// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // FixInit.cc -- // // Author : Rob Schluntz // Created On : Wed Jan 13 16:29:30 2016 // Last Modified By : Peter A. Buhr // Last Modified On : Wed Feb 13 18:15:56 2019 // Update Count : 76 // #include "FixInit.h" #include // for NULL #include // for set_difference, copy_if #include // for assert, strict_dynamic_cast #include // for operator<<, ostream, basic_ost... #include // for insert_iterator, back_inserter #include // for _List_iterator, list, list<>::... #include // for _Rb_tree_iterator, _Rb_tree_co... #include // for allocator_traits<>::value_type #include // for set, set<>::value_type #include // for unordered_map, unordered_map<>... #include // for unordered_set #include // for pair #include "CodeGen/GenType.h" // for genPrettyType #include "CodeGen/OperatorTable.h" #include "Common/PassVisitor.h" // for PassVisitor, WithStmtsToAdd #include "Common/SemanticError.h" // for SemanticError #include "Common/UniqueName.h" // for UniqueName #include "Common/utility.h" // for CodeLocation, ValueGuard, toSt... #include "FixGlobalInit.h" // for fixGlobalInit #include "GenInit.h" // for genCtorDtor #include "GenPoly/GenPoly.h" // for getFunctionType #include "InitTweak.h" // for getFunctionName, getCallArg #include "Parser/LinkageSpec.h" // for C, Spec, Cforall, isBuiltin #include "ResolvExpr/Resolver.h" // for findVoidExpression #include "ResolvExpr/typeops.h" // for typesCompatible #include "SymTab/Autogen.h" // for genImplicitCall #include "SymTab/Indexer.h" // for Indexer #include "SymTab/Mangler.h" // for Mangler #include "SynTree/Attribute.h" // for Attribute #include "SynTree/Constant.h" // for Constant #include "SynTree/Declaration.h" // for ObjectDecl, FunctionDecl, Decl... #include "SynTree/Expression.h" // for UniqueExpr, VariableExpr, Unty... #include "SynTree/Initializer.h" // for ConstructorInit, SingleInit #include "SynTree/Label.h" // for Label, operator< #include "SynTree/Mutator.h" // for mutateAll, Mutator, maybeMutate #include "SynTree/Statement.h" // for ExprStmt, CompoundStmt, Branch... #include "SynTree/Type.h" // for Type, Type::StorageClasses #include "SynTree/TypeSubstitution.h" // for TypeSubstitution, operator<< #include "SynTree/DeclReplacer.h" // for DeclReplacer #include "SynTree/Visitor.h" // for acceptAll, maybeAccept #include "Validate/FindSpecialDecls.h" // for dtorStmt, dtorStructDestroy bool ctordtorp = false; // print all debug bool ctorp = false; // print ctor debug bool cpctorp = false; // print copy ctor debug bool dtorp = false; // print dtor debug #define PRINT( text ) if ( ctordtorp ) { text } #define CP_CTOR_PRINT( text ) if ( ctordtorp || cpctorp ) { text } #define DTOR_PRINT( text ) if ( ctordtorp || dtorp ) { text } namespace InitTweak { namespace { struct SelfAssignChecker { void previsit( ApplicationExpr * appExpr ); }; struct StmtExprResult { static void link( std::list< Declaration * > & translationUnit ); void previsit( StmtExpr * stmtExpr ); }; struct InsertImplicitCalls : public WithConstTypeSubstitution { /// wrap function application expressions as ImplicitCopyCtorExpr nodes so that it is easy to identify which /// function calls need their parameters to be copy constructed static void insert( std::list< Declaration * > & translationUnit ); Expression * postmutate( ApplicationExpr * appExpr ); }; struct ResolveCopyCtors final : public WithStmtsToAdd, public WithIndexer, public WithShortCircuiting, public WithTypeSubstitution, public WithVisitorRef { /// generate temporary ObjectDecls for each argument and return value of each ImplicitCopyCtorExpr, /// generate/resolve copy construction expressions for each, and generate/resolve destructors for both /// arguments and return value temporaries static void resolveImplicitCalls( std::list< Declaration * > & translationUnit ); Expression * postmutate( ImplicitCopyCtorExpr * impCpCtorExpr ); void premutate( StmtExpr * stmtExpr ); void premutate( UniqueExpr * unqExpr ); /// create and resolve ctor/dtor expression: fname(var, [cpArg]) Expression * makeCtorDtor( const std::string & fname, ObjectDecl * var, Expression * cpArg = NULL ); /// true if type does not need to be copy constructed to ensure correctness bool skipCopyConstruct( Type * type ); void copyConstructArg( Expression *& arg, ImplicitCopyCtorExpr * impCpCtorExpr, Type * formal ); void destructRet( ObjectDecl * ret, ImplicitCopyCtorExpr * impCpCtorExpr, Expression *& arg ); }; /// collects constructed object decls - used as a base class struct ObjDeclCollector : public WithGuards, public WithShortCircuiting { // use ordered data structure to maintain ordering for set_difference and for consistent error messages typedef std::list< ObjectDecl * > ObjectSet; void previsit( CompoundStmt *compoundStmt ); void previsit( DeclStmt *stmt ); // don't go into other functions void previsit( FunctionDecl * ) { visit_children = false; } protected: ObjectSet curVars; }; // debug template struct PrintSet { PrintSet( const ObjectSet & objs ) : objs( objs ) {} const ObjectSet & objs; }; template PrintSet printSet( const ObjectSet & objs ) { return PrintSet( objs ); } template std::ostream & operator<<( std::ostream & out, const PrintSet & set) { out << "{ "; for ( ObjectDecl * obj : set.objs ) { out << obj->get_name() << ", " ; } // for out << " }"; return out; } struct LabelFinder final : public ObjDeclCollector { typedef std::map< Label, ObjectSet > LabelMap; // map of Label -> live variables at that label LabelMap vars; typedef ObjDeclCollector Parent; using Parent::previsit; void previsit( Statement * stmt ); void previsit( CompoundStmt *compoundStmt ); void previsit( DeclStmt *stmt ); }; struct InsertDtors final : public ObjDeclCollector, public WithStmtsToAdd { /// insert destructor calls at the appropriate places. must happen before CtorInit nodes are removed /// (currently by FixInit) static void insert( std::list< Declaration * > & translationUnit ); typedef std::list< ObjectDecl * > OrderedDecls; typedef std::list< OrderedDecls > OrderedDeclsStack; InsertDtors( PassVisitor & finder ) : finder( finder ), labelVars( finder.pass.vars ) {} typedef ObjDeclCollector Parent; using Parent::previsit; void previsit( FunctionDecl * funcDecl ); void previsit( BranchStmt * stmt ); private: void handleGoto( BranchStmt * stmt ); PassVisitor & finder; LabelFinder::LabelMap & labelVars; OrderedDeclsStack reverseDeclOrder; }; class FixInit : public WithStmtsToAdd { public: /// expand each object declaration to use its constructor after it is declared. static void fixInitializers( std::list< Declaration * > &translationUnit ); DeclarationWithType * postmutate( ObjectDecl *objDecl ); std::list< Declaration * > staticDtorDecls; }; struct GenStructMemberCalls final : public WithGuards, public WithShortCircuiting, public WithIndexer, public WithVisitorRef { /// generate default/copy ctor and dtor calls for user-defined struct ctor/dtors /// for any member that is missing a corresponding ctor/dtor call. /// error if a member is used before constructed static void generate( std::list< Declaration * > & translationUnit ); void premutate( FunctionDecl * funcDecl ); DeclarationWithType * postmutate( FunctionDecl * funcDecl ); void premutate( MemberExpr * memberExpr ); void premutate( ApplicationExpr * appExpr ); /// Note: this post mutate used to be in a separate visitor. If this pass breaks, one place to examine is whether it is /// okay for this part of the recursion to occur alongside the rest. Expression * postmutate( UntypedExpr * expr ); SemanticErrorException errors; private: template< typename... Params > void emit( CodeLocation, const Params &... params ); FunctionDecl * function = nullptr; std::set< DeclarationWithType * > unhandled; std::map< DeclarationWithType *, CodeLocation > usedUninit; ObjectDecl * thisParam = nullptr; bool isCtor = false; // true if current function is a constructor StructDecl * structDecl = nullptr; }; struct FixCtorExprs final : public WithDeclsToAdd, public WithIndexer { /// expands ConstructorExpr nodes into comma expressions, using a temporary for the first argument static void fix( std::list< Declaration * > & translationUnit ); Expression * postmutate( ConstructorExpr * ctorExpr ); }; struct SplitExpressions : public WithShortCircuiting, public WithTypeSubstitution, public WithStmtsToAdd { /// add CompoundStmts around top-level expressions so that temporaries are destroyed in the correct places. static void split( std::list< Declaration * > &translationUnit ); Statement * postmutate( ExprStmt * stmt ); void premutate( TupleAssignExpr * expr ); }; } // namespace void fix( std::list< Declaration * > & translationUnit, bool inLibrary ) { PassVisitor checker; acceptAll( translationUnit, checker ); // fixes StmtExpr to properly link to their resulting expression StmtExprResult::link( translationUnit ); // fixes ConstructorInit for global variables. should happen before fixInitializers. InitTweak::fixGlobalInit( translationUnit, inLibrary ); // must happen before ResolveCopyCtors because temporaries have to be inserted into the correct scope SplitExpressions::split( translationUnit ); InsertImplicitCalls::insert( translationUnit ); // Needs to happen before ResolveCopyCtors, because argument/return temporaries should not be considered in // error checking branch statements InsertDtors::insert( translationUnit ); ResolveCopyCtors::resolveImplicitCalls( translationUnit ); FixInit::fixInitializers( translationUnit ); GenStructMemberCalls::generate( translationUnit ); // Needs to happen after GenStructMemberCalls, since otherwise member constructors exprs // don't have the correct form, and a member can be constructed more than once. FixCtorExprs::fix( translationUnit ); } namespace { /// find and return the destructor used in `input`. If `input` is not a simple destructor call, generate a thunk /// that wraps the destructor, insert it into `stmtsToAdd` and return the new function declaration DeclarationWithType * getDtorFunc( ObjectDecl * objDecl, Statement * input, std::list< Statement * > & stmtsToAdd ) { // unwrap implicit statement wrapper Statement * dtor = input; if ( ImplicitCtorDtorStmt * implicit = dynamic_cast< ImplicitCtorDtorStmt * >( input ) ) { // dtor = implicit->callStmt; // implicit->callStmt = nullptr; } assert( dtor ); std::list< Expression * > matches; collectCtorDtorCalls( dtor, matches ); if ( dynamic_cast< ExprStmt * >( dtor ) ) { // only one destructor call in the expression if ( matches.size() == 1 ) { DeclarationWithType * func = getFunction( matches.front() ); assertf( func, "getFunction failed to find function in %s", toString( matches.front() ).c_str() ); // cleanup argument must be a function, not an object (including function pointer) if ( FunctionDecl * dtorFunc = dynamic_cast< FunctionDecl * > ( func ) ) { if ( dtorFunc->type->forall.empty() ) { // simple case where the destructor is a monomorphic function call - can simply // use that function as the cleanup function. delete dtor; return func; } } } } // otherwise the cleanup is more complicated - need to build a single argument cleanup function that // wraps the more complicated code. static UniqueName dtorNamer( "__cleanup_dtor" ); FunctionDecl * dtorFunc = FunctionDecl::newFunction( dtorNamer.newName(), SymTab::genDefaultType( objDecl->type->stripReferences(), false ), new CompoundStmt() ); stmtsToAdd.push_back( new DeclStmt( dtorFunc ) ); // the original code contains uses of objDecl - replace them with the newly generated 'this' parameter. ObjectDecl * thisParam = getParamThis( dtorFunc->type ); Expression * replacement = new VariableExpr( thisParam ); Type * base = replacement->result->stripReferences(); if ( dynamic_cast< ArrayType * >( base ) || dynamic_cast< TupleType * > ( base ) ) { // need to cast away reference for array types, since the destructor is generated without the reference type, // and for tuple types since tuple indexing does not work directly on a reference replacement = new CastExpr( replacement, base->clone() ); } DeclReplacer::replace( dtor, { std::make_pair( objDecl, replacement ) } ); dtorFunc->statements->push_back( strict_dynamic_cast( dtor ) ); return dtorFunc; } void StmtExprResult::link( std::list< Declaration * > & translationUnit ) { PassVisitor linker; acceptAll( translationUnit, linker ); } void SplitExpressions::split( std::list< Declaration * > & translationUnit ) { PassVisitor splitter; mutateAll( translationUnit, splitter ); } void InsertImplicitCalls::insert( std::list< Declaration * > & translationUnit ) { PassVisitor inserter; mutateAll( translationUnit, inserter ); } void ResolveCopyCtors::resolveImplicitCalls( std::list< Declaration * > & translationUnit ) { PassVisitor resolver; mutateAll( translationUnit, resolver ); } void FixInit::fixInitializers( std::list< Declaration * > & translationUnit ) { PassVisitor fixer; // can't use mutateAll, because need to insert declarations at top-level // can't use DeclMutator, because sometimes need to insert IfStmt, etc. SemanticErrorException errors; for ( std::list< Declaration * >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) { try { maybeMutate( *i, fixer ); translationUnit.splice( i, fixer.pass.staticDtorDecls ); } catch( SemanticErrorException &e ) { errors.append( e ); } // try } // for if ( ! errors.isEmpty() ) { throw errors; } // if } void InsertDtors::insert( std::list< Declaration * > & translationUnit ) { PassVisitor finder; PassVisitor inserter( finder ); acceptAll( translationUnit, inserter ); } void GenStructMemberCalls::generate( std::list< Declaration * > & translationUnit ) { PassVisitor warner; mutateAll( translationUnit, warner ); } void FixCtorExprs::fix( std::list< Declaration * > & translationUnit ) { PassVisitor fixer; mutateAll( translationUnit, fixer ); } void StmtExprResult::previsit( StmtExpr * stmtExpr ) { // we might loose the result expression here so add a pointer to trace back assert( stmtExpr->result ); Type * result = stmtExpr->result; if ( ! result->isVoid() ) { CompoundStmt * body = stmtExpr->statements; assert( ! body->kids.empty() ); stmtExpr->resultExpr = strict_dynamic_cast< ExprStmt * >( body->kids.back() ); } } Statement * SplitExpressions::postmutate( ExprStmt * stmt ) { // wrap each top-level ExprStmt in a block so that destructors for argument and return temporaries are destroyed // in the correct places CompoundStmt * ret = new CompoundStmt( { stmt } ); return ret; } void SplitExpressions::premutate( TupleAssignExpr * ) { // don't do this within TupleAssignExpr, since it is already broken up into multiple expressions visit_children = false; } // Relatively simple structural comparison for expressions, needed to determine // if two expressions are "the same" (used to determine if self assignment occurs) struct StructuralChecker { Expression * stripCasts( Expression * expr ) { // this might be too permissive. It's possible that only particular casts are relevant. while ( CastExpr * cast = dynamic_cast< CastExpr * >( expr ) ) { expr = cast->arg; } return expr; } void previsit( Expression * ) { // anything else does not qualify isSimilar = false; } template T * cast( Expression * node ) { // all expressions need to ignore casts, so this bit has been factored out return dynamic_cast< T * >( stripCasts( node ) ); } // ignore casts void previsit( CastExpr * ) {} void previsit( MemberExpr * memExpr ) { if ( MemberExpr * otherMember = cast< MemberExpr >( other ) ) { if ( otherMember->member == memExpr->member ) { other = otherMember->aggregate; return; } } isSimilar = false; } void previsit( VariableExpr * varExpr ) { if ( VariableExpr * otherVar = cast< VariableExpr >( other ) ) { if ( otherVar->var == varExpr->var ) { return; } } isSimilar = false; } void previsit( AddressExpr * ) { if ( AddressExpr * addrExpr = cast< AddressExpr >( other ) ) { other = addrExpr->arg; return; } isSimilar = false; } Expression * other = nullptr; bool isSimilar = true; }; bool structurallySimilar( Expression * e1, Expression * e2 ) { PassVisitor checker; checker.pass.other = e2; e1->accept( checker ); return checker.pass.isSimilar; } void SelfAssignChecker::previsit( ApplicationExpr * appExpr ) { DeclarationWithType * function = getFunction( appExpr ); if ( function->name == "?=?" ) { // doesn't use isAssignment, because ?+=?, etc. should not count as self-assignment if ( appExpr->args.size() == 2 ) { // check for structural similarity (same variable use, ignore casts, etc. - but does not look too deeply, anything looking like a function is off limits) if ( structurallySimilar( appExpr->args.front(), appExpr->args.back() ) ) { SemanticWarning( appExpr->location, Warning::SelfAssignment, toCString( appExpr->args.front() ) ); } } } } Expression * InsertImplicitCalls::postmutate( ApplicationExpr * appExpr ) { if ( VariableExpr * function = dynamic_cast< VariableExpr * > ( appExpr->get_function() ) ) { if ( function->var->linkage.is_builtin ) { // optimization: don't need to copy construct in order to call intrinsic functions return appExpr; } else if ( DeclarationWithType * funcDecl = dynamic_cast< DeclarationWithType * > ( function->get_var() ) ) { FunctionType * ftype = dynamic_cast< FunctionType * >( GenPoly::getFunctionType( funcDecl->get_type() ) ); assertf( ftype, "Function call without function type: %s", toString( funcDecl ).c_str() ); if ( CodeGen::isConstructor( funcDecl->get_name() ) && ftype->parameters.size() == 2 ) { Type * t1 = getPointerBase( ftype->parameters.front()->get_type() ); Type * t2 = ftype->parameters.back()->get_type(); assert( t1 ); if ( ResolvExpr::typesCompatible( t1, t2, SymTab::Indexer() ) ) { // optimization: don't need to copy construct in order to call a copy constructor return appExpr; } // if } else if ( CodeGen::isDestructor( funcDecl->get_name() ) ) { // correctness: never copy construct arguments to a destructor return appExpr; } // if } // if } // if CP_CTOR_PRINT( std::cerr << "InsertImplicitCalls: adding a wrapper " << appExpr << std::endl; ) // wrap each function call so that it is easy to identify nodes that have to be copy constructed ImplicitCopyCtorExpr * expr = new ImplicitCopyCtorExpr( appExpr ); // Move the type substitution to the new top-level, if it is attached to the appExpr. // Ensure it is not deleted with the ImplicitCopyCtorExpr by removing it before deletion. // The substitution is needed to obtain the type of temporary variables so that copy constructor // calls can be resolved. assert( env ); std::swap( expr->env, appExpr->env ); return expr; } bool ResolveCopyCtors::skipCopyConstruct( Type * type ) { return ! isConstructable( type ); } Expression * ResolveCopyCtors::makeCtorDtor( const std::string & fname, ObjectDecl * var, Expression * cpArg ) { assert( var ); // arrays are not copy constructed, so this should always be an ExprStmt ImplicitCtorDtorStmt * stmt = genCtorDtor( fname, var, cpArg ); assertf( stmt, "ResolveCopyCtors: genCtorDtor returned nullptr: %s / %s / %s", fname.c_str(), toString( var ).c_str(), toString( cpArg ).c_str() ); ExprStmt * exprStmt = strict_dynamic_cast< ExprStmt * >( stmt->callStmt ); Expression * resolved = exprStmt->expr; exprStmt->expr = nullptr; // take ownership of expr // resolve copy constructor // should only be one alternative for copy ctor and dtor expressions, since all arguments are fixed // (VariableExpr and already resolved expression) CP_CTOR_PRINT( std::cerr << "ResolvingCtorDtor " << resolved << std::endl; ) ResolvExpr::findVoidExpression( resolved, indexer ); assert( resolved ); if ( resolved->env ) { // Extract useful information and discard new environments. Keeping them causes problems in PolyMutator passes. env->add( *resolved->env ); delete resolved->env; resolved->env = nullptr; } // if delete stmt; if ( TupleAssignExpr * assign = dynamic_cast< TupleAssignExpr * >( resolved ) ) { // fix newly generated StmtExpr premutate( assign->stmtExpr ); } return resolved; } void ResolveCopyCtors::copyConstructArg( Expression *& arg, ImplicitCopyCtorExpr * impCpCtorExpr, Type * formal ) { static UniqueName tempNamer("_tmp_cp"); assert( env ); CP_CTOR_PRINT( std::cerr << "Type Substitution: " << *env << std::endl; ) assert( arg->result ); Type * result = arg->result; if ( skipCopyConstruct( result ) ) return; // skip certain non-copyable types // type may involve type variables, so apply type substitution to get temporary variable's actual type, // since result type may not be substituted (e.g., if the type does not appear in the parameter list) // Use applyFree so that types bound in function pointers are not substituted, e.g. in forall(dtype T) void (*)(T). env->applyFree( result ); ObjectDecl * tmp = ObjectDecl::newObject( "__tmp", result, nullptr ); tmp->get_type()->set_const( false ); // create and resolve copy constructor CP_CTOR_PRINT( std::cerr << "makeCtorDtor for an argument" << std::endl; ) Expression * cpCtor = makeCtorDtor( "?{}", tmp, arg ); if ( ApplicationExpr * appExpr = dynamic_cast< ApplicationExpr * >( cpCtor ) ) { // if the chosen constructor is intrinsic, the copy is unnecessary, so // don't create the temporary and don't call the copy constructor VariableExpr * function = strict_dynamic_cast< VariableExpr * >( appExpr->function ); if ( function->var->linkage == LinkageSpec::Intrinsic ) { // arguments that need to be boxed need a temporary regardless of whether the copy constructor is intrinsic, // so that the object isn't changed inside of the polymorphic function if ( ! GenPoly::needsBoxing( formal, result, impCpCtorExpr->callExpr, env ) ) return; // xxx - leaking tmp } } // set a unique name for the temporary once it's certain the call is necessary tmp->name = tempNamer.newName(); // replace argument to function call with temporary stmtsToAddBefore.push_back( new DeclStmt( tmp ) ); arg = cpCtor; destructRet( tmp, impCpCtorExpr, arg ); // impCpCtorExpr->dtors.push_front( makeCtorDtor( "^?{}", tmp ) ); } void ResolveCopyCtors::destructRet( ObjectDecl * ret, ImplicitCopyCtorExpr * /*impCpCtorExpr*/, Expression *& arg ) { // TODO: refactor code for generating cleanup attribute, since it's common and reused in ~3-4 places // check for existing cleanup attribute before adding another(?) // need to add __Destructor for _tmp_cp variables as well assertf( Validate::dtorStruct && Validate::dtorStruct->members.size() == 2, "Destructor generation requires __Destructor definition." ); assertf( Validate::dtorStructDestroy, "Destructor generation requires __destroy_Destructor." ); // generate a __Destructor for ret that calls the destructor Expression * dtor = makeCtorDtor( "^?{}", ret ); // if the chosen destructor is intrinsic, elide the generated dtor handler if ( arg && isIntrinsicCallExpr( dtor ) ) { arg = new CommaExpr( arg, new VariableExpr( ret ) ); return; } if ( ! dtor->env ) dtor->env = maybeClone( env ); DeclarationWithType * dtorFunc = getDtorFunc( ret, new ExprStmt( dtor ), stmtsToAddBefore ); StructInstType * dtorStructType = new StructInstType( Type::Qualifiers(), Validate::dtorStruct ); dtorStructType->parameters.push_back( new TypeExpr( new VoidType( Type::Qualifiers() ) ) ); // cast destructor pointer to void (*)(void *), to silence GCC incompatible pointer warnings FunctionType * dtorFtype = new FunctionType( Type::Qualifiers(), false ); dtorFtype->parameters.push_back( ObjectDecl::newObject( "", new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ), nullptr ) ); Type * dtorType = new PointerType( Type::Qualifiers(), dtorFtype ); static UniqueName namer( "_ret_dtor" ); ObjectDecl * retDtor = ObjectDecl::newObject( namer.newName(), dtorStructType, new ListInit( { new SingleInit( new ConstantExpr( Constant::null() ) ), new SingleInit( new CastExpr( new VariableExpr( dtorFunc ), dtorType ) ) } ) ); retDtor->attributes.push_back( new Attribute( "cleanup", { new VariableExpr( Validate::dtorStructDestroy ) } ) ); stmtsToAddBefore.push_back( new DeclStmt( retDtor ) ); if ( arg ) { Expression * member = new MemberExpr( strict_dynamic_cast( Validate::dtorStruct->members.front() ), new VariableExpr( retDtor ) ); Expression * object = new CastExpr( new AddressExpr( new VariableExpr( ret ) ), new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ) ); Expression * assign = createBitwiseAssignment( member, object ); arg = new CommaExpr( new CommaExpr( arg, assign ), new VariableExpr( ret ) ); } // impCpCtorExpr->get_dtors().push_front( makeCtorDtor( "^?{}", ret ) ); } Expression * ResolveCopyCtors::postmutate( ImplicitCopyCtorExpr *impCpCtorExpr ) { CP_CTOR_PRINT( std::cerr << "ResolveCopyCtors: " << impCpCtorExpr << std::endl; ) ApplicationExpr * appExpr = impCpCtorExpr->callExpr; ObjectDecl * returnDecl = nullptr; // take each argument and attempt to copy construct it. FunctionType * ftype = GenPoly::getFunctionType( appExpr->function->result ); assert( ftype ); auto & params = ftype->parameters; auto iter = params.begin(); for ( Expression * & arg : appExpr->args ) { Type * formal = nullptr; if ( iter != params.end() ) { // does not copy construct C-style variadic arguments DeclarationWithType * param = *iter++; formal = param->get_type(); } copyConstructArg( arg, impCpCtorExpr, formal ); } // for // each return value from the call needs to be connected with an ObjectDecl at the call site, which is // initialized with the return value and is destructed later // xxx - handle named return values? Type * result = appExpr->result; if ( ! result->isVoid() ) { static UniqueName retNamer("_tmp_cp_ret"); result = result->clone(); env->apply( result ); ObjectDecl * ret = ObjectDecl::newObject( retNamer.newName(), result, nullptr ); ret->type->set_const( false ); returnDecl = ret; stmtsToAddBefore.push_back( new DeclStmt( ret ) ); CP_CTOR_PRINT( std::cerr << "makeCtorDtor for a return" << std::endl; ) } // for CP_CTOR_PRINT( std::cerr << "after Resolving: " << impCpCtorExpr << std::endl; ) // ------------------------------------------------------ CP_CTOR_PRINT( std::cerr << "Coming out the back..." << impCpCtorExpr << std::endl; ) // detach fields from wrapper node so that it can be deleted without deleting too much impCpCtorExpr->callExpr = nullptr; std::swap( impCpCtorExpr->env, appExpr->env ); assert( impCpCtorExpr->env == nullptr ); delete impCpCtorExpr; if ( returnDecl ) { Expression * assign = createBitwiseAssignment( new VariableExpr( returnDecl ), appExpr ); if ( ! dynamic_cast< ReferenceType * >( result ) ) { // destructing reference returns is bad because it can cause multiple destructor calls to the same object - the returned object is not a temporary destructRet( returnDecl, impCpCtorExpr, assign ); } else { assign = new CommaExpr( assign, new VariableExpr( returnDecl ) ); } // move env from appExpr to retExpr std::swap( assign->env, appExpr->env ); return assign; } else { return appExpr; } // if } void ResolveCopyCtors::premutate( StmtExpr * stmtExpr ) { // function call temporaries should be placed at statement-level, rather than nested inside of a new statement expression, // since temporaries can be shared across sub-expressions, e.g. // [A, A] f(); // decl // g([A] x, [A] y); // decl // g(f()); // call // f is executed once, so the return temporary is shared across the tuple constructors for x and y. // Explicitly mutating children instead of mutating the inner compound statement forces the temporaries to be added // to the outer context, rather than inside of the statement expression. visit_children = false; assert( env ); indexer.enterScope(); // visit all statements std::list< Statement * > & stmts = stmtExpr->statements->get_kids(); for ( Statement *& stmt : stmts ) { stmt = stmt->acceptMutator( *visitor ); } // for indexer.leaveScope(); assert( stmtExpr->result ); Type * result = stmtExpr->result; if ( ! result->isVoid() ) { static UniqueName retNamer("_tmp_stmtexpr_ret"); result = result->clone(); env->apply( result ); if ( ! InitTweak::isConstructable( result ) ) { delete result; return; } // create variable that will hold the result of the stmt expr ObjectDecl * ret = ObjectDecl::newObject( retNamer.newName(), result, nullptr ); ret->type->set_const( false ); stmtsToAddBefore.push_back( new DeclStmt( ret ) ); if(!stmtExpr->resultExpr) { SemanticError(stmtExpr, "Statment-Expression should have a resulting expression"); } ExprStmt * last = stmtExpr->resultExpr; try { last->expr = makeCtorDtor( "?{}", ret, last->expr ); } catch(...) { std::cerr << "=======================" << std::endl; std::cerr << "ERROR, can't resolve" << std::endl; ret->print(std::cerr); std::cerr << std::endl << "---" << std::endl; last->expr->print(std::cerr); abort(); } // add destructors after current statement stmtsToAddAfter.push_back( new ExprStmt( makeCtorDtor( "^?{}", ret ) ) ); // must have a non-empty body, otherwise it wouldn't have a result assert( ! stmts.empty() ); // if there is a return decl, add a use as the last statement; will not have return decl on non-constructable returns stmts.push_back( new ExprStmt( new VariableExpr( ret ) ) ); } // if assert( stmtExpr->returnDecls.empty() ); assert( stmtExpr->dtors.empty() ); } // to prevent warnings (‘_unq0’ may be used uninitialized in this function), // insert an appropriate zero initializer for UniqueExpr temporaries. Initializer * makeInit( Type * t ) { if ( StructInstType * inst = dynamic_cast< StructInstType * >( t ) ) { // initizer for empty struct must be empty if ( inst->baseStruct->members.empty() ) return new ListInit({}); } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( t ) ) { // initizer for empty union must be empty if ( inst->baseUnion->members.empty() ) return new ListInit({}); } return new ListInit( { new SingleInit( new ConstantExpr( Constant::from_int( 0 ) ) ) } ); } void ResolveCopyCtors::premutate( UniqueExpr * unqExpr ) { visit_children = false; // xxx - hack to prevent double-handling of unique exprs, otherwise too many temporary variables and destructors are generated static std::unordered_map< int, UniqueExpr * > unqMap; if ( ! unqMap.count( unqExpr->get_id() ) ) { // resolve expr and find its ImplicitCopyCtorExpr * impCpCtorExpr = dynamic_cast< ImplicitCopyCtorExpr * >( unqExpr->expr ); // PassVisitor fixer; unqExpr->expr = unqExpr->expr->acceptMutator( *visitor ); // it should never be necessary to wrap a void-returning expression in a UniqueExpr - if this assumption changes, this needs to be rethought assert( unqExpr->result ); if ( impCpCtorExpr ) { CommaExpr * comma = strict_dynamic_cast< CommaExpr * >( unqExpr->expr ); VariableExpr * var = strict_dynamic_cast( comma->arg2 ); // note the variable used as the result from the call unqExpr->var = var->clone(); } else { // expr isn't a call expr, so create a new temporary variable to use to hold the value of the unique expression unqExpr->object = ObjectDecl::newObject( toString("_unq", unqExpr->get_id()), unqExpr->result->clone(), makeInit( unqExpr->result ) ); unqExpr->var = new VariableExpr( unqExpr->object ); } // stmtsToAddBefore.splice( stmtsToAddBefore.end(), fixer.pass.stmtsToAddBefore ); // stmtsToAddAfter.splice( stmtsToAddAfter.end(), fixer.pass.stmtsToAddAfter ); unqMap[unqExpr->get_id()] = unqExpr; } else { // take data from other UniqueExpr to ensure consistency delete unqExpr->get_expr(); unqExpr->expr = unqMap[unqExpr->get_id()]->expr->clone(); delete unqExpr->result; unqExpr->result = maybeClone( unqExpr->expr->result ); } } DeclarationWithType * FixInit::postmutate( ObjectDecl *objDecl ) { // since this removes the init field from objDecl, it must occur after children are mutated (i.e. postmutate) if ( ConstructorInit * ctorInit = dynamic_cast< ConstructorInit * >( objDecl->get_init() ) ) { // a decision should have been made by the resolver, so ctor and init are not both non-NULL assert( ! ctorInit->get_ctor() || ! ctorInit->get_init() ); if ( Statement * ctor = ctorInit->get_ctor() ) { if ( objDecl->get_storageClasses().is_static ) { // originally wanted to take advantage of gcc nested functions, but // we get memory errors with this approach. To remedy this, the static // variable is hoisted when the destructor needs to be called. // // generate: // static T __objName_static_varN; // void __objName_dtor_atexitN() { // __dtor__...; // } // int f(...) { // ... // static bool __objName_uninitialized = true; // if (__objName_uninitialized) { // __ctor(__objName); // __objName_uninitialized = false; // atexit(__objName_dtor_atexitN); // } // ... // } static UniqueName dtorCallerNamer( "_dtor_atexit" ); // static bool __objName_uninitialized = true BasicType * boolType = new BasicType( Type::Qualifiers(), BasicType::Bool ); SingleInit * boolInitExpr = new SingleInit( new ConstantExpr( Constant::from_int( 1 ) ) ); ObjectDecl * isUninitializedVar = new ObjectDecl( objDecl->get_mangleName() + "_uninitialized", Type::StorageClasses( Type::Static ), LinkageSpec::Cforall, 0, boolType, boolInitExpr ); isUninitializedVar->fixUniqueId(); // __objName_uninitialized = false; UntypedExpr * setTrue = new UntypedExpr( new NameExpr( "?=?" ) ); setTrue->get_args().push_back( new VariableExpr( isUninitializedVar ) ); setTrue->get_args().push_back( new ConstantExpr( Constant::from_int( 0 ) ) ); // generate body of if CompoundStmt * initStmts = new CompoundStmt(); std::list< Statement * > & body = initStmts->get_kids(); body.push_back( ctor ); body.push_back( new ExprStmt( setTrue ) ); // put it all together IfStmt * ifStmt = new IfStmt( new VariableExpr( isUninitializedVar ), initStmts, 0 ); stmtsToAddAfter.push_back( new DeclStmt( isUninitializedVar ) ); stmtsToAddAfter.push_back( ifStmt ); Statement * dtor = ctorInit->get_dtor(); objDecl->set_init( nullptr ); ctorInit->set_ctor( nullptr ); ctorInit->set_dtor( nullptr ); if ( dtor ) { // if the object has a non-trivial destructor, have to // hoist it and the object into the global space and // call the destructor function with atexit. Statement * dtorStmt = dtor->clone(); // void __objName_dtor_atexitN(...) {...} FunctionDecl * dtorCaller = new FunctionDecl( objDecl->get_mangleName() + dtorCallerNamer.newName(), Type::StorageClasses( Type::Static ), LinkageSpec::C, new FunctionType( Type::Qualifiers(), false ), new CompoundStmt() ); dtorCaller->fixUniqueId(); dtorCaller->get_statements()->push_back( dtorStmt ); // atexit(dtor_atexit); UntypedExpr * callAtexit = new UntypedExpr( new NameExpr( "atexit" ) ); callAtexit->get_args().push_back( new VariableExpr( dtorCaller ) ); body.push_back( new ExprStmt( callAtexit ) ); // hoist variable and dtor caller decls to list of decls that will be added into global scope staticDtorDecls.push_back( objDecl ); staticDtorDecls.push_back( dtorCaller ); // need to rename object uniquely since it now appears // at global scope and there could be multiple function-scoped // static variables with the same name in different functions. // Note: it isn't sufficient to modify only the mangleName, because // then subsequent Indexer passes can choke on seeing the object's name // if another object has the same name and type. An unfortunate side-effect // of renaming the object is that subsequent NameExprs may fail to resolve, // but there shouldn't be any remaining past this point. static UniqueName staticNamer( "_static_var" ); objDecl->set_name( objDecl->get_name() + staticNamer.newName() ); objDecl->set_mangleName( SymTab::Mangler::mangle( objDecl ) ); // xxx - temporary hack: need to return a declaration, but want to hoist the current object out of this scope // create a new object which is never used static UniqueName dummyNamer( "_dummy" ); ObjectDecl * dummy = new ObjectDecl( dummyNamer.newName(), Type::StorageClasses( Type::Static ), LinkageSpec::Cforall, 0, new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ), 0, std::list< Attribute * >{ new Attribute("unused") } ); delete ctorInit; return dummy; } } else { ImplicitCtorDtorStmt * implicit = strict_dynamic_cast< ImplicitCtorDtorStmt * > ( ctor ); ExprStmt * ctorStmt = dynamic_cast< ExprStmt * >( implicit->callStmt ); ApplicationExpr * ctorCall = nullptr; if ( ctorStmt && (ctorCall = isIntrinsicCallExpr( ctorStmt->expr )) && ctorCall->get_args().size() == 2 ) { // clean up intrinsic copy constructor calls by making them into SingleInits Expression * ctorArg = ctorCall->args.back(); std::swap( ctorArg->env, ctorCall->env ); objDecl->init = new SingleInit( ctorArg ); ctorCall->args.pop_back(); } else { stmtsToAddAfter.push_back( ctor ); objDecl->init = nullptr; ctorInit->ctor = nullptr; } Statement * dtor = ctorInit->dtor; if ( dtor ) { ImplicitCtorDtorStmt * implicit = strict_dynamic_cast< ImplicitCtorDtorStmt * >( dtor ); Statement * dtorStmt = implicit->callStmt; // don't need to call intrinsic dtor, because it does nothing, but // non-intrinsic dtors must be called if ( ! isIntrinsicSingleArgCallStmt( dtorStmt ) ) { // set dtor location to the object's location for error messages DeclarationWithType * dtorFunc = getDtorFunc( objDecl, dtorStmt, stmtsToAddBefore ); objDecl->attributes.push_back( new Attribute( "cleanup", { new VariableExpr( dtorFunc ) } ) ); ctorInit->dtor = nullptr; } // if } } // if } else if ( Initializer * init = ctorInit->init ) { objDecl->init = init; ctorInit->init = nullptr; } else { // no constructor and no initializer, which is okay objDecl->init = nullptr; } // if delete ctorInit; } // if return objDecl; } void ObjDeclCollector::previsit( CompoundStmt * ) { GuardValue( curVars ); } void ObjDeclCollector::previsit( DeclStmt * stmt ) { // keep track of all variables currently in scope if ( ObjectDecl * objDecl = dynamic_cast< ObjectDecl * > ( stmt->get_decl() ) ) { curVars.push_back( objDecl ); } // if } void LabelFinder::previsit( Statement * stmt ) { // for each label, remember the variables in scope at that label. for ( Label l : stmt->get_labels() ) { vars[l] = curVars; } // for } void LabelFinder::previsit( CompoundStmt * stmt ) { previsit( (Statement *)stmt ); Parent::previsit( stmt ); } void LabelFinder::previsit( DeclStmt * stmt ) { previsit( (Statement *)stmt ); Parent::previsit( stmt ); } void InsertDtors::previsit( FunctionDecl * funcDecl ) { // each function needs to have its own set of labels GuardValue( labelVars ); labelVars.clear(); // LabelFinder does not recurse into FunctionDecl, so need to visit // its children manually. maybeAccept( funcDecl->type, finder ); maybeAccept( funcDecl->statements, finder ); // all labels for this function have been collected, insert destructors as appropriate via implicit recursion. } // Handle break/continue/goto in the same manner as C++. Basic idea: any objects that are in scope at the // BranchStmt but not at the labelled (target) statement must be destructed. If there are any objects in scope // at the target location but not at the BranchStmt then those objects would be uninitialized so notify the user // of the error. See C++ Reference 6.6 Jump Statements for details. void InsertDtors::handleGoto( BranchStmt * stmt ) { // can't do anything for computed goto if ( stmt->computedTarget ) return; assertf( stmt->get_target() != "", "BranchStmt missing a label: %s", toString( stmt ).c_str() ); // S_L = lvars = set of objects in scope at label definition // S_G = curVars = set of objects in scope at goto statement ObjectSet & lvars = labelVars[ stmt->get_target() ]; DTOR_PRINT( std::cerr << "at goto label: " << stmt->get_target().get_name() << std::endl; std::cerr << "S_G = " << printSet( curVars ) << std::endl; std::cerr << "S_L = " << printSet( lvars ) << std::endl; ) ObjectSet diff; // S_L-S_G results in set of objects whose construction is skipped - it's an error if this set is non-empty std::set_difference( lvars.begin(), lvars.end(), curVars.begin(), curVars.end(), std::inserter( diff, diff.begin() ) ); DTOR_PRINT( std::cerr << "S_L-S_G = " << printSet( diff ) << std::endl; ) if ( ! diff.empty() ) { SemanticError( stmt, std::string("jump to label '") + stmt->get_target().get_name() + "' crosses initialization of " + (*diff.begin())->get_name() + " " ); } // if } void InsertDtors::previsit( BranchStmt * stmt ) { switch( stmt->get_type() ) { case BranchStmt::Continue: case BranchStmt::Break: // could optimize the break/continue case, because the S_L-S_G check is unnecessary (this set should // always be empty), but it serves as a small sanity check. case BranchStmt::Goto: handleGoto( stmt ); break; default: assert( false ); } // switch } bool checkWarnings( FunctionDecl * funcDecl ) { // only check for warnings if the current function is a user-defined // constructor or destructor if ( ! funcDecl ) return false; if ( ! funcDecl->get_statements() ) return false; return CodeGen::isCtorDtor( funcDecl->get_name() ) && ! LinkageSpec::isOverridable( funcDecl->get_linkage() ); } void GenStructMemberCalls::premutate( FunctionDecl * funcDecl ) { GuardValue( function ); GuardValue( unhandled ); GuardValue( usedUninit ); GuardValue( thisParam ); GuardValue( isCtor ); GuardValue( structDecl ); errors = SemanticErrorException(); // clear previous errors // need to start with fresh sets unhandled.clear(); usedUninit.clear(); function = funcDecl; isCtor = CodeGen::isConstructor( function->get_name() ); if ( checkWarnings( function ) ) { FunctionType * type = function->get_functionType(); assert( ! type->get_parameters().empty() ); thisParam = strict_dynamic_cast< ObjectDecl * >( type->get_parameters().front() ); Type * thisType = getPointerBase( thisParam->get_type() ); StructInstType * structType = dynamic_cast< StructInstType * >( thisType ); if ( structType ) { structDecl = structType->get_baseStruct(); for ( Declaration * member : structDecl->get_members() ) { if ( ObjectDecl * field = dynamic_cast< ObjectDecl * >( member ) ) { // record all of the struct type's members that need to be constructed or // destructed by the end of the function unhandled.insert( field ); } } } } } DeclarationWithType * GenStructMemberCalls::postmutate( FunctionDecl * funcDecl ) { // remove the unhandled objects from usedUninit, because a call is inserted // to handle them - only objects that are later constructed are used uninitialized. std::map< DeclarationWithType *, CodeLocation > diff; // need the comparator since usedUninit and unhandled have different types struct comp_t { typedef decltype(usedUninit)::value_type usedUninit_t; typedef decltype(unhandled)::value_type unhandled_t; bool operator()(usedUninit_t x, unhandled_t y) { return x.first < y; } bool operator()(unhandled_t x, usedUninit_t y) { return x < y.first; } } comp; std::set_difference( usedUninit.begin(), usedUninit.end(), unhandled.begin(), unhandled.end(), std::inserter( diff, diff.begin() ), comp ); for ( auto p : diff ) { DeclarationWithType * member = p.first; CodeLocation loc = p.second; // xxx - make error message better by also tracking the location that the object is constructed at? emit( loc, "in ", CodeGen::genPrettyType( function->get_functionType(), function->get_name() ), ", field ", member->get_name(), " used before being constructed" ); } if ( ! unhandled.empty() ) { // need to explicitly re-add function parameters to the indexer in order to resolve copy constructors auto guard = makeFuncGuard( [this]() { indexer.enterScope(); }, [this]() { indexer.leaveScope(); } ); indexer.addFunctionType( function->type ); // need to iterate through members in reverse in order for // ctor/dtor statements to come out in the right order for ( Declaration * member : reverseIterate( structDecl->get_members() ) ) { DeclarationWithType * field = dynamic_cast< DeclarationWithType * >( member ); // skip non-DWT members if ( ! field ) continue; // skip non-constructable members if ( ! tryConstruct( field ) ) continue; // skip handled members if ( ! unhandled.count( field ) ) continue; // insert and resolve default/copy constructor call for each field that's unhandled std::list< Statement * > stmt; Expression * arg2 = nullptr; if ( isCopyConstructor( function ) ) { // if copy ctor, need to pass second-param-of-this-function.field std::list< DeclarationWithType * > & params = function->get_functionType()->get_parameters(); assert( params.size() == 2 ); arg2 = new MemberExpr( field, new VariableExpr( params.back() ) ); } InitExpander srcParam( arg2 ); // cast away reference type and construct field. Expression * thisExpr = new CastExpr( new VariableExpr( thisParam ), thisParam->get_type()->stripReferences()->clone() ); Expression * memberDest = new MemberExpr( field, thisExpr ); SymTab::genImplicitCall( srcParam, memberDest, function->get_name(), back_inserter( stmt ), field, isCtor ); assert( stmt.size() <= 1 ); if ( stmt.size() == 1 ) { Statement * callStmt = stmt.front(); try { callStmt->acceptMutator( *visitor ); if ( isCtor ) { function->statements->push_front( callStmt ); } else { // TODO: don't generate destructor function/object for intrinsic calls // destructor statements should be added at the end // function->get_statements()->push_back( callStmt ); // Optimization: do not need to call intrinsic destructors on members if ( isIntrinsicSingleArgCallStmt( callStmt ) ) continue;; // __Destructor _dtor0 = { (void *)&b.a1, (void (*)(void *)_destroy_A }; std::list< Statement * > stmtsToAdd; static UniqueName memberDtorNamer = { "__memberDtor" }; assertf( Validate::dtorStruct, "builtin __Destructor not found." ); assertf( Validate::dtorStructDestroy, "builtin __destroy_Destructor not found." ); Expression * thisExpr = new CastExpr( new AddressExpr( new VariableExpr( thisParam ) ), new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ) ); Expression * dtorExpr = new VariableExpr( getDtorFunc( thisParam, callStmt, stmtsToAdd ) ); // cast destructor pointer to void (*)(void *), to silence GCC incompatible pointer warnings FunctionType * dtorFtype = new FunctionType( Type::Qualifiers(), false ); dtorFtype->parameters.push_back( ObjectDecl::newObject( "", new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ), nullptr ) ); Type * dtorType = new PointerType( Type::Qualifiers(), dtorFtype ); ObjectDecl * destructor = ObjectDecl::newObject( memberDtorNamer.newName(), new StructInstType( Type::Qualifiers(), Validate::dtorStruct ), new ListInit( { new SingleInit( thisExpr ), new SingleInit( new CastExpr( dtorExpr, dtorType ) ) } ) ); function->statements->push_front( new DeclStmt( destructor ) ); destructor->attributes.push_back( new Attribute( "cleanup", { new VariableExpr( Validate::dtorStructDestroy ) } ) ); function->statements->kids.splice( function->statements->kids.begin(), stmtsToAdd ); } } catch ( SemanticErrorException & error ) { emit( funcDecl->location, "in ", CodeGen::genPrettyType( function->get_functionType(), function->get_name() ), ", field ", field->get_name(), " not explicitly ", isCtor ? "constructed" : "destructed", " and no ", isCtor ? "default constructor" : "destructor", " found" ); } } } } if (! errors.isEmpty()) { throw errors; } return funcDecl; } /// true if expr is effectively just the 'this' parameter bool isThisExpression( Expression * expr, DeclarationWithType * thisParam ) { // TODO: there are more complicated ways to pass 'this' to a constructor, e.g. &*, *&, etc. if ( VariableExpr * varExpr = dynamic_cast< VariableExpr * >( expr ) ) { return varExpr->get_var() == thisParam; } else if ( CastExpr * castExpr = dynamic_cast< CastExpr * > ( expr ) ) { return isThisExpression( castExpr->get_arg(), thisParam ); } return false; } /// returns a MemberExpr if expr is effectively just member access on the 'this' parameter, else nullptr MemberExpr * isThisMemberExpr( Expression * expr, DeclarationWithType * thisParam ) { if ( MemberExpr * memberExpr = dynamic_cast< MemberExpr * >( expr ) ) { if ( isThisExpression( memberExpr->get_aggregate(), thisParam ) ) { return memberExpr; } } else if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( expr ) ) { return isThisMemberExpr( castExpr->get_arg(), thisParam ); } return nullptr; } void GenStructMemberCalls::premutate( ApplicationExpr * appExpr ) { if ( ! checkWarnings( function ) ) { visit_children = false; return; } std::string fname = getFunctionName( appExpr ); if ( fname == function->name ) { // call to same kind of function Expression * firstParam = appExpr->args.front(); if ( isThisExpression( firstParam, thisParam ) ) { // if calling another constructor on thisParam, assume that function handles // all members - if it doesn't a warning will appear in that function. unhandled.clear(); } else if ( MemberExpr * memberExpr = isThisMemberExpr( firstParam, thisParam ) ) { // if first parameter is a member expression on the this parameter, // then remove the member from unhandled set. if ( isThisExpression( memberExpr->aggregate, thisParam ) ) { unhandled.erase( memberExpr->member ); } } } } void GenStructMemberCalls::premutate( MemberExpr * memberExpr ) { if ( ! checkWarnings( function ) || ! isCtor ) { visit_children = false; return; } if ( isThisExpression( memberExpr->get_aggregate(), thisParam ) ) { if ( unhandled.count( memberExpr->get_member() ) ) { // emit a warning because a member was used before it was constructed usedUninit.insert( { memberExpr->get_member(), memberExpr->location } ); } } } template< typename Visitor, typename... Params > void error( Visitor & v, CodeLocation loc, const Params &... params ) { SemanticErrorException err( loc, toString( params... ) ); v.errors.append( err ); } template< typename... Params > void GenStructMemberCalls::emit( CodeLocation loc, const Params &... params ) { // toggle warnings vs. errors here. // warn( params... ); error( *this, loc, params... ); } Expression * GenStructMemberCalls::postmutate( UntypedExpr * untypedExpr ) { Expression * newExpr = untypedExpr; ResolvExpr::findVoidExpression( newExpr, indexer ); return newExpr; } Expression * FixCtorExprs::postmutate( ConstructorExpr * ctorExpr ) { static UniqueName tempNamer( "_tmp_ctor_expr" ); // xxx - is the size check necessary? assert( ctorExpr->result && ctorExpr->get_result()->size() == 1 ); // xxx - this can be TupleAssignExpr now. Need to properly handle this case. ApplicationExpr * callExpr = strict_dynamic_cast< ApplicationExpr * > ( ctorExpr->get_callExpr() ); TypeSubstitution * env = ctorExpr->get_env(); ctorExpr->set_callExpr( nullptr ); ctorExpr->set_env( nullptr ); // xxx - ideally we would reuse the temporary generated from the copy constructor passes from within firstArg if it exists and not generate a temporary if it's unnecessary. ObjectDecl * tmp = ObjectDecl::newObject( tempNamer.newName(), callExpr->args.front()->result->clone(), nullptr ); declsToAddBefore.push_back( tmp ); delete ctorExpr; // build assignment and replace constructor's first argument with new temporary Expression *& firstArg = callExpr->get_args().front(); Expression * assign = new UntypedExpr( new NameExpr( "?=?" ), { new AddressExpr( new VariableExpr( tmp ) ), new AddressExpr( firstArg ) } ); firstArg = new VariableExpr( tmp ); // resolve assignment and dispose of new env ResolvExpr::findVoidExpression( assign, indexer ); delete assign->env; assign->env = nullptr; // for constructor expr: // T x; // x{}; // results in: // T x; // T & tmp; // &tmp = &x, ?{}(tmp), tmp CommaExpr * commaExpr = new CommaExpr( assign, new CommaExpr( callExpr, new VariableExpr( tmp ) ) ); commaExpr->set_env( env ); return commaExpr; } } // namespace } // namespace InitTweak // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //