam ); ValueGuard< bool > oldIsCtor( isCtor ); ValueGuard< StructDecl * > oldStructDecl( structDecl ); errors = SemanticError(); // clear previous errors // need to start with fresh sets unhandled.clear(); usedUninit.clear(); function = funcDecl; isCtor = isConstructor( function->get_name() ); if ( checkWarnings( function ) ) { FunctionType * type = function->get_functionType(); assert( ! type->get_parameters().empty() ); thisParam = safe_dynamic_cast< ObjectDecl * >( type->get_parameters().front() ); PointerType * ptrType = safe_dynamic_cast< PointerType * > ( thisParam->get_type() ); StructInstType * structType = dynamic_cast< StructInstType * >( ptrType->get_base() ); if ( structType ) { structDecl = structType->get_baseStruct(); for ( Declaration * member : structDecl->get_members() ) { if ( ObjectDecl * field = dynamic_cast< ObjectDecl * >( member ) ) { // record all of the struct type's members that need to be constructed or // destructed by the end of the function unhandled.insert( field ); } } } } Parent::visit( function ); // remove the unhandled objects from usedUninit, because a call is inserted // to handle them - only objects that are later constructed are used uninitialized. std::map< DeclarationWithType *, CodeLocation > diff; // need the comparator since usedUninit and unhandled have different types struct comp_t { typedef decltype(usedUninit)::value_type usedUninit_t; typedef decltype(unhandled)::value_type unhandled_t; bool operator()(usedUninit_t x, unhandled_t y) { return x.first < y; } bool operator()(unhandled_t x, usedUninit_t y) { return x < y.first; } } comp; std::set_difference( usedUninit.begin(), usedUninit.end(), unhandled.begin(), unhandled.end(), std::inserter( diff, diff.begin() ), comp ); for ( auto p : diff ) { DeclarationWithType * member = p.first; CodeLocation loc = p.second; // xxx - make error message better by also tracking the location that the object is constructed at? emit( loc, "in ", CodeGen::genPrettyType( function->get_functionType(), function->get_name() ), ", field ", member->get_name(), " used before being constructed" ); } if ( ! unhandled.empty() ) { // need to explicitly re-add function parameters in order to resolve copy constructors enterScope(); maybeAccept( function->get_functionType(), *this ); // need to iterate through members in reverse in order for // ctor/dtor statements to come out in the right order for ( Declaration * member : reverseIterate( structDecl->get_members() ) ) { DeclarationWithType * field = dynamic_cast< DeclarationWithType * >( member ); // skip non-DWT members if ( ! field ) continue; // skip handled members if ( ! unhandled.count( field ) ) continue; // insert and resolve default/copy constructor call for each field that's unhandled std::list< Statement * > stmt; UntypedExpr * deref = UntypedExpr::createDeref( new VariableExpr( thisParam ) ); Expression * arg2 = 0; if ( isCopyConstructor( function ) ) { // if copy ctor, need to pass second-param-of-this-function.field std::list< DeclarationWithType * > & params = function->get_functionType()->get_parameters(); assert( params.size() == 2 ); arg2 = new MemberExpr( field, new VariableExpr( params.back() ) ); } InitExpander srcParam( arg2 ); SymTab::genImplicitCall( srcParam, new MemberExpr( field, deref ), function->get_name(), back_inserter( stmt ), field, isCtor ); assert( stmt.size() <= 1 ); if ( stmt.size() == 1 ) { Statement * callStmt = stmt.front(); MutatingResolver resolver( *this ); try { callStmt->acceptMutator( resolver ); if ( isCtor ) { function->get_statements()->push_front( callStmt ); } else { // destructor statements should be added at the end function->get_statements()->push_back( callStmt ); } } catch ( SemanticError & error ) { emit( funcDecl->location, "in ", CodeGen::genPrettyType( function->get_functionType(), function->get_name() ), ", field ", field->get_name(), " not explicitly ", isCtor ? "constructed" : "destructed", " and no ", isCtor ? "default constructor" : "destructor", " found" ); } } } leaveScope(); } if (! errors.isEmpty()) { throw errors; } } void GenStructMemberCalls::visit( ApplicationExpr * appExpr ) { if ( ! checkWarnings( function ) ) return; std::string fname = getFunctionName( appExpr ); if ( fname == function->get_name() ) { // call to same kind of function Expression * firstParam = appExpr->get_args().front(); if ( VariableExpr * varExpr = dynamic_cast< VariableExpr * >( firstParam ) ) { // if calling another constructor on thisParam, assume that function handles // all members - if it doesn't a warning will appear in that function. if ( varExpr->get_var() == thisParam ) { unhandled.clear(); } } else { // if first parameter is a member expression then // remove the member from unhandled set. handleFirstParam( firstParam ); } } Parent::visit( appExpr ); } void GenStructMemberCalls::handleFirstParam( Expression * firstParam ) { using namespace std; if ( AddressExpr * addrExpr = dynamic_cast< AddressExpr * >( firstParam ) ) { if ( MemberExpr * memberExpr = dynamic_cast< MemberExpr * >( addrExpr->get_arg() ) ) { if ( ApplicationExpr * deref = dynamic_cast< ApplicationExpr * >( memberExpr->get_aggregate() ) ) { if ( getFunctionName( deref ) == "*?" && deref->get_args().size() == 1 ) { if ( VariableExpr * varExpr = dynamic_cast< VariableExpr * >( deref->get_args().front() ) ) { if ( varExpr->get_var() == thisParam ) { unhandled.erase( memberExpr->get_member() ); } } } } } } } void GenStructMemberCalls::visit( MemberExpr * memberExpr ) { if ( ! checkWarnings( function ) ) return; if ( ! isCtor ) return; if ( ApplicationExpr * deref = dynamic_cast< ApplicationExpr * >( memberExpr->get_aggregate() ) ) { if ( getFunctionName( deref ) == "*?" && deref->get_args().size() == 1 ) { if ( VariableExpr * varExpr = dynamic_cast< VariableExpr * >( deref->get_args().front() ) ) { if ( varExpr->get_var() == thisParam ) { if ( unhandled.count( memberExpr->get_member() ) ) { // emit a warning because a member was used before it was constructed usedUninit.insert( { memberExpr->get_member(), memberExpr->location } ); } } } } } Parent::visit( memberExpr ); } template< typename Visitor, typename... Params > void error( Visitor & v, CodeLocation loc, const Params &... params ) { SemanticError err( toString( params... ) ); err.set_location( loc ); v.errors.append( err ); } template< typename... Params > void GenStructMemberCalls::emit( CodeLocation loc, const Params &... params ) { // toggle warnings vs. errors here. // warn( params... ); error( *this, loc, params... ); } DeclarationWithType * MutatingResolver::mutate( ObjectDecl *objectDecl ) { // add object to the indexer assumes that there will be no name collisions // in generated code. If this changes, add mutate methods for entities with // scope and call {enter,leave}Scope explicitly. objectDecl->accept( indexer ); return objectDecl; } Expression* MutatingResolver::mutate( UntypedExpr *untypedExpr ) { return safe_dynamic_cast< ApplicationExpr * >( ResolvExpr::findVoidExpression( untypedExpr, indexer ) ); } Expression * FixCtorExprs::mutate( ConstructorExpr * ctorExpr ) { static UniqueName tempNamer( "_tmp_ctor_expr" ); // xxx - is the size check necessary? assert( ctorExpr->has_result() && ctorExpr->get_result()->size() == 1 ); // xxx - ideally we would reuse the temporary generated from the copy constructor passes from within firstArg if it exists and not generate a temporary if it's unnecessary. ObjectDecl * tmp = new ObjectDecl( tempNamer.newName(), Type::StorageClasses(), LinkageSpec::C, nullptr, ctorExpr->get_result()->clone(), nullptr ); addDeclaration( tmp ); // xxx - this can be TupleAssignExpr now. Need to properly handle this case. ApplicationExpr * callExpr = safe_dynamic_cast< ApplicationExpr * > ( ctorExpr->get_callExpr() ); TypeSubstitution * env = ctorExpr->get_env(); ctorExpr->set_callExpr( nullptr ); ctorExpr->set_env( nullptr ); Expression *& firstArg = callExpr->get_args().front(); UntypedExpr * assign = new UntypedExpr( new NameExpr( "?=?" ) ); assign->get_args().push_back( new VariableExpr( tmp ) ); assign->get_args().push_back( firstArg ); assign->set_result( ctorExpr->get_result()->clone() ); firstArg = assign; CommaExpr * commaExpr = new CommaExpr( callExpr, new VariableExpr( tmp ) ); commaExpr->set_env( env ); delete ctorExpr; return commaExpr; } } // namespace } // namespace InitTweak // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //