// // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo // // The contents of this file are covered under the licence agreement in the // file "LICENCE" distributed with Cforall. // // Specialize.cc -- // // Author : Richard C. Bilson // Created On : Mon May 18 07:44:20 2015 // Last Modified By : Peter A. Buhr // Last Modified On : Thu Mar 16 07:53:59 2017 // Update Count : 31 // #include #include "Specialize.h" #include "GenPoly.h" #include "PolyMutator.h" #include "Parser/ParseNode.h" #include "SynTree/Expression.h" #include "SynTree/Statement.h" #include "SynTree/Type.h" #include "SynTree/Attribute.h" #include "SynTree/TypeSubstitution.h" #include "SynTree/Mutator.h" #include "ResolvExpr/FindOpenVars.h" #include "Common/UniqueName.h" #include "Common/utility.h" #include "InitTweak/InitTweak.h" #include "Tuples/Tuples.h" namespace GenPoly { class Specialize final : public PolyMutator { public: using PolyMutator::mutate; virtual Expression * mutate( ApplicationExpr *applicationExpr ) override; virtual Expression * mutate( AddressExpr *castExpr ) override; virtual Expression * mutate( CastExpr *castExpr ) override; // virtual Expression * mutate( LogicalExpr *logicalExpr ); // virtual Expression * mutate( ConditionalExpr *conditionalExpr ); // virtual Expression * mutate( CommaExpr *commaExpr ); void handleExplicitParams( ApplicationExpr *appExpr ); Expression * createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams ); Expression * doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams = nullptr ); std::string paramPrefix = "_p"; }; /// Looks up open variables in actual type, returning true if any of them are bound in the environment or formal type. bool needsPolySpecialization( Type *formalType, Type *actualType, TypeSubstitution *env ) { if ( env ) { using namespace ResolvExpr; OpenVarSet openVars, closedVars; AssertionSet need, have; findOpenVars( formalType, openVars, closedVars, need, have, false ); findOpenVars( actualType, openVars, closedVars, need, have, true ); for ( OpenVarSet::const_iterator openVar = openVars.begin(); openVar != openVars.end(); ++openVar ) { Type *boundType = env->lookup( openVar->first ); if ( ! boundType ) continue; if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( boundType ) ) { if ( closedVars.find( typeInst->get_name() ) == closedVars.end() ) { return true; } // if } else { return true; } // if } // for return false; } else { return false; } // if } /// True if both types have the same structure, but not necessarily the same types. /// That is, either both types are tuple types with the same size (recursively), or /// both are not tuple types. bool matchingTupleStructure( Type * t1, Type * t2 ) { TupleType * tuple1 = dynamic_cast< TupleType * >( t1 ); TupleType * tuple2 = dynamic_cast< TupleType * >( t2 ); if ( tuple1 && tuple2 ) { if ( tuple1->size() != tuple2->size() ) return false; for ( auto types : group_iterate( tuple1->get_types(), tuple2->get_types() ) ) { if ( ! matchingTupleStructure( std::get<0>( types ), std::get<1>( types ) ) ) return false; } return true; } else if ( ! tuple1 && ! tuple2 ) return true; return false; } bool needsTupleSpecialization( Type *formalType, Type *actualType ) { // Needs tuple specialization if the structure of the formal type and actual type do not match. // This is the case if the formal type has ttype polymorphism, or if the structure of tuple types // between the function do not match exactly. if ( FunctionType * fftype = getFunctionType( formalType ) ) { if ( fftype->isTtype() ) return true; // conversion of 0 (null) to function type does not require tuple specialization if ( dynamic_cast< ZeroType * >( actualType ) ) return false; FunctionType * aftype = getFunctionType( actualType ); assertf( aftype, "formal type is a function type, but actual type is not." ); if ( fftype->get_parameters().size() != aftype->get_parameters().size() ) return true; for ( auto params : group_iterate( fftype->get_parameters(), aftype->get_parameters() ) ) { DeclarationWithType * formal = std::get<0>(params); DeclarationWithType * actual = std::get<1>(params); if ( ! matchingTupleStructure( formal->get_type(), actual->get_type() ) ) return true; } } return false; } bool needsSpecialization( Type *formalType, Type *actualType, TypeSubstitution *env ) { return needsPolySpecialization( formalType, actualType, env ) || needsTupleSpecialization( formalType, actualType ); } Expression * Specialize::doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams ) { assertf( actual->has_result(), "attempting to specialize an untyped expression" ); if ( needsSpecialization( formalType, actual->get_result(), env ) ) { if ( FunctionType *funType = getFunctionType( formalType ) ) { ApplicationExpr *appExpr; VariableExpr *varExpr; if ( ( appExpr = dynamic_cast( actual ) ) ) { return createThunkFunction( funType, appExpr->get_function(), inferParams ); } else if ( ( varExpr = dynamic_cast( actual ) ) ) { return createThunkFunction( funType, varExpr, inferParams ); } else { // This likely won't work, as anything that could build an ApplicationExpr probably hit one of the previous two branches return createThunkFunction( funType, actual, inferParams ); } } else { return actual; } // if } else { return actual; } // if } /// restructures the arguments to match the structure of the formal parameters of the actual function. /// [begin, end) are the exploded arguments. template< typename Iterator, typename OutIterator > void structureArg( Type * type, Iterator & begin, Iterator end, OutIterator out ) { if ( TupleType * tuple = dynamic_cast< TupleType * >( type ) ) { std::list< Expression * > exprs; for ( Type * t : *tuple ) { structureArg( t, begin, end, back_inserter( exprs ) ); } *out++ = new TupleExpr( exprs ); } else { assertf( begin != end, "reached the end of the arguments while structuring" ); *out++ = *begin++; } } /// explode assuming simple cases: either type is pure tuple (but not tuple expr) or type is non-tuple. template< typename OutputIterator > void explodeSimple( Expression * expr, OutputIterator out ) { if ( TupleType * tupleType = dynamic_cast< TupleType * > ( expr->get_result() ) ) { // tuple type, recursively index into its components for ( unsigned int i = 0; i < tupleType->size(); i++ ) { explodeSimple( new TupleIndexExpr( expr->clone(), i ), out ); } delete expr; } else { // non-tuple type - output a clone of the expression *out++ = expr; } } struct EnvTrimmer : public Visitor { TypeSubstitution * env, * newEnv; EnvTrimmer( TypeSubstitution * env, TypeSubstitution * newEnv ) : env( env ), newEnv( newEnv ){} virtual void visit( TypeDecl * tyDecl ) { // transfer known bindings for seen type variables if ( Type * t = env->lookup( tyDecl->get_name() ) ) { newEnv->add( tyDecl->get_name(), t ); } } }; /// reduce environment to just the parts that are referenced in a given expression TypeSubstitution * trimEnv( ApplicationExpr * expr, TypeSubstitution * env ) { if ( env ) { TypeSubstitution * newEnv = new TypeSubstitution(); EnvTrimmer trimmer( env, newEnv ); expr->accept( trimmer ); return newEnv; } return nullptr; } /// Generates a thunk that calls `actual` with type `funType` and returns its address Expression * Specialize::createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams ) { static UniqueName thunkNamer( "_thunk" ); FunctionType *newType = funType->clone(); if ( env ) { // it is important to replace only occurrences of type variables that occur free in the // thunk's type env->applyFree( newType ); } // if // create new thunk with same signature as formal type (C linkage, empty body) FunctionDecl *thunkFunc = new FunctionDecl( thunkNamer.newName(), Type::StorageClasses(), LinkageSpec::C, newType, new CompoundStmt( noLabels ) ); thunkFunc->fixUniqueId(); // thunks may be generated and not used - silence warning with attribute thunkFunc->get_attributes().push_back( new Attribute( "unused" ) ); // thread thunk parameters into call to actual function, naming thunk parameters as we go UniqueName paramNamer( paramPrefix ); ApplicationExpr *appExpr = new ApplicationExpr( actual ); FunctionType * actualType = getFunctionType( actual->get_result() )->clone(); if ( env ) { // need to apply the environment to the actual function's type, since it may itself be polymorphic env->apply( actualType ); } std::unique_ptr< FunctionType > actualTypeManager( actualType ); // for RAII std::list< DeclarationWithType * >::iterator actualBegin = actualType->get_parameters().begin(); std::list< DeclarationWithType * >::iterator actualEnd = actualType->get_parameters().end(); std::list< Expression * > args; for ( DeclarationWithType* param : thunkFunc->get_functionType()->get_parameters() ) { // name each thunk parameter and explode it - these are then threaded back into the actual function call. param->set_name( paramNamer.newName() ); explodeSimple( new VariableExpr( param ), back_inserter( args ) ); } // walk parameters to the actual function alongside the exploded thunk parameters and restructure the arguments to match the actual parameters. std::list< Expression * >::iterator argBegin = args.begin(), argEnd = args.end(); for ( ; actualBegin != actualEnd; ++actualBegin ) { structureArg( (*actualBegin)->get_type(), argBegin, argEnd, back_inserter( appExpr->get_args() ) ); } appExpr->set_env( trimEnv( appExpr, env ) ); if ( inferParams ) { appExpr->get_inferParams() = *inferParams; } // if // handle any specializations that may still be present std::string oldParamPrefix = paramPrefix; paramPrefix += "p"; // save stmtsToAdd in oldStmts std::list< Statement* > oldStmts; oldStmts.splice( oldStmts.end(), stmtsToAdd ); mutate( appExpr ); paramPrefix = oldParamPrefix; // write any statements added for recursive specializations into the thunk body thunkFunc->get_statements()->get_kids().splice( thunkFunc->get_statements()->get_kids().end(), stmtsToAdd ); // restore oldStmts into stmtsToAdd stmtsToAdd.splice( stmtsToAdd.end(), oldStmts ); // add return (or valueless expression) to the thunk Statement *appStmt; if ( funType->get_returnVals().empty() ) { appStmt = new ExprStmt( noLabels, appExpr ); } else { appStmt = new ReturnStmt( noLabels, appExpr ); } // if thunkFunc->get_statements()->get_kids().push_back( appStmt ); // add thunk definition to queue of statements to add stmtsToAdd.push_back( new DeclStmt( noLabels, thunkFunc ) ); // return address of thunk function as replacement expression return new AddressExpr( new VariableExpr( thunkFunc ) ); } void Specialize::handleExplicitParams( ApplicationExpr *appExpr ) { // create thunks for the explicit parameters assert( appExpr->get_function()->has_result() ); FunctionType *function = getFunctionType( appExpr->get_function()->get_result() ); assert( function ); std::list< DeclarationWithType* >::iterator formal; std::list< Expression* >::iterator actual; for ( formal = function->get_parameters().begin(), actual = appExpr->get_args().begin(); formal != function->get_parameters().end() && actual != appExpr->get_args().end(); ++formal, ++actual ) { *actual = doSpecialization( (*formal )->get_type(), *actual, &appExpr->get_inferParams() ); } } Expression * Specialize::mutate( ApplicationExpr *appExpr ) { appExpr->get_function()->acceptMutator( *this ); mutateAll( appExpr->get_args(), *this ); if ( ! InitTweak::isIntrinsicCallExpr( appExpr ) ) { // create thunks for the inferred parameters // don't need to do this for intrinsic calls, because they aren't actually passed // need to handle explicit params before inferred params so that explicit params do not recieve a changed set of inferParams (and change them again) // alternatively, if order starts to matter then copy appExpr's inferParams and pass them to handleExplicitParams. handleExplicitParams( appExpr ); for ( InferredParams::iterator inferParam = appExpr->get_inferParams().begin(); inferParam != appExpr->get_inferParams().end(); ++inferParam ) { inferParam->second.expr = doSpecialization( inferParam->second.formalType, inferParam->second.expr, inferParam->second.inferParams.get() ); } } return appExpr; } Expression * Specialize::mutate( AddressExpr *addrExpr ) { addrExpr->get_arg()->acceptMutator( *this ); assert( addrExpr->has_result() ); addrExpr->set_arg( doSpecialization( addrExpr->get_result(), addrExpr->get_arg() ) ); return addrExpr; } Expression * Specialize::mutate( CastExpr *castExpr ) { castExpr->get_arg()->acceptMutator( *this ); if ( castExpr->get_result()->isVoid() ) { // can't specialize if we don't have a return value return castExpr; } Expression *specialized = doSpecialization( castExpr->get_result(), castExpr->get_arg() ); if ( specialized != castExpr->get_arg() ) { // assume here that the specialization incorporates the cast return specialized; } else { return castExpr; } } // Removing these for now. Richard put these in for some reason, but it's not clear why. // In particular, copy constructors produce a comma expression, and with this code the parts // of that comma expression are not specialized, which causes problems. // Expression * Specialize::mutate( LogicalExpr *logicalExpr ) { // return logicalExpr; // } // Expression * Specialize::mutate( ConditionalExpr *condExpr ) { // return condExpr; // } // Expression * Specialize::mutate( CommaExpr *commaExpr ) { // return commaExpr; // } void convertSpecializations( std::list< Declaration* >& translationUnit ) { Specialize spec; mutateAll( translationUnit, spec ); } } // namespace GenPoly // Local Variables: // // tab-width: 4 // // mode: c++ // // compile-command: "make install" // // End: //