// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // Specialize.cc -- // // Author : Richard C. Bilson // Created On : Mon May 18 07:44:20 2015 // Last Modified By : Peter A. Buhr // Last Modified On : Mon Mar 6 23:13:00 2017 // Update Count : 30 // #include #include "Specialize.h" #include "GenPoly.h" #include "PolyMutator.h" #include "Parser/ParseNode.h" #include "SynTree/Expression.h" #include "SynTree/Statement.h" #include "SynTree/Type.h" #include "SynTree/Attribute.h" #include "SynTree/TypeSubstitution.h" #include "SynTree/Mutator.h" #include "ResolvExpr/FindOpenVars.h" #include "Common/UniqueName.h" #include "Common/utility.h" #include "InitTweak/InitTweak.h" #include "Tuples/Tuples.h" namespace GenPoly { class Specialize final : public PolyMutator { public: using PolyMutator::mutate; virtual Expression * mutate( ApplicationExpr *applicationExpr ) override; virtual Expression * mutate( AddressExpr *castExpr ) override; virtual Expression * mutate( CastExpr *castExpr ) override; // virtual Expression * mutate( LogicalExpr *logicalExpr ); // virtual Expression * mutate( ConditionalExpr *conditionalExpr ); // virtual Expression * mutate( CommaExpr *commaExpr ); void handleExplicitParams( ApplicationExpr *appExpr ); Expression * createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams ); Expression * doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams = nullptr ); std::string paramPrefix = "_p"; }; /// Looks up open variables in actual type, returning true if any of them are bound in the environment or formal type. bool needsPolySpecialization( Type *formalType, Type *actualType, TypeSubstitution *env ) { if ( env ) { using namespace ResolvExpr; OpenVarSet openVars, closedVars; AssertionSet need, have; findOpenVars( formalType, openVars, closedVars, need, have, false ); findOpenVars( actualType, openVars, closedVars, need, have, true ); for ( OpenVarSet::const_iterator openVar = openVars.begin(); openVar != openVars.end(); ++openVar ) { Type *boundType = env->lookup( openVar->first ); if ( ! boundType ) continue; if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( boundType ) ) { if ( closedVars.find( typeInst->get_name() ) == closedVars.end() ) { return true; } // if } else { return true; } // if } // for return false; } else { return false; } // if } bool needsTupleSpecialization( Type *formalType, Type *actualType, TypeSubstitution *env ) { if ( FunctionType * ftype = getFunctionType( formalType ) ) { return ftype->isTtype(); } return false; } bool needsSpecialization( Type *formalType, Type *actualType, TypeSubstitution *env ) { return needsPolySpecialization( formalType, actualType, env ) || needsTupleSpecialization( formalType, actualType, env ); } Expression * Specialize::doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams ) { assertf( actual->has_result(), "attempting to specialize an untyped expression" ); if ( needsSpecialization( formalType, actual->get_result(), env ) ) { if ( FunctionType *funType = getFunctionType( formalType ) ) { ApplicationExpr *appExpr; VariableExpr *varExpr; if ( ( appExpr = dynamic_cast( actual ) ) ) { return createThunkFunction( funType, appExpr->get_function(), inferParams ); } else if ( ( varExpr = dynamic_cast( actual ) ) ) { return createThunkFunction( funType, varExpr, inferParams ); } else { // This likely won't work, as anything that could build an ApplicationExpr probably hit one of the previous two branches return createThunkFunction( funType, actual, inferParams ); } } else { return actual; } // if } else { return actual; } // if } /// restructures arg to match the structure of a single formal parameter. Assumes that atomic types are compatible (as the Resolver should have ensured this) template< typename OutIterator > void matchOneFormal( Expression * arg, unsigned & idx, Type * formal, OutIterator out ) { if ( TupleType * tupleType = dynamic_cast< TupleType * >( formal ) ) { std::list< Expression * > exprs; for ( Type * t : *tupleType ) { matchOneFormal( arg, idx, t, back_inserter( exprs ) ); } *out++ = new TupleExpr( exprs ); } else { *out++ = new TupleIndexExpr( arg->clone(), idx++ ); } } /// restructures the ttype argument to match the structure of the formal parameters of the actual function. /// [begin, end) are the formal parameters. /// args is the list of arguments currently given to the actual function, the last of which needs to be restructured. template< typename Iterator, typename OutIterator > void fixLastArg( Expression * last, Iterator begin, Iterator end, OutIterator out ) { if ( Tuples::isTtype( last->get_result() ) ) { *out++ = last; } else { // safe_dynamic_cast for the assertion safe_dynamic_cast< TupleType * >( last->get_result() ); unsigned idx = 0; for ( ; begin != end; ++begin ) { DeclarationWithType * formal = *begin; Type * formalType = formal->get_type(); matchOneFormal( last, idx, formalType, out ); } delete last; } } /// Generates a thunk that calls `actual` with type `funType` and returns its address Expression * Specialize::createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams ) { static UniqueName thunkNamer( "_thunk" ); FunctionType *newType = funType->clone(); if ( env ) { // it is important to replace only occurrences of type variables that occur free in the // thunk's type env->applyFree( newType ); } // if // create new thunk with same signature as formal type (C linkage, empty body) FunctionDecl *thunkFunc = new FunctionDecl( thunkNamer.newName(), DeclarationNode::StorageClasses(), LinkageSpec::C, newType, new CompoundStmt( noLabels ) ); thunkFunc->fixUniqueId(); // thunks may be generated and not used - silence warning with attribute thunkFunc->get_attributes().push_back( new Attribute( "unused" ) ); // thread thunk parameters into call to actual function, naming thunk parameters as we go UniqueName paramNamer( paramPrefix ); ApplicationExpr *appExpr = new ApplicationExpr( actual ); FunctionType * actualType = getFunctionType( actual->get_result() )->clone(); if ( env ) { // need to apply the environment to the actual function's type, since it may itself be polymorphic env->apply( actualType ); } std::unique_ptr< FunctionType > actualTypeManager( actualType ); // for RAII std::list< DeclarationWithType * >::iterator actualBegin = actualType->get_parameters().begin(); std::list< DeclarationWithType * >::iterator actualEnd = actualType->get_parameters().end(); std::list< DeclarationWithType * >::iterator formalBegin = funType->get_parameters().begin(); std::list< DeclarationWithType * >::iterator formalEnd = funType->get_parameters().end(); for ( DeclarationWithType* param : thunkFunc->get_functionType()->get_parameters() ) { // walk the parameters to the actual function alongside the parameters to the thunk to find the location where the ttype parameter begins to satisfy parameters in the actual function. param->set_name( paramNamer.newName() ); assertf( formalBegin != formalEnd, "Reached end of formal parameters before finding ttype parameter" ); if ( Tuples::isTtype((*formalBegin)->get_type()) ) { fixLastArg( new VariableExpr( param ), actualBegin, actualEnd, back_inserter( appExpr->get_args() ) ); break; } assertf( actualBegin != actualEnd, "reached end of actual function's arguments before finding ttype parameter" ); ++actualBegin; ++formalBegin; appExpr->get_args().push_back( new VariableExpr( param ) ); } // for appExpr->set_env( maybeClone( env ) ); if ( inferParams ) { appExpr->get_inferParams() = *inferParams; } // if // handle any specializations that may still be present std::string oldParamPrefix = paramPrefix; paramPrefix += "p"; // save stmtsToAdd in oldStmts std::list< Statement* > oldStmts; oldStmts.splice( oldStmts.end(), stmtsToAdd ); mutate( appExpr ); paramPrefix = oldParamPrefix; // write any statements added for recursive specializations into the thunk body thunkFunc->get_statements()->get_kids().splice( thunkFunc->get_statements()->get_kids().end(), stmtsToAdd ); // restore oldStmts into stmtsToAdd stmtsToAdd.splice( stmtsToAdd.end(), oldStmts ); // add return (or valueless expression) to the thunk Statement *appStmt; if ( funType->get_returnVals().empty() ) { appStmt = new ExprStmt( noLabels, appExpr ); } else { appStmt = new ReturnStmt( noLabels, appExpr ); } // if thunkFunc->get_statements()->get_kids().push_back( appStmt ); // add thunk definition to queue of statements to add stmtsToAdd.push_back( new DeclStmt( noLabels, thunkFunc ) ); // return address of thunk function as replacement expression return new AddressExpr( new VariableExpr( thunkFunc ) ); } void Specialize::handleExplicitParams( ApplicationExpr *appExpr ) { // create thunks for the explicit parameters assert( appExpr->get_function()->has_result() ); FunctionType *function = getFunctionType( appExpr->get_function()->get_result() ); assert( function ); std::list< DeclarationWithType* >::iterator formal; std::list< Expression* >::iterator actual; for ( formal = function->get_parameters().begin(), actual = appExpr->get_args().begin(); formal != function->get_parameters().end() && actual != appExpr->get_args().end(); ++formal, ++actual ) { *actual = doSpecialization( (*formal )->get_type(), *actual, &appExpr->get_inferParams() ); } } Expression * Specialize::mutate( ApplicationExpr *appExpr ) { appExpr->get_function()->acceptMutator( *this ); mutateAll( appExpr->get_args(), *this ); if ( ! InitTweak::isIntrinsicCallExpr( appExpr ) ) { // create thunks for the inferred parameters // don't need to do this for intrinsic calls, because they aren't actually passed // need to handle explicit params before inferred params so that explicit params do not recieve a changed set of inferParams (and change them again) // alternatively, if order starts to matter then copy appExpr's inferParams and pass them to handleExplicitParams. handleExplicitParams( appExpr ); for ( InferredParams::iterator inferParam = appExpr->get_inferParams().begin(); inferParam != appExpr->get_inferParams().end(); ++inferParam ) { inferParam->second.expr = doSpecialization( inferParam->second.formalType, inferParam->second.expr, inferParam->second.inferParams.get() ); } } return appExpr; } Expression * Specialize::mutate( AddressExpr *addrExpr ) { addrExpr->get_arg()->acceptMutator( *this ); assert( addrExpr->has_result() ); addrExpr->set_arg( doSpecialization( addrExpr->get_result(), addrExpr->get_arg() ) ); return addrExpr; } Expression * Specialize::mutate( CastExpr *castExpr ) { castExpr->get_arg()->acceptMutator( *this ); if ( castExpr->get_result()->isVoid() ) { // can't specialize if we don't have a return value return castExpr; } Expression *specialized = doSpecialization( castExpr->get_result(), castExpr->get_arg() ); if ( specialized != castExpr->get_arg() ) { // assume here that the specialization incorporates the cast return specialized; } else { return castExpr; } } // Removing these for now. Richard put these in for some reason, but it's not clear why. // In particular, copy constructors produce a comma expression, and with this code the parts // of that comma expression are not specialized, which causes problems. // Expression * Specialize::mutate( LogicalExpr *logicalExpr ) { // return logicalExpr; // } // Expression * Specialize::mutate( ConditionalExpr *condExpr ) { // return condExpr; // } // Expression * Specialize::mutate( CommaExpr *commaExpr ) { // return commaExpr; // } void convertSpecializations( std::list< Declaration* >& translationUnit ) { Specialize spec; mutateAll( translationUnit, spec ); } } // namespace GenPoly // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //